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1. Introduction:

Throughout this paper we will write $X$ for a complete metric space (X, $d$).

The well known Banach contraction principle states that if

$d(Tx, Ty)\leq Rd(x, y)$ ,

for all $x,$ $y\in X$ and $0<R<1$ , where $T$ is an operator mapping $X$ into itself then
$T$ has a unique fixed point.

For two operators $T_{1}$ and $T_{2}$ each maPping $X$ into itself Kannan [11 inves-
tigated a sufficient condition for the existence of a common and unique fixed
point in $X$. He has proved the following $threm$ .

Theorem. A [1, Theorem 1]

If $T_{1}$ and $T_{2}$ are two operators each maPping $X$ into itself and if
$d(T_{1}(x), T_{2}(y))\leq\alpha[d(x, T_{1}(x))+d(y, T_{2}(y))]$ ,

where $x,$ $yeX$ and $0<\alpha<\frac{1}{2}$ , then $T_{1}$ and $T_{2}$ have a unique common fixed point.

If $T_{1}$ is identical with $T_{2}$ in the above theorem, then we have

Theorem. $B$ [1, Theorem 2]

If $T$ be an oPerator mapping $X$ into itself and if
$d(T(x), T(y))\leq\alpha[d(x, T(x))+d(y, T(y))]$ ,

where $x,$ $y\in X$ and $0<\alpha<\frac{1}{2}$ , then $T$ has a unique fixed point in $X$.
More recently Singh [2] obtained the following generalization of Theorem B.

Theorem. $C$ [2, Theorem 1]

If $T$ be an $oPerator$ maPping $X$ into itself and if $T^{n}tn$ is a positive integer)

satisfies
$d(T^{n}(x), T^{n}(y))\leq\alpha[d(x, T^{n}(x))+d(y, T^{n}(y))]$ ,
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for all $x,$ $yeX$ and $0<\alpha<_{2}^{1}--$ , then $T$ has a unique fixed point in $X$.
In the present note we establish a more general theorem in this direction.

Theorem $A,$ $B$ and $C$ become corollaries to our result.

2.1 We prove the following theorem. We mention also a few additional
consequences of the main theorem.

Theorem. 1
If $T_{1}$ and $T_{2}$ are two operators mapping $X$ into itself such that

$d(T_{1}^{p}(x), T_{2}^{q}(y))\leq\alpha d(x, T_{1}^{p}(x))+\beta d(y, T_{2}^{q}(y))$ ,

where $x,$ $yeX,$ $p$ and $q$ are positive integers, $\alpha>0,$ $\beta>0,$ $\alpha+\beta<1$ , then $T_{1}$ and $T_{2}$

have unique and common fixed point.

2.2 Proof.
We define a sequence of elements $\{x_{n}\}$ in $X$ as follows. Let $xeX$ be arbitrary.

Set

$x_{1}=T_{1}^{p}(x)$ , $x_{2}=T_{2}^{q}(x_{1})$ . $x_{8}=T_{1}^{p}(x_{2})$ , $x_{4}=T_{Z}^{q}(x_{8})$ and so on.
In general $x_{2n+1}=T_{1}^{p}(x_{2n})$ and $x_{2(n+1)}=T_{l}^{q}(x_{2n+1})$ .
Now $d(x_{1}, x_{2})=d(T_{1}^{p}(x), T_{8}^{q}(x_{1}))\leq\alpha d(x, T_{1}^{p}(x))+\beta d(x_{1}, T_{2}^{q}(x_{2}))$

$=\alpha d(x, x_{1})+\beta d(x_{1}, x_{2})$ .

Therefore $d(x_{I}, x_{2})\leq\frac{\alpha}{1-\beta}d(x, x_{1})$ .

