
A COUNTEREXAMPLE TO A PROOF OF HOMMA*

By

H. W. BERKOWITZ

(Received October 22, 1970)

1. Introduction. In this note we describe a counterexample to the proof of
Theorem 1 of [1], which is essentially the same as Lemma 2.2 of [2]. The
following is a simplified version of this $Threm$ which will suffice for our
purposes:

Let $E$ “ be euclidean n-sPace. If $f:P\rightarrow Q$ is a piecewise linear maPping of a
polyhedron $P$ onto a polyhedron $Q$ , and $g:P\rightarrow E^{n}$ is a piecewise linear maPping
satisfying

$n>\dim Q+2Maxq\in Q$ dim $f^{-1}(q)$ ,

then for any $\epsilon>0$ there is a piecewise linear maPping $h:P\rightarrow E^{n}$ satisfying

(1) $ d(h. g)=\sup_{p\in P}d(h(P), g(p))<\epsilon$ ,

(2) $h$ is non-degenerate

$(a_{1})$ $h|\Gamma^{1}(q)$ is a homeomorphism

$(\alpha_{2})$ $hf^{-1}(q_{1})\cap hf^{-1}(q_{2})=one$ point or $\phi$ , for $q_{1}\neq q_{2}eQ$ .
In the proof of Theorem 1 in [1], once subdivisions of $P$ and $Q$ are obtained

so that $f$ and $g$ are simplicial with respect to these subdivisions, no more subdivid-
ing is done. The method of proof is essentially general positioning $g(P)$ in $E^{n}$ .

2. Definitions. We use the standard terminology of piecewise linear topology
following [31.

If $f:K\rightarrow L$ is a simplicial mapping from a complex $K$ onto a complex $L$ , and
$xe|L|$ , then $f^{-1}(x)$ is said to be the fibre over $x$ . Note, that if for each $x\in|L|$ ,
$\dim\Gamma^{1}(x)\leq 1$ , and if $\Delta eK$, with $\Delta^{\prime}$ a l-dimensional face of $\Delta$ , such that $f(\Delta^{\prime})$

$=point$ , and dim $(\Gamma^{1}(y)\cap\Delta)=1$ , then $ f^{-1}(y)\cap\Delta$ is parallel to $\Delta^{\prime}$ .
If $K$ is a complex and $f:|K|\rightarrow E^{n}$ is a continuous maPping of $|K|$ into $E$“

such that for any $\sigma eK,$ $f|\sigma;\sigma\rightarrow E^{n}$ is linear, then $f$ is called a semi-simplicial
$*)$ This material was included in the author’s Ph. D. thesis written under the direction
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maPping of $K$ into $E^{n}$ .
We denote the join of simplices $\sigma$ and $\tau$ by $\sigma^{*}\tau$ .

3. Example. $(\alpha_{2})$ states that if the images of two fibres meet, they meet
in a point. The important consideration is that they meet in a spine of one of
them. The folowing example shows that the images of two connected fibres
may always be forced to meet in precisely two points unless $P$ is further sub-
divided.

We shall construct a simplex $K$ containing three principal simplices $\sigma,$

$\sigma^{\prime}$

and $\tau$ ; and consider a semi-simplicial mapping $g:K\rightarrow E^{n}$ . Let dim $\tau=n-2$ ,
dim $\sigma=\dim\sigma^{\prime}\leq(n/2)-1$ , and assume dim $\tau+\dim\sigma-n>0$ . Let $v_{\sigma},$ $w_{\sigma}$ be vertices
of $\sigma$ and $v_{\sigma^{\prime}},$ $w_{\sigma^{\prime}}$ be vertices of $\sigma^{\prime}$ , where $\sigma=v_{\sigma}*\sigma_{1}$ and $\sigma^{\prime}=v_{\sigma^{\prime}}*\sigma_{1}^{\prime}$ . Let $v_{1}$ and $v_{2}$

be two vertices of $\tau$ . We form $K$ by identifying $v_{\sigma}$ with $v_{1},$ $v_{\sigma^{\prime}}$ with $v_{2}$ , and $\sigma_{1}$

with $\sigma_{1}^{\prime}$ where $w_{\sigma}$ is identified with $w_{\sigma^{\prime}}$ ; and obtain a connected complex. Now
we have

$\sigma\cap\tau=v_{\sigma}$ , $\sigma^{\prime}\cap\tau=v_{\sigma^{\prime}}$ , $\sigma^{\prime}\cap\sigma=\sigma_{1}$ .
Let $\tau\sim=face$ of $\tau$ opposite $v_{\sigma}$ and $\tilde{\sigma}^{\prime}=face$ of $\sigma^{\prime}$ opposite $w_{\sigma}$ . Let $L=\partial^{\prime}\cup f$ .

