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In the present paper, we use fractional integration to investigate a solution
of the integral equation

*) S”ﬁ:ﬂ% ¢, t—x) f(B)dt=g(x), a>0, ¢>0
0 F(C) ? b 9, b bl

where @(a, ¢, 2) is the confluent hypergeometric functions. A necessary and suf-
ficient condition is obtained for the existence of this solution.
A solution of the integral equation

Y (x_;m(p(“' ¢, x—1t) f(t)dt=g(x), a>0, c>a.
0 (C)

is found by reducing it to the equation (*).

1. Introduction. Recently several integral equations have been solved by
means of fractional integration. Erdély: investigated the solutions of these
integral equations whose kernels contain Legendre functions. Love considered
the integral equations involving hypergeometric functions and Srivastava
discussed the equations with polynomial kernels. Wimp [6] used the Laplace
transform to solve an integral equation involving the confluent hypergeometric
function. Here, we make use of the fractional integral operators to solve the
integral equation
@ ( x— t)c—l

D@, c, t—x)f(Ddt=g(x), 0<x<b<o),
0 F(G)

(1.1) S

where #(a, c, 2) is the confluent hypergeometric function, >0, ¢>0, g is a given
function and f is to be determined.

2. Fractional integration. Let Co be the class of those continuous func-
tions on the interval (0, b), open at 0, where 0<b<oco, which are integrable at 0,
and C»., where n is a positive integer, be the class of all those functions which
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are n-times continuously differentiable on (0,5) and which satisfy f*(0+)=0,
k=0,1,2, ---,n—1, while f™ is integrable at 0.
Let I be the operator of integration defined by

@.1) If ()= S fdt, (0<z<b<oo),

so that the operation of k-times repeated integration is expressed as

_ (=) —
2.2) I"f(x)—so T wdt, k=12,
and set
(2.3) Ifx)=f(x), I'*f(x)=f®(x), k=1,2,---.

The most important properties may be summerised as follows. For f€ Cx,
k=1,2,3, ---, we have '

(2.4) S(x)=Ikf®(x) .

If feCj, j=1,2,--+, and k is an integer (positive negative or zero) for which
Jj+k=>0, then I*f exists and belongs to Cj.x; if / is a further non-negative integer
which does not exceed j+k%, then

(2.5) (—j;)’ I )=I*f() ,

exists and belongs to Cjik—i. _

We shall now extend these and other results to non-integral values of the:
index. For a>0, we follow Riemann and Liouville in defining integration of’
order a as

z (x__ t)a-—l

. T@ f(t)dt, (0<x<b< o).

2.6) I°f(x)= S

Many authors have proved the existence almost everywhere of for integrable-
functions. Under heavier restrictions upon f i.e. f€Co, I°f exists and belongs.
to Co.

For a>0, >0, f€ Co,
2.7 I*IBf(x)=IBIf(x)=1" Ef(x) .

This can be proved by interchanging the order of integration in the repeated
integral indicated on the left hand side of [2.7).
We now define I*f for a<0 as inverse operation to 1%, i.e. define g=I*f
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for <0 and f€ Co to be the solution in Co, if it exists, of the integral equation
Sf=I—g.

Hence, for any real «, the statement that I*f exists implies that f and I*f
both belong to Co. With this extension holds for all real a« and B8 (positive,
mnegative or zero).

A sufficient condition for existence of I*f, where a<0, is that f€Ci for
some k>—a; and

(2.8) It f(x)=Itkfio(x) |

Moreover, if j is a non-negative integer not exceeding k--[a], where [a] is the
integral part of a, then '

(2.9) (%)" IF ()= =3 f () = [*~3+k F () .