Also $d(x_{2}, x_{3})=d(T_{2}^{q}(x_{1}), T_{1}^{p}(x_{2}))$

$\leq\alpha(x_{2}, T_{1}^{p}(x_{2}))+\beta d(x_{1}, T_{1}^{q}(x_{1}))$ ,

and hence $d(x_{2}, x_{8})\leq\frac{\beta}{1-\alpha}d(x_{1}, x_{2})$

$\leq\frac{\beta}{1-\alpha}\cdot\frac{\alpha}{1-\beta}d(x, x_{1})$ ,

Put $r_{1}=\frac{\alpha}{1-\beta}$ , $r_{2}=\frac{\beta}{1-\alpha}$ . Since $\alpha+\beta<1,$ $r_{1}$ and $r_{2}<1$ . Then

$d(x_{2n}, x_{2n+1})\leq r_{2}r_{1}\cdots r_{1}r_{2}r_{1}d(x, x_{1})=r_{2}^{n}r_{1}^{n}d(x, x_{1})$ ,

$d(x_{2n+1}, x_{2(n+1)})\leq r_{1}^{n+1}r_{l}^{n}d(x, x_{1})$ .
Hence for $ m=2\nu$ , we have
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$d(x_{m}, x_{m+n})\leq d(x_{m}, x_{m+1})+d(x_{m+1}, x_{m+2})+\cdots+d(x_{m+n-1}, x_{m+n})$

$\leq$ ( $r_{g^{\nu}}r_{1}^{\nu}+r_{f}^{\nu}r_{1}^{\nu+1}+r_{2}^{\nu+1}r_{1}^{\nu+1}+\cdots+\cdots n$ terms) $\times d(x, x_{1})$

$<$ ( $ r_{2}^{\nu}r_{1}^{\nu}+r_{2}^{\nu}r_{1}^{\nu+1}+r_{2}^{\nu+1}r_{1}^{\nu+1}+\cdots+\cdots$ up to infinity) $\times d(x, x_{1})$

$=[r_{2}^{\nu}r_{1}^{\nu}(r_{12}^{22}\times d(x, x_{1})$

$=r_{2}^{\nu}r_{1}^{\nu}(1+r_{1})\frac{1}{1-r_{1}r_{2}}\times d(x, x_{1})$

$\rightarrow 0$ as $\nu\rightarrow\infty i.e$ . $ m\rightarrow\infty$ .
Similarly, for $m=2\nu+1$

$d(x_{m}, x_{m+\#})\leq(r_{2}^{\nu}r_{1}^{\nu+1}+r_{1}^{\nu+1}r_{f}^{\nu+1}+r_{1}^{\nu+2}r_{2}^{\vee+1}+r_{1}^{\nu+2}r_{2}^{\nu+2}+\cdots)\times d(x, x_{1})$

$=tr_{2}^{\nu}r_{1}^{\nu+1}(1+r_{1}r_{2}+r_{I}^{a}r_{f}^{2}+\cdots)+r_{1}^{\nu+1}r_{2}^{\nu+1}(1+r_{1}r_{2}+r_{1}^{2}r:+\cdots)\times d(x, x_{1})$

$=r_{1}^{\nu+1}r_{2}^{\nu}(1+r_{2})\frac{1}{1-\gamma_{1}\gamma_{2}}\times d(x, x_{1})$

$\rightarrow 0$ as $\nu\rightarrow\infty i.e$ . $ m\rightarrow\infty$ .
This shows that $\{x_{n}\}$ is a Cauchy sequence. Since the space is complete there
exists $x_{0}\in X$ such that

$\lim_{n\rightarrow\infty}x_{l}=x_{0}$ .

We first show that

$T_{1}^{p}(x_{0})=T_{t}^{q}(x_{0})=x_{0}$ .
We have

$d(x_{0}, T_{1}^{p}(x_{0}))\leq d(Xo, x_{t})+d(x_{\ell}, T_{1}^{p}(x_{0}))=d(Xo, X\ell)+d(T_{2}^{q}(x_{t-1}), T_{1}^{p}(x_{0}))$ .
Where $t$ is taken to be even.
Hence

$d(x_{0}, T_{1}^{p}(x_{0}))<d(x_{0}, x_{t})+\alpha d(Xo, T_{1}^{p}(x_{0}))+\beta d(x_{i-1}, T_{2}^{q}(x_{\ell-1}))$ ,

or, $(1-\alpha)d(x_{0}, T_{1}^{p}(x_{0}))<d(x_{0}, x_{\ell})+\beta d(x_{t-1}, x_{t})$ .
The expression on the right hand side can be made arbitrarily small by choosing
$t$ sufficiently large. Therefore,

$d(x_{0}, T_{1}^{p}(x_{0}))=0$ .
That is to say that $T_{1}^{p}(x_{0})=x_{0}$ . Similarly $x_{0}=T_{2}^{q}(x_{0})$ .