Let $f:|K|\rightarrow L$ be a simplicial mapping satisfying: $f||L|$ is the identity, $f(v_{\sigma})=v_{\sigma}^{\prime}$ ,
$f(w_{\sigma})=v_{\sigma}^{\prime}$ . Then $f$ is defined over all of $|K|$ .

Let $P=|K|$ and $Q=|L|$ . Note that

dim $Q+2Maxq\in Q$ dim$f^{-1}(q)=(n-3)+2(1)=n-1<n$ .

Let $g:|K|\rightarrow E^{n}$ be a semi-simplicial mapping in general position. We can
have $g$ such that

$ g(\tau)\cap g(\sigma)-g(\tau\cap\sigma)\neq\phi$ ,

and
$ g(\tau)\cap g(\sigma^{\prime})-g(\tau\cap\sigma^{\prime})\neq\phi$ .

Now there is an $\epsilon>0$ such that given any semi-simplicial mapping $h:|K|\rightarrow E$“,

if $supd(h(x), g(x))<\epsilon$ then

$ h(\tau)\cap h(\sigma)-h(\tau\cap\sigma)\neq\phi$ ,

and
$ h(\tau)\cap h(\sigma^{\prime})-h(\tau\cap\sigma^{\prime})\neq\phi$ .

We show that $(\alpha_{2})$ cannot be guaranteed to be satisfied for any such $h$ .
Let $xeh(\sigma^{o})\cap h(\tau^{o})$ , now the fibre $ Fae,\sigma$ , in $h(\sigma)$ which passes through $x$ is

parallel to $<h(v_{\sigma}),$ $h(w_{\sigma})>$ ; and $F_{x.\tau}$ is parallel to $<h(v_{\sigma^{\prime}}),$ $h(v_{\sigma})>$ . There is a
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$yeh(\sigma_{1})$ such that $y\in F_{x,\sigma}$ . We have $F_{y,a^{\prime}}$ parallel to $<h(v_{\sigma^{\prime}}),$ $h(w_{\sigma})>$ . We claim
that $F_{y.\sigma^{\prime}}$ lies in the 2-plane formed by $F_{x,\sigma}$ and $F_{x.\tau}$ . This is true since these
three line segments all lie in 2-planes parallel to the 2-plane determined by
$<h(w_{\sigma}),$ $h(v_{\sigma}),$ $h(v_{\sigma}\cdot)>$ ; but $F_{x.\sigma}$ and $F_{x.\tau}$ lie in the same 2 plane since they meet
at $x$ ; and $F_{x.\sigma}$ and $F_{y.\sigma^{\prime}}$ lie in the same 2-plane since they meet at $y$ ; therefore
$F_{x.\tau}$ and $F_{y.\sigma^{\prime}}$ lie in the same 2-plane. The line through $F_{x.\tau}$ intersects the line
through $F_{y.\sigma^{\prime}}$ ; so that by general positioning the vertices of $\sigma,$

$\sigma^{\prime}$ and $\tau$ we
cannot guarantee that $ F_{x.\tau}\cap F_{y.\sigma^{\prime}}=\phi$ . If $ F_{x.\tau}\cap F_{y.\sigma^{\prime}}\neq\phi$ , let Xle $\sigma$ , x2e $\tau$ such
that, $h(x_{1})=h(x_{2})=x$ , then $hf^{-1}f(x_{1})=F_{x.\sigma}\cup F_{y.\sigma^{\prime}},$ $hf^{-1}f(x_{2})=F_{x.\tau}$ and $(F_{x.\sigma}\cup F_{y.\sigma^{\prime}})$

$\cap F_{x.\tau}=2$ points, not satisfying $(\alpha_{2})$ .
Remarks. The reason why Homma’s Lemma 1 and Theorem 2 of [1] cannot

be used to avoid this difficulty is that Homma requires the moving of the
vertices of $\sigma$ while keeping the vertices of $\sigma^{\prime}\cup\tau$ fixed. But this cannot be done
when the vertices of $\sigma$ are contained in $\sigma^{\prime}\cup\tau$ . In general, as long as some of
the vertices of $\sigma$ are contained in $\sigma^{\prime}\cup\tau$ , difficulties may arise.
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