A NOTE ON COMMON FIXED POINTS

By
Pramila Srivastava and Vijay Kumar Gupta

(Received November 4, 1970)

1. Introduction:

Throughout this paper we will write X for a complete metric space (X, d). The well known Banach contraction principle states that if

$$
d(T x, T y) \leqslant R d(x, y)
$$

for all $x, y \in X$ and $0<R<1$, where T is an operator mapping X into itself then T has a unique fixed point.

For two operators T_{1} and T_{2} each mapping X into itself Kannan [1] investigated a sufficient condition for the existence of a common and unique fixed point in X. He has proved the following theorem.

Theorem. A [1, Theorem 1]
If T_{1} and T_{2} are two operators each mapping X into itself and if

$$
d\left(T_{1}(x), T_{2}(y)\right) \leqslant \alpha\left[d\left(x, T_{1}(x)\right)+d\left(y, T_{2}(y)\right)\right]
$$

where $x, y \in X$ and $0<\alpha<\frac{1}{2}$, then T_{1} and T_{2} have a unique common fixed point.
If T_{1} is identical with T_{2} in the above theorem, then we have
Theorem. B [1, Theorem 2]
If T be an operator mapping X into itself and if

$$
d(T(x), T(y)) \leqslant \alpha[d(x, T(x))+d(y, T(y))]
$$

where $x, y \in X$ and $0<\alpha<\frac{1}{2}$, then T has a unique fixed point in X.
More recently Singh [2] obtained the following generalization of Theorem B.

Theorem. C [2, Theorem 1]

If T be an operator mapping X into itself and if T^{n} (n is a positive integer) satisfies

$$
d\left(T^{n}(x), T^{n}(y)\right) \leqslant \alpha\left[d\left(x, T^{n}(x)\right)+d\left(y, T^{n}(y)\right)\right]
$$

for all $x, y \in X$ and $0<\alpha<\frac{1}{2}$, then T has a unique fixed point in X.
In the present note we establish a more general theorem in this direction. Theorem A, B and C become corollaries to our result.
2.1 We prove the following theorem. We mention also a few additional consequences of the main theorem.

Theorem. 1

If T_{1} and T_{2} are two operators mapping X into itself such that

$$
d\left(T_{1}^{p}(x), T_{2}^{q}(y)\right) \leqslant \alpha d\left(x, T_{1}^{p}(x)\right)+\beta d\left(y, T_{2}^{q}(y)\right),
$$

where $x, y \in X, p$ and q are positive integers, $\alpha>0, \beta>0, \alpha+\beta<1$, then T_{1} and T_{2} have unique and common fixed point.

2.2 Proof.

We define a sequence of elements $\left\{x_{n}\right\}$ in X as follows. Let $x \in X$ be arbitrary. Set

$$
x_{1}=T_{1}^{p}(x), \quad x_{2}=T_{2}^{q}\left(x_{1}\right), \quad x_{3}=T_{1}^{p}\left(x_{2}\right), \quad x_{4}=T_{2}^{q}\left(x_{3}\right) \quad \text { and so on. }
$$

In general

$$
x_{2 n+1}=T_{1}^{p}\left(x_{2 n}\right) \quad \text { and } \quad x_{2(n+1)}=T_{2}^{q}\left(x_{2 n+1}\right) .
$$

Now

$$
\begin{aligned}
d\left(x_{1}, x_{2}\right) & =d\left(T_{1}^{p}(x), T_{2}^{q}\left(x_{1}\right)\right) \leqslant \alpha d\left(x, T_{1}^{p}(x)\right)+\beta d\left(x_{1}, T_{2}^{q}\left(x_{2}\right)\right) \\
& =\alpha d\left(x, x_{1}\right)+\beta d\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

Therefore

$$
d\left(x_{1}, x_{2}\right) \leqslant \frac{\alpha}{1-\beta} d\left(x, x_{1}\right) .
$$

Also

$$
\begin{aligned}
d\left(x_{2}, x_{3}\right) & =d\left(T_{2}^{q}\left(x_{1}\right), T_{1}^{p}\left(x_{2}\right)\right) \\
& \leqslant \alpha\left(x_{2}, T_{1}^{p}\left(x_{2}\right)\right)+\beta d\left(x_{1}, T_{2}^{q}\left(x_{1}\right)\right),
\end{aligned}
$$

and hence

$$
\begin{aligned}
d\left(x_{2}, x_{3}\right) & \leqslant \frac{\beta}{1-\alpha} d\left(x_{1}, x_{2}\right) \\
& \leqslant \frac{\beta}{1-\alpha} \cdot \frac{\alpha}{1-\beta} d\left(x, x_{1}\right),
\end{aligned}
$$