We further show that $x_{0}$ is the unique common fixed point of $T_{1}^{p}$ and $T_{t}^{q}$ .
SuPpose $y_{0}$ also satisfies

$T_{1}^{p}\langle y_{0})=T_{l}^{q}(y_{0})=y_{0}$ .
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Then
$d(x_{0}, y_{0})=d(T_{1}^{p}(x_{0}), T_{2}^{q}(y_{0}))\leq\alpha d(Xo, T_{1}^{p}(x_{0}))+\beta d(yo, T_{2}^{q}(y_{0}))=0$ ,

and $x_{0}=y_{0}$ .
Finally we obtain that $x_{0}$ is the unique common fixed point of $T_{1}$ and $T_{2}$ .

For,

$T_{1}^{p}(x_{0})=x_{0}=T_{1}^{p}(T_{1}(x_{0}))=T_{1}(T_{1}^{p}(x_{0}))=T_{1}(x_{0})$

$=T_{1}(x_{0})=x_{0}$ , since $T_{1}^{p}$ has a unique fixed point $x_{0}$ .
Similarly $T_{2}(x_{0})=x_{0}$ .

Moreover, $x_{0}$ is the only fixed point of $T_{1}$ and of $T_{2}$ . Suppose if possible
$z_{0}\neq x_{0}$ and $T_{1}(z_{0})=T_{2}(z_{0})=z_{0}$ . Then

$d(x_{0}, z_{0})=d(T_{2}(x_{0}), T_{1}(z_{0}))=d(T_{2}^{q}(x_{0}), T_{1}^{p}(z_{0}))$

$\leq\alpha d(z_{0}, T_{1}^{p}(z_{0}))+\beta d(x_{0}, T_{2}^{q}(x_{0}))=0$ .
Which implies $x_{0}=z_{0}$ .

This completes the proof of the theorem.

2.3 Remarks.
i) For $q=P=1$ , and $\alpha=\beta$ we get theorem A.

ii) For $p=q=1,$ $T_{1}=T_{2}$ and $\alpha=\beta$ we get $threm$ B.
iii) For $p=q,$ $T_{1}=T_{2}$ and $\alpha=\beta$ we get theorem C.

2.4 As simple consequences we state the following theorems.

Theorem. 2
Let $T$ be an $oPerator$ maPping $X$ into itself such that

$(*)$ $d(T^{p}(x), T^{q}(y))\leq\alpha d(x, T^{p}(x))+\beta d(y, T^{q}(y))$ .
where $x,$ $ye$ X. $p$ and $q$ are Positive integers, $\alpha>0,$ $\beta>0$ , and $\alpha+\beta<1$ , then $T$ has
a unique fixed point in $X$.

Theorem. 3
Let $T_{1}$ be an $oPerator$ maPping $X$ into itself such that $T_{1}$ satisfies $(*)$ and if

$T_{2}$ be an $oPerator$ maPping $X$ into itself such that $T_{1}T_{2}=T_{2}T_{1}$ , fhen $T_{1}$ and $T_{2}$

have a unique common fixed point.

Theorem 2 is obtained by Putting $T_{1}=T_{2}$ in Theorem 1.
For the proof of theorem 3 it is sufficient to note that if $x_{0}$ is the unique

fixed point of $T_{1}$ , then $T_{1}(x_{0})=x_{0}$ implies $T_{1}T_{2}(x_{0})=T_{2}T_{1}(x_{0})=T_{2}(x_{0})$ which implies
$T_{2}(x_{0})=x_{0}$ , that is to say that $x_{0}$ is a fixed point of $T_{2}$ also.
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