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Summary. The recurrent Finsler spaces have been studied by Miskra and
Pandey [11°, Sen [2] and Sinka and Singh [3]. Chaki and Roy Chowdhary [4]
have introduced the Ricci recurrent spaces of second order in the classical
Riemannian geometry. The purpose of present paper is to define the recurrent
Finsler spaces of second order and to study the properties of the recurrence
vector and tensor fields and the curvature tensor fields in this space. The
notations of Rund [5] have been followed in the sequel.

1. Introduction. We consider an #-dimensional Finsler space F» in which
the Berwald’s curvature tensor fields are given by

(1.1) Hj,=8,0,G'~9,0,G'+G},0,G"—G},0,G"

and

! 2) Ha'ikh =ahG§'k _akG§h+ G;:kGih"“ G;hGik +Gijh’akGr'—Gijk.ahGr ’
0 . d

where Op= o and o= P

The curvature tensor fields satisfy the identities

1.3) Hjn+ Hini+ Hie=0 ,

(1.4) Hjowawy+ Hing +Hbea + HoGE i+ HGijn+ HiGr =0,
(1.5) Hjvay+ Hivgy+ Hij oo =0

and

(1.6) Hiw—Hiw+ Hami™=0,

where index in the round bracket denotes covariant differentiation in the sense
of Berwald [5]

Contracting H}i and Hjw,, we obtain

1)  Number in brackets refer to the references at the end of the paper.
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.7 Hji=H;
and
(1.8) kae=ij=éij

We have also

(1.9) # Hjaw=H .
(1.10) # Hp=H;
(1.11) ' Hj=H,
and
1 ik
(1.12) H= H; 2% .
. n—1

The commutation formulae involving the curvature tensor fields are as
follows:

(1.13) Toww—Towyw=—0,THy ,

iy Tiwyim—Tiuyay=—0,TiHy,— TiHs +TrHS,
(1.15) @ T —0k Ty =0

and

(1.16) O T 4y =0Ty =TiGls~TGiss .

A Finsler space F» is said to be a recurrent Finsler space of first order, if
the curvature tensor field Hju. satisfies the relation

1.17) Hionm=0nHin ,

where vs is recurrence vector field.
Transvecting (1.17) successively by #, we have

(1.18) Hivomy=vnHis
and
(1.19) Him=vnHi .

Contracting (1.17), (1.18) and [1.19) with respect to the indices ¢ and %, we
get

(1.20) Hixm=vmnHj: ,
(1.21) Himy=vmnHyi



RECURRENT FINSLER SPACE OF SECOND ORDER 81

and
(1.22) Hm=vnH ,

respectively.

2. Recurrent curvature tensor fields of second order.

Definition 2.1. An zn-dimensional Finsler space F, in which the curvature

tensor field H satisfies the relation

2.1) Hehtyom) =amH
where
(2.2) Hiua=0,

is said to be a recurrent Finsler space of second order and ai» is a recurrence
tensor field. The curvature tensor fields defined in such a space are known as
the recurrent curvature tensor fields of second order.

Transvecting successively by %, we obtain

(2.3) Hivay om =aimHin,
and
(2.4) Hiwy my=ainHi .

Contracting (2.1), (2.3) and [(2.4) with respect to the indices ¢ and %, we have

(2.5) Hivayom=aimHjr
(2.6) Hiayom=aimHx
and

(2.7) H(l) (m) =amH ,
respectively.

Theorem 2.1. The recurrence tensor field aim is non-symmetric.
Proof. Commutating in / and m, we have
(2.8) Hjiayomy— Hjkomyay =(@im—am) Hji .
Multiplying (2.8) by #/ and %* and noting [1.12), we get
(2.9) Huyom—Hmy=(@imn—am)H .

By virtue of commutation formula [(1.13), it becomes

(2.10) —0, Hy, =(@im—am)H ,
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which proves the statement.

Theorem 2.2. Every recurrent Finsler space for which the recurrence vector
field vm satisfies

2.11) Vmy om0 E0,
is a recurrent Finsler space of second order but the converse is not true in general.

Proof. The covariant differentiation of gives

(2.12) Hivhimy ty=0may+010m) Hjin .
From and [2.2), it yields
(2.13) am=Wnn+vm02) ,

which proves the theorem.
From hereafter we shall consider such a recurrent Finsler space of second
order and denete it by F,.

Theorem 2.3. In F., if the recurrence vector field is independent of i, the
recurrence tensor field aim is homogeneous of degree zero in ‘.

Proof. Differentiating (2.13) partially with respect to %" and using the
commutation formula (1.16), we have

(2.14) 048 =—0,Gp -
Multiplying (2.14) by %", we get the result.
Theorem 2.4. In F., the recurrence tensor field aim satisfies the relation

(2.15) (alm—“aml)(n) + (amn_anm)(l) -+ (anl_aln)(m)
=(Aqm—Am)Vn~+ (Amn—Cum)Vi+ (@ni—Qin)Um .