Put $\quad r_{1}=\frac{\alpha}{1-\beta}, \quad r_{2}=\frac{\beta}{1-\alpha}$. Since $\alpha+\beta<1, r_{1}$ and $r_{2}<1$. Then

$$
\begin{aligned}
& d\left(x_{2 n}, x_{2 n+1}\right) \leqslant r_{2} r_{1} \cdots r_{1} r_{2} r_{1} d\left(x, x_{1}\right)=r_{2}^{n} r_{1}^{n} d\left(x, x_{1}\right), \\
& d\left(x_{2 n+1}, x_{2(n+1)}\right) \leqslant r_{1}^{n+1} r_{2}^{n} d\left(x, x_{1}\right) .
\end{aligned}
$$

Hence for $m=2 \nu$, we have

$$
\begin{aligned}
d\left(x_{m}, x_{m+n}\right) & \leqslant d\left(x_{m}, x_{m+1}\right)+d\left(x_{m+1}, x_{m+2}\right)+\cdots+d\left(x_{m+n-1}, x_{m+n}\right) \\
& \leqslant\left(r_{2}^{\nu} r_{1}^{\nu}+r_{2}^{\nu} r_{1}^{\nu+1}+r_{2}^{\nu+1} r_{1}^{\nu+1}+\cdots+\cdots n \text { terms }\right) \times d\left(x, x_{1}\right) \\
& <\left(r_{2}^{\nu} r_{1}^{\nu}+r_{2}^{\nu} r_{1}^{\nu+1}+r_{2}^{\nu+1} r_{1}^{\nu+1}+\cdots+\cdots \text { up to infinity }\right) \times d\left(x, x_{1}\right) \\
& =\left[r_{2}^{\nu} r_{1}^{\nu}\left(1+r_{1} r_{2}+r_{1}^{2} \nu_{2}^{2}+\cdots\right)+r_{1}^{\nu+1} r_{2}^{\nu}\left(1+r_{1} r_{2}+r_{1}^{2} r_{2}^{2}+\cdots\right)\right] \times d\left(x, x_{1}\right) \\
& =r_{2}^{\nu} r_{1}^{\nu}\left(1+r_{1}\right) \frac{1}{1-r_{1} r_{2}} \times d\left(x, x_{1}\right) \\
& \rightarrow 0 \text { as } \nu \rightarrow \infty \text { i.e. } m \rightarrow \infty .
\end{aligned}
$$

Similarly, for $m=2 \nu+1$

$$
\begin{aligned}
d\left(x_{m}, x_{m_{+n}}\right) & \leqslant\left(r_{2}^{\nu} r_{1}^{\nu+1}+r_{1}^{\nu+1} r_{2}^{\nu+1}+r_{1}^{\nu+2} r_{2}^{\nu+1}+r_{1}^{\nu+2} r_{2}^{\nu+2}+\cdots\right) \times d\left(x, x_{1}\right) \\
& =\left\{r_{2}^{\nu} r_{1}^{\nu+1}\left(1+r_{1} r_{2}+r_{1}^{2} r_{2}^{2}+\cdots\right)+r_{1}^{\nu+1} r_{2}^{\nu+1}\left(1+r_{1} r_{2}+r_{1}^{2} r_{2}^{2}+\cdots\right) \times d\left(x, x_{1}\right)\right. \\
& =r_{1}^{\nu+1} r_{2}^{\nu}\left(1+r_{2}\right) \frac{1}{1-r_{1} r_{2}} \times d\left(x, x_{1}\right) \\
& \rightarrow 0 \text { as } \nu \rightarrow \infty \text { i. e. } m \rightarrow \infty .
\end{aligned}
$$

This shows that $\left\{x_{n}\right\}$ is a Cauchy sequence. Since the space is complete there exists $x_{0} \in X$ such that

$$
\lim _{n \rightarrow \infty} x_{n}=x_{0} .
$$

We first show that

$$
T_{1}^{p}\left(x_{0}\right)=T_{2}^{q}\left(x_{0}\right)=x_{0} .
$$

We have

$$
d\left(x_{0}, T_{1}^{p}\left(x_{0}\right)\right) \leqslant d\left(x_{0}, x_{t}\right)+d\left(x_{t}, T_{1}^{p}\left(x_{0}\right)\right)=d\left(x_{0}, x_{t}\right)+d\left(T_{2}^{q}\left(x_{t-1}\right), T_{1}^{p}\left(x_{0}\right)\right) .
$$

Where t is taken to be even.
Hence
or,

$$
\begin{gathered}
d\left(x_{0}, T_{1}^{p}\left(x_{0}\right)\right)<d\left(x_{0}, x_{t}\right)+\alpha d\left(x_{0}, T_{1}^{p}\left(x_{0}\right)\right)+\beta d\left(x_{t-1}, T_{2}^{q}\left(x_{t-1}\right)\right), \\
(1-\alpha) d\left(x_{0}, T_{1}^{p}\left(x_{0}\right)\right)<d\left(x_{0}, x_{t}\right)+\beta d\left(x_{t-1}, x_{t}\right) .
\end{gathered}
$$

