A NOTE ON COMMON FIXED POINTS

By

PRAMILA SRIVASTAVA and VIJAY KUMAR GUPTA

(Received November 4, 1970)

1. Introduction:

Throughout this paper we will write X for a complete metric space (X, d). The well known Banach contraction principle states that if

$$d(Tx, Ty) \leq Rd(x, y)$$
,

for all $x, y \in X$ and 0 < R < 1, where T is an operator mapping X into itself then T has a unique fixed point.

For two operators T_1 and T_2 each mapping X into itself Kannan [1] investigated a sufficient condition for the existence of a common and unique fixed point in X. He has proved the following theorem.

Theorem. A [1, Theorem 1] If T_1 and T_2 are two operators each mapping X into itself and if

 $d(T_1(x), T_2(y)) \leq \alpha [d(x, T_1(x)) + d(y, T_2(y))],$

where $x, y \in X$ and $0 < \alpha < \frac{1}{2}$, then T_1 and T_2 have a unique common fixed point.

If T_1 is identical with T_2 in the above theorem, then we have

Theorem. B [1, Theorem 2] If T be an operator mapping X into itself and if

 $d(T(x), T(y)) \leq \alpha [d(x, T(x)) + d(y, T(y))]$,

where $x, y \in X$ and $0 < \alpha < \frac{1}{2}$, then T has a unique fixed point in X.

More recently Singh [2] obtained the following generalization of Theorem B.

Theorem. C [2, Theorem 1]

If T be an operator mapping X into itself and if T^n (n is a positive integer) satisfies

$$d(T^{n}(x), T^{n}(y)) \leq \alpha[d(x, T^{n}(x)) + d(y, T^{n}(y))],$$

for all $x, y \in X$ and $0 < \alpha < \frac{1}{2}$, then T has a unique fixed point in X.

In the present note we establish a more general theorem in this direction. Theorem A, B and C become corollaries to our result.

2.1 We prove the following theorem. We mention also a few additional consequences of the main theorem.

Theorem. 1

If T_1 and T_2 are two operators mapping X into itself such that

 $d(T_1^p(x), T_2^q(y)) \leq \alpha d(x, T_1^p(x)) + \beta d(y, T_2^q(y))$,

where $x, y \in X$, p and q are positive integers, $\alpha > 0$, $\beta > 0$, $\alpha + \beta < 1$, then T_1 and T_2 have unique and common fixed point.

2.2 Proof.

We define a sequence of elements $\{x_n\}$ in X as follows. Let $x \in X$ be arbitrary. Set

$$x_1 = T_1^p(x), \quad x_2 = T_2^q(x_1), \quad x_3 = T_1^p(x_2), \quad x_4 = T_2^q(x_3) \text{ and so on.}$$

In general

$$x_{2n+1} = T_1^p(x_{2n})$$
 and $x_{2(n+1)} = T_2^q(x_{2n+1})$.

Now

$$d(x_1, x_2) = d(T_1^p(x), T_2^q(x_1)) \leq \alpha d(x, T_1^p(x)) + \beta d(x_1, T_2^q(x_2))$$

= $\alpha d(x, x_1) + \beta d(x_1, x_2)$.

Therefore

 $d(x_1, x_2) \leqslant \frac{\alpha}{1-\beta} d(x, x_1) .$

Also

 $d(x_2, x_3) = d(T_2^q(x_1), T_1^p(x_2))$ $\leq \alpha(x_2, T_1^p(x_2)) + \beta d(x_1, T_2^q(x_1)),$

and hence

$$d(x_2, x_3) \leq \frac{\beta}{1-\alpha} d(x_1, x_2)$$
$$\leq \frac{\beta}{1-\alpha} \cdot \frac{\alpha}{1-\beta} d(x, x_1) ,$$

Put $r_1 = \frac{\alpha}{1-\beta}$, $r_2 = \frac{\beta}{1-\alpha}$. Since $\alpha + \beta < 1$, r_1 and $r_2 < 1$. Then $d(x_{2n}, x_{2n+1}) \le r_2 r_1 \cdots r_1 r_2 r_1 d(x, x_1) = r_2^n r_1^n d(x, x_1)$.

$$\omega(x_{2n}, x_{2n+1}) < 2, 1$$
 $(1, 2, 1) < 0, x_{1}) - (2, 1) < 0, x_{2}$

$$d(x_{2n+1}, x_{2(n+1)}) \leq r_1^{n+1} r_2^n d(x, x_1)$$
.

Hence for $m=2\nu$, we have

$$d(x_{m}, x_{m+n}) \leq d(x_{m}, x_{m+1}) + d(x_{m+1}, x_{m+2}) + \dots + d(x_{m+n-1}, x_{m+n})$$

$$\leq (r_{2}^{\nu}r_{1}^{\nu} + r_{2}^{\nu}r_{1}^{\nu+1} + r_{2}^{\nu+1}r_{1}^{\nu+1} + \dots + \dots \text{ terms}) \times d(x, x_{1})$$

$$< (r_{2}^{\nu}r_{1}^{\nu} + r_{2}^{\nu}r_{1}^{\nu+1} + r_{2}^{\nu+1}r_{1}^{\nu+1} + \dots + \dots \text{ up to infinity}) \times d(x, x_{1})$$

$$= [r_{2}^{\nu}r_{1}^{\nu}(1 + r_{1}r_{2} + r_{1}^{2}r_{2}^{2} + \dots) + r_{1}^{\nu+1}r_{2}^{\nu}(1 + r_{1}r_{2} + r_{1}^{2}r_{2}^{2} + \dots)] \times d(x, x_{1})$$

$$= r_{2}^{\nu}r_{1}^{\nu}(1 + r_{1})\frac{1}{1 - r_{1}r_{2}} \times d(x, x_{1})$$

$$\rightarrow 0 \text{ as } \nu \rightarrow \infty \text{ i. e. } m \rightarrow \infty$$