Proof. Commutating with respect to the indices / and m and using
the commutation formula [(1.14), we have

(2.16) (@im—@m1) Hin=Hi H}im— Him H o — H i Hiym— Ho Hiim

Differentiating [2.16) covariantly with respect to x” and using [1.17), [1.18) and
2.16), we have

2.17) (@in—m) 0 Hir=0n(@im—Gmi) Hin ,
which yields

(2.18) (alm_dml)(m'-_——‘i)n(alm""aml) .
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Adding the expressions, obtained by cyclic change with respect to the indices
I, m and »n, we have the result.

Theorem 2.5. In Fn, the relation

(219) (a.ralm—a.raml)Hrfs_}_ (a.raln——a‘ranl)Ha’;n_}_ (a.rals_a'raal)Hn:n
-+ (amr—arm)Hl;a + (anr—arn)Hl:m"I' (asr_ars)Hl:nn
= (alm—aml)(vn(s) —_ 'l)n(n)) =+ (aln—anl)(vs(m) —_ vm(a))
-+ (ala—aal)(vm(n) —Unm) ,

is true.

Proof. Differentiating covariantly with respect to x* and using (2.18),
we get

(2.20) (alm—aml)(n) (8) = ((Zlm —“aml)(vn(t) -+ vavn) .

Subtracting the result obtained by commutating (2.20) with respect to # and s,
from (2.20), we get

(2.21) (alm_‘aml) (n)(8) — (alm —aml) (81(n) — (alm_aml)(vn(a) —_ Uc(n\) .

By virtue of the commutation formula (1.14), it becomes

(222) (a.ralm—a.raml)H:s + (arl_alr)Hnrns_F (amr_arm)Hl:u

=(@m—am1) Vnisy—Vs(m) .

Adding the expressions, obtained by cyclic change of with respect to thc
indices m, # and s and using [1.3), we have [Theorem 2.5.

Therorem 2.6. In F., the Bianchi identities satisfied by the curvature tensor
fields, take the following forms

(2.23) (Uan—als)Hjikh+ (vkvs—aks)HJ?:hl +(vrvs—ans) Hjui
———HhrkGijz(s)—{—HﬁGijus)-i-H{zGijk(s) ,

(2.24) ansH o+ aj o Hin+ars Hi;=0

and

(2.25) aHi—avHi +ar Hioi"=0 .

Proof. Differentiating covariantly with respect to x* and using
and [2.1), we get
(2.26) aisH i+ are Hi+ ane Hi=—0 HinGiji— v HiiG% 1
— 0. HiGE s — HGGL 1oy — Hi Gl jh oy — HiGl ey
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By virtue of [1.4), yields the result (2.23). The results (2.24) and
can be easily obtained by differentiating [1.5) and [1.6) covariantly and using

and (2.4).

Theorem 2.7. In F.. the relation

(2.27) xm[Hiika.hvm(ﬂ)+Hhi.'ia.kvm(s) +Hljha.jvm(s)]:0 ,
holds good.

Proof. Using the commutation formula [(1.16) in the results obtained by
differentiating (1.18) partially with respect to %7, we obtain
(2028) a.jvaljh=HkrhGijm_H:hGl’;jm_HI:rGij .
Adding the expressions obtained by cyclic change of the indices j, # and % in

(2.28), we obtain

(2.29) (3,-v,,.)H,f,,+(3,,v,,,)H,:',--|—(a°hvm)H;',,=H;,,G3,,m+kath im T HGL
From (1.4), gives

(2.30) 00 ) Hiy+ 040 ) i+ 040 ) o= H oy + Hi o+ Hi -

Differentiating covariantly with respect to x* and using and [2.1),
we get

(2.31) 0;0,) 0y Hiu 0,0 ) 0 Hiki +040) oy Hio +0,0,0,) Hiy +0,0,0,) Hj,
+ 0,00 Hjy=a;,Hip+a,Hi @, Hiy -

By virtue of the equations [1.16), [1.17) and [2.30), the equation yields

(2.32) (@ia—00s) Hhte A (@rs— Vi) H jh -+ (@he— v30s) Hukj
=Hkih(éjvm(s) + er:njl) +HI:_7 (ékvm (8) + er:nkl) +Hjik(éhvm(s) + er:n,M) .

Multiplying by %™ and using and (2.24), we have

(2.33) va(vhHJ§k+ka}fj+ijlfh)=xm[ija.hvm(a)+Hlfja.kvm(a)+HI:héjvm(n)] .
By virtue of [1.5) and [(1.18), [(2.33) proves [Theorem 2.7
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