A COUNTEREXAMPLE TO A PROOF OF HOMMA*

By

H. W. BERKOWITZ

(Received October 22, 1970)

1. Introduction. In this note we describe a counterexample to the proof of Theorem 1 of [1], which is essentially the same as Lemma 2.2 of [2]. The following is a simplified version of this Theorem which will suffice for our purposes:

Let E^n be euclidean n-space. If $f: P \rightarrow Q$ is a piecewise linear mapping of a polyhedron P onto a polyhedron Q, and $g: P \rightarrow E^n$ is a piecewise linear mapping satisfying

$$n > \dim Q + 2 \operatorname{Max}_{q \in Q} \dim f^{-1}(q)$$
,

then for any $\epsilon > 0$ there is a piecewise linear mapping $h: P \rightarrow E^n$ satisfying

- (1) $d(h, g) = \sup_{p \in P} d(h(p), g(p)) < \epsilon$,
- (2) h is non-degenerate

(α_1) $h|f^{-1}(q)$ is a homeomorphism

 (α_2) $hf^{-1}(q_1) \cap hf^{-1}(q_2) = one \ point \ or \ \phi, \ for \ q_1 \neq q_2 \in Q$.

In the proof of Theorem 1 in [1], once subdivisions of P and Q are obtained so that f and g are simplicial with respect to these subdivisions, no more subdividing is done. The method of proof is essentially general positioning g(P) in E^{n} .

2. Definitions. We use the standard terminology of piecewise linear topology following [3].

If $f: K \to L$ is a simplicial mapping from a complex K onto a complex L, and $x \in |L|$, then $f^{-1}(x)$ is said to be *the fibre over* x. Note, that if for each $x \in |L|$, dim $f^{-1}(x) \leq 1$, and if $\Delta \in K$, with Δ' a 1-dimensional face of Δ , such that $f(\Delta')$ =point, and dim $(f^{-1}(y) \cap \Delta) = 1$, then $f^{-1}(y) \cap \Delta$ is parallel to Δ' .

If K is a complex and $f:|K| \to E^n$ is a continuous mapping of |K| into E^n such that for any $\sigma \in K$, $f|\sigma:\sigma \to E^n$ is linear, then f is called a *semi-simplicial*

^{*)} This material was included in the author's Ph. D. thesis written under the direction of Professor Prabir Roy at Rutgers, The State University.

H.W. BERKOWITZ

mapping of K into E^n .

We denote the join of simplices σ and τ by $\sigma^*\tau$.

3. Example. (α_2) states that if the images of two fibres meet, they meet in a point. The important consideration is that they meet in a spine of one of them. The following example shows that the images of two connected fibres may always be forced to meet in precisely two points unless P is further subdivided.

We shall construct a simplex K containing three principal simplices σ, σ' and τ ; and consider a semi-simplicial mapping $g: K \to E^n$. Let $\dim \tau = n-2$, $\dim \sigma = \dim \sigma' \leq (n/2) - 1$, and assume $\dim \tau + \dim \sigma - n > 0$. Let v_{σ}, w_{σ} be vertices of σ and $v_{\sigma'}, w_{\sigma'}$ be vertices of σ' , where $\sigma = v_{\sigma} * \sigma_1$ and $\sigma' = v_{\sigma'} * \sigma'_1$. Let v_1 and v_2 be two vertices of τ . We form K by identifying v_{σ} with $v_1, v_{\sigma'}$ with v_2 , and σ_1 with σ'_1 where w_{σ} is identified with $w_{\sigma'}$; and obtain a connected complex. Now we have

$$\sigma \cap \tau = v_{\sigma}, \quad \sigma' \cap \tau = v_{\sigma'}, \quad \sigma' \cap \sigma = \sigma_1.$$

Let $\tilde{\tau}$ =face of τ opposite v_{σ} and $\tilde{\sigma}'$ =face of σ' opposite w_{σ} . Let $L=\tilde{\sigma}'\cup\tilde{\tau}$. Let $f:|K|\to L$ be a simplicial mapping satisfying: f||L| is the identity, $f(v_{\sigma})=v'_{\sigma}$, $f(w_{\sigma})=v'_{\sigma}$. Then f is defined over all of |K|.