For a>0, let us denote C. the class of functions representable in the form
I*f with feC,. This definition gives the class C» of functions when a=n. If
a>0, >0 and f€C., then I#f€Cass. If 0<B<a and f€C,, then f€C(s, and it
follows that for 0<8<a, C.cCs. If a=—n,n a positive integer, then I*f exists
and belongs to Co if and only if f€Cx. If a=—n+p, where n is a positive
integer and 0<p<1, then f€Cs_1 is necessary and f€C. is sufficient for the
existence of I*f€Co, while a condition that is both necessary and sufficient is
that I°f€Cx. Also if f and g are in Co, then

(2.10) I*f=I*g implies f=g.
“This follows from Kober's Uniqueness Theorem ([2).

3- The integral equation. We first observe that if 4>0, ¢>0, x>,

®(x—s)* L (s—i)t _ _ (x—p)e+it o B
3.1) S‘ ') T D(a, ¢, t—s)ds “Tesn (@, c, t—x) .
Consider
! (l—u)'H uct _ 1
So Ta  Te 2o mdu= 0@ cti,2) .
Using

where (@)r=a(a+1) -+- (a+7r—1) and changing the order of integration and sum-
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mation and applying Beta Function we prove the last equation. Substitute in
this equation

s—t

u= ot z=f—x,
to obtain (3.1). Set
_ x (x__t)c—l
(3.2) Hia, c)f(x)—S PO pa, ¢, t—x)fdt
0 F(C)

then

D(a, c, t—s)f()dt .

IIH((Z, C)f(x).: Sz (x—S)l_l dsSa (s___t)c—l

o I'(A) o I'(c)
® is bounded in the region of integration and so that order of integration may

be changed by Fubini’s theorem. Thus we get

2 (g—sP 1 (s—p)ct
¢ I'(2) I'(c)

IH(a, c)f (%)= j F®)dt S O(a, c, t—s)ds ,
0

and by (3.1) we conclude that

z (x__ t)c+1—1
o I'(c+2) .

(3.3) I’H(a, o)f(x)=H(a, c+A) f(x) .
Now we turn to the integral equation [1.1). Using we rev&rite as
H(a, o) f(x)=g(x), a>0, c¢>0.

I*H(a, c)f(x)=S D(a, c+ 4, t—x)f(t)dt ,

Then
FHa, o) f (x)=I"g(x) ,
H(a, cta)f(x)=I"g(x) ,
FH(a, a)f (x)=1"g(x) ,
H(a, o) f(x)=I"I"g(x) .
This may be written as

S z (x_t)a—l

o — =]c°je .
. T@ (@, a,t—x)f(t)dt=I"Ig(x)

Since 9(a, a, z2)=¢*, we obtain

Sz (x_t)a—l

@ -etrf(Hdt=I"I"g(x) ,
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Ierf(x)=e"T"I"g(x) .
Hence
(3.4) f(x)=e*I%e*[°I°g(x) .
This is a solution of the integral equation if it exists. Also implies that
(3.5) | , gx)y=I"*Fe*re*f(x) .

4. Necessary and sufficient conditions. Before we discussed the necessary
and sufficient condition for the existence of the solution, in Co, of the integral
equation [(1.1), we prove the following result.

If a>0, 0<x<b< oo, then

4.1) Ierf(x)=e*I°g(x) ,

has, for each function f€Co, a solution g which also belongs to Co; and for each
g in Co, a solution f which also belongs to Co.
To prove it we first show that for ¢>0, 0<{<x< o,

(x_t)c—l

4.2) )

[P(a, c,t—x)—1]=—a Sjg—;:(%c-——l@(a-l—l, 2,t—s)ds .

In the equation

(4.3) azgl(L_—-u—)c:—l—@(a—l-l 0. sdu— -1 [0, ¢, 5—1] .
o I'(c) 7 I'(o) ’
Substitute "
s _Ss=t
z2=t—x, u ;"

to get (4.2). Now assume f € Co, then

e L C o i VA
So @) (1—e'==) f(t)dt So T @ [1—®P(a, a, t—2)1f(t)dt
— z x (x__s)a"‘l ¢ _ d 2
aSof(t)dtSt——I’(a) (@+1,2, t—s)ds, by (2).