Similarly, for $m=2\nu+1$

$$d(x_{m}, x_{m+n}) \leq (r_{2}^{\nu} r_{1}^{\nu+1} + r_{1}^{\nu+1} r_{2}^{\nu+1} + r_{1}^{\nu+2} r_{2}^{\nu+1} + r_{1}^{\nu+2} r_{2}^{\nu+2} + \cdots) \times d(x, x_{1})$$

$$= \{r_{2}^{\nu} r_{1}^{\nu+1} (1 + r_{1} r_{2} + r_{1}^{2} r_{2}^{2} + \cdots) + r_{1}^{\nu+1} r_{2}^{\nu+1} (1 + r_{1} r_{2} + r_{1}^{2} r_{2}^{2} + \cdots) \times d(x, x_{1})$$

$$= r_{1}^{\nu+1} r_{2}^{\nu} (1 + r_{2}) \frac{1}{1 - r_{1} r_{2}} \times d(x, x_{1})$$

$$\rightarrow 0 \text{ as } \nu \rightarrow \infty \text{ i. e. } m \rightarrow \infty \text{ .}$$

This shows that $\{x_n\}$ is a Cauchy sequence. Since the space is complete there exists $x_0 \in X$ such that

$$\lim x_n = x_0$$
.

We first show that

$$T_1^p(x_0) = T_2^q(x_0) = x_0$$
.

We have

$$d(x_0, T_1^p(x_0)) \leq d(x_0, x_t) + d(x_t, T_1^p(x_0)) = d(x_0, x_t) + d(T_2^q(x_{t-1}), T_1^p(x_0))$$

Where t is taken to be even. Hence

 $d(x_0, T_1^p(x_0)) < d(x_0, x_t) + \alpha d(x_0, T_1^p(x_0)) + \beta d(x_{t-1}, T_2^q(x_{t-1})) ,$

or,

$$(1-\alpha)d(x_0, T_1^p(x_0)) < d(x_0, x_t) + \beta d(x_{t-1}, x_t)$$

The expression on the right hand side can be made arbitrarily small by choosing t sufficiently large. Therefore,

$$d(x_0, T_1^p(x_0))=0$$
.

That is to say that $T_1^p(x_0) = x_0$. Similarly $x_0 = T_2^q(x_0)$.

We further show that x_0 is the unique common fixed point of T_1^p and T_2^q . Suppose y_0 also satisfies

$$T_1^p(y_0) = T_2^q(y_0) = y_0$$
.

Then

$$d(x_0, y_0) = d(T_i^p(x_0), T_i^q(y_0)) \leq \alpha d(x_0, T_i^p(x_0)) + \beta d(y_0, T_i^q(y_0)) = 0,$$

 $x_0 = y_0$.

and

Finally we obtain that x_0 is the unique common fixed point of T_1 and T_2 . For,

$$T_{i}^{p}(x_{0}) = x_{0} \longrightarrow T_{i}^{p}(T_{1}(x_{0})) = T_{1}(T_{i}^{p}(x_{0})) = T_{1}(x_{0})$$

 \implies $T_1(x_0) = x_0$, since T_1^p has a unique fixed point x_0 .

Similarly $T_2(x_0) = x_0$.

Moreover, x_0 is the only fixed point of T_1 and of T_2 . Suppose if possible $z_0 \neq x_0$ and $T_1(z_0) = T_2(z_0) = z_0$. Then

$$d(x_0, z_0) = d(T_2(x_0), T_1(z_0)) = d(T_2^q(x_0), T_1^p(z_0))$$

 $\leq \alpha d(z_0, T_1^p(z_0)) + \beta d(x_0, T_2^q(x_0)) = 0.$

Which implies $x_0 = z_0$.

This completes the proof of the theorem.

2.3 Remarks.

i) For q=p=1, and $\alpha=\beta$ we get theorem A.

- ii) For p=q=1, $T_1=T_2$ and $\alpha=\beta$ we get theorem B.
- iii) For p=q, $T_1=T_2$ and $\alpha=\beta$ we get theorem C.

2.4 As simple consequences we state the following theorems.

Theorem. 2

Let T be an operator mapping X into itself such that

(*)

$$d(T^p(x), T^q(y)) \leq \alpha d(x, T^p(x)) + \beta d(y, T^q(y)) .$$

where x, $y \in X$, p and q are positive integers, $\alpha > 0$, $\beta > 0$, and $\alpha + \beta < 1$, then T has a unique fixed point in X.

Theorem. 3

Let T_1 be an operator mapping X into itself such that T_1 satisfies (*) and if T_2 be an operator mapping X into itself such that $T_1T_2=T_2T_1$, then T_1 and T_2 have a unique common fixed point.

Theorem 2 is obtained by putting $T_1 = T_2$ in Theorem 1.

For the proof of theorem 3 it is sufficient to note that if x_0 is the unique fixed point of T_1 , then $T_1(x_0)=x_0$ implies $T_1T_2(x_0)=T_2T_1(x_0)=T_2(x_0)$ which implies $T_2(x_0)=x_0$, that is to say that x_0 is a fixed point of T_2 also.

REFERENCES

- Kannan, R. Some Results on Fixed Points. Bull. Cal. Math. Soc. Vol. 60 No. 182 pp. 71-76.
- [2] Singh, S.P. Some Results on Fixed Points. Yokohama Math. Journal. Vol. XVII, No. 2 pp. 61-64.

Mathematics Department, Allahabad University, Allahabad, U. P. India. and Mathematics Department, Banaras Hindu University, Varanasi-5, U. P. India.