Let P = |K| and Q = |L|. Note that

$$\dim Q + 2 \max_{q \in Q} \dim f^{-1}(q) = (n-3) + 2(1) = n - 1 < n .$$

Let $g:|K| \rightarrow E^n$ be a semi-simplicial mapping in general position. We can have g such that

$$g(\tau) \cap g(\sigma) - g(\tau \cap \sigma) \neq \phi$$
,

and

$$g(\tau) \cap g(\sigma') - g(\tau \cap \sigma') \neq \phi$$
.

Now there is an $\epsilon > 0$ such that given any semi-simplicial mapping $h: |K| \to E^*$, if sup $d(h(x), g(x)) < \epsilon$ then

 $h(\tau) \cap h(\sigma) - h(\tau \cap \sigma) \neq \phi$,

and

$$h(\tau) \cap h(\sigma') - h(\tau \cap \sigma') \neq \phi$$
.

We show that (α_2) cannot be guaranteed to be satisfied for any such h.

Let $x \in h(\sigma^{\circ}) \cap h(\tau^{\circ})$, now the fibre $F_{x,\sigma}$, in $h(\sigma)$ which passes through x is parallel to $\langle h(v_{\sigma}), h(w_{\sigma}) \rangle$; and $F_{x,\tau}$ is parallel to $\langle h(v_{\sigma'}), h(v_{\sigma}) \rangle$. There is a

88

A COUNTEREXAMPLE TO A PROOF OF HOMMA

 $y \in h(\sigma_1)$ such that $y \in F_{x,\sigma}$. We have $F_{y,\sigma'}$ parallel to $\langle h(v_{\sigma'}), h(w_{\sigma}) \rangle$. We claim that $F_{y,\sigma'}$ lies in the 2-plane formed by $F_{x,\sigma}$ and $F_{x,\tau}$. This is true since these three line segments all lie in 2-planes parallel to the 2-plane determined by $\langle h(w_{\sigma}), h(v_{\sigma}), h(v_{\sigma'}) \rangle$; but $F_{x,\sigma}$ and $F_{x,\tau}$ lie in the same 2-plane since they meet at x; and $F_{x,\sigma}$ and $F_{y,\sigma'}$ lie in the same 2-plane since they meet at y; therefore $F_{x,\tau}$ and $F_{y,\sigma'}$ lie in the same 2-plane. The line through $F_{x,\tau}$ intersects the line through $F_{y,\sigma'}$; so that by general positioning the vertices of σ, σ' and τ we cannot guarantee that $F_{x,\tau} \cap F_{y,\sigma'} = \phi$. If $F_{x,\tau} \cap F_{y,\sigma'} \neq \phi$, let $x_1 \in \sigma$, $x_2 \in \tau$ such that, $h(x_1) = h(x_2) = x$, then $hf^{-1}f(x_1) = F_{x,\sigma} \cup F_{y,\sigma'}$, $hf^{-1}f(x_2) = F_{x,\tau}$ and $(F_{x,\sigma} \cup F_{y,\sigma'})$ $\cap F_{x,\tau} = 2$ points, not satisfying (α_2) .

Remarks. The reason why Homma's Lemma 1 and Theorem 2 of [1] cannot be used to avoid this difficulty is that Homma requires the moving of the vertices of σ while keeping the vertices of $\sigma' \cup \tau$ fixed. But this cannot be done when the vertices of σ are contained in $\sigma' \cup \tau$. In general, as long as some of the vertices of σ are contained in $\sigma' \cup \tau$, difficulties may arise.

REFERENCES

- Homma, T., A Theorem of piecewise linear approximations, Yokohama Math. J., 14 (1966), pp. 47-54.
- [2] Homma, T., Piecewise linear approximations of embeddings of manifolds, Florida State University mimeographed notes, (1964).
- [3] Zeeman, E.C., Seminar on Combinatorial Topology, Institut Des Hautes Etudes Scientifiques (1963).

Stevens Institute of Technology Hoboken, New Jersey 07030 and State University of New York at Binghamton Binghamton, New York 13901