The expression on the right hand side can be made arbitrarily small by choosing t sufficiently large. Therefore,

$$
d\left(x_{0}, T_{1}^{p}\left(x_{0}\right)\right)=0 .
$$

That is to say that $T_{1}^{p}\left(x_{0}\right)=x_{0}$. Similarly $x_{0}=T_{2}^{q}\left(x_{0}\right)$.
We further show that x_{0} is the unique common fixed point of T_{1}^{p} and T_{2}^{q}. Suppose y_{0} also satisfies

$$
T_{1}^{p}\left(y_{0}\right)=T_{2}^{q}\left(y_{0}\right)=y_{0} .
$$

Then

$$
d\left(x_{0}, y_{0}\right)=d\left(T_{1}^{p}\left(x_{0}\right), T_{2}^{q}\left(y_{0}\right)\right) \leqslant \alpha d\left(x_{0}, T_{1}^{p}\left(x_{0}\right)\right)+\beta d\left(y_{0}, T_{2}^{q}\left(y_{0}\right)\right)=0,
$$

and

$$
x_{0}=y_{0} .
$$

Finally we obtain that x_{0} is the unique common fixed point of T_{1} and T_{2}. For,

$$
T_{1}^{p}\left(x_{0}\right)=x_{0} \Longrightarrow T_{1}^{p}\left(T_{1}\left(x_{0}\right)\right)=T_{1}\left(T_{1}^{p}\left(x_{0}\right)\right)=T_{1}\left(x_{0}\right)
$$

$$
\Longrightarrow T_{1}\left(x_{0}\right)=x_{0} \text {, since } T_{1}^{p} \text { has a unique fixed point } x_{0} .
$$

Similarly $T_{2}\left(x_{0}\right)=x_{0}$.
Moreover, x_{0} is the only fixed point of T_{1} and of T_{2}. Suppose if possible $z_{0} \neq x_{0}$ and $T_{1}\left(z_{0}\right)=T_{2}\left(z_{0}\right)=z_{0}$. Then

$$
\begin{aligned}
d\left(x_{0}, z_{0}\right) & =d\left(T_{2}\left(x_{0}\right), T_{1}\left(z_{0}\right)\right)=d\left(T_{2}^{q}\left(x_{0}\right), T_{1}^{p}\left(z_{0}\right)\right) \\
& \leqslant \alpha d\left(z_{0}, T_{1}^{p}\left(z_{0}\right)\right)+\beta d\left(x_{0}, T_{2}^{q}\left(x_{0}\right)\right)=0 .
\end{aligned}
$$

Which implies $x_{0}=z_{0}$.
This completes the proof of the theorem.

2.3 Remarks.

i) For $q=p=1$, and $\alpha=\beta$ we get theorem A.
ii) For $p=q=1, T_{1}=T_{2}$ and $\alpha=\beta$ we get theorem B.
iii) For $p=q, T_{1}=T_{2}$ and $\alpha=\beta$ we get theorem C.
2.4 As simple consequences we state the following theorems.

Theorem. 2
Let T be an operator mapping X into itself such that

$$
\begin{equation*}
d\left(T^{p}(x), T^{q}(y)\right) \leqslant \alpha d\left(x, T^{p}(x)\right)+\beta d\left(y, T^{q}(y)\right) . \tag{*}
\end{equation*}
$$

where $x, y \in X, p$ and q are positive integers, $\alpha>0, \beta>0$, and $\alpha+\beta<1$, then T has a unique fixed point in X.

Theorem. 3
Let T_{1} be an operator mapping X into itself such that T_{1} satisfies (*) and if T_{2} be an operator mapping X into itself such that $T_{1} T_{2}=T_{2} T_{1}$, then T_{1} and T_{2} have a unique common fixed point.

Theorem 2 is obtained by putting $T_{1}=T_{2}$ in Theorem 1.
For the proof of theorem 3 it is sufficient to note that if x_{0} is the unique fixed point of T_{1}, then $T_{1}\left(x_{0}\right)=x_{0}$ implies $T_{1} T_{2}\left(x_{0}\right)=T_{2} T_{1}\left(x_{0}\right)=T_{2}\left(x_{0}\right)$ which implies $T_{2}\left(x_{0}\right)=x_{0}$, that is to say that x_{0} is a fixed point of T_{2} also.

REFERENCES

[1] Kannan, R. Some Results on Fixed Points. Bull. Cal. Math. Soc. Vol. 60 No. 182 pp. 71-76.
[2] Singh, S. P. Some Results on Fixed Points. Yokohama Math. Journal. Vol. XVII, No. 2 pp. 61-64.

Mathematics Department, Allahabad University, Allahabad, U. P. India. and Mathematics Department, Banaras Hindu University, Varanasi-5, U. P. India.