Changing the order of integration which is permissible by Fubini’s theorem since
@ bounded in the region of integration, we obtain

z (x_t)a-—-l _ z (x_t)a—l - tdt
\ T | e

=a§”£—£‘_ ds S'a><a+1, 2, t—s)f(B)dt .
0
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Thus

e Toe* £ (x)= I £ () -+ S:¢(a+1, 2, t—x)]f )t .

This shows that [4.1) is satisfied by

g(x)=f(x) —aS:¢(a+1, 2, t—x)f(t)dt .

Before we consider the second part of the above result we substitute in 4.3)

r=x—t, u=3"t
x—1t
to get
(x—=t)7t ) —11= S_(x_—sli _
{4.4) T© [P(a, c, x—t)—1] at T@ P(a+1, 2, s—t)ds ,

for ¢>0, 0<x<b<00.
Now suppose f € Co, then

-] (x_t)a—l o—t__ — » (x_t)a-—l
S———(e 1)/ ()t So o

0 r (@)
—o S:f(t)dt St ———(x;g;"‘

[P(a, a, x—1t)—1])F(t)dt
P(a+1, 2, s—1)ds ,

by [8.4). Inversion of order of integration which is permissible by Fubini’s
theorem since @ is bounded in the region of integration, yields

e z (x__t)a—-l _ _ -4 (x_t)a—l
e\ e rwai— | T 0%
. z (x._s)a,-l 8 _
—a So s So Da+1, 2, s—)f ()t .
Thus
e e f(x)=I"g(x) ,
where

gR=f®)+a S:@<a+1, 2, t—x)f(t)dt ,

and g belongs to Co. Hence for f € Co, there is g€ Co such that
4.5) e f(x)=e2I*g(x) .

‘To prove second part of the theorem assume G€Co. Let f(x)=¢*G(x). Then
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f€Co and there exists a function g€ Co, by (4.5), such that
' Perf(x)=e=I"g(x) .

Let e*g(x)=F(x). Then Fe€C, and we have

(4.6) I'G(x)=e*I°¢*F(x) .

Thus, given G€Co, there exists a function F€ Co such that (4.6) is true.

We, now, prove that necessary and sufficient condition for the existence of
solution, in Co, of the integral equation is that geC..

Indeed, let f€ Co, then using we get

Irg(xy=IFe*[*e*f (%) ,
4 =IIh(x) ,
where e Co.
Irg(x)=I"Ih(x) ,
by [2.7). Thus an application (2.10) yields
g(x)=IFh(x) .

Hence g€ C. is a necessary condition.
Now assume that g€ C., then

g(x)=IFh(x) ,
where 2 € Co.

I*g(x)=IIh(x)=FIh(x),
and using we rewrite as '
Pe*IPe* f(x)=I*h(x)=Ie¢*I*e*u(x) ,
where #€ Co. By successive applications of (2.10)‘We finally have
fx)=u(x) .

Hence g€ C. is a sufficient condition.

5. Another integral equation. We now deduce a solution of the integral
equation

z (x__t)c-l _
®.1) SO o %a ¢, x—f dt=g(x),

for ¢>0, ¢>a, 0<x<b<co. Using the Kummer’s relation ([4], p.125)
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5.2) g P(a, c, z2)=e*P(c—a,c, —2) ,

we obtain
zv(x_t)c_—l _ o

(5.3) S = Q(c—a,c, t—x)etf(t)dt=e"g(x), (0<x<b<o0),
0 I'(c)

for ¢>0, ¢c>a. Thus if ¢>0, c>a, f€Co,

(5.4) f(x)=I7e*I*I e *g(x) .
Also we have

(5.5) gx)=e*I"IFe*I°f(x) .

To determine necessary and sufficient condition for the existence of solution
(5.4), in Co, of the integral equation (5.1) we prove the following result.

If a>0, 0<x<b<co, then
(5.6) Pe=f(x)=e*I°g(x) ,

has, for each € Co, a solution g in Co which also belongs to Co; and for each g
in Co, a solution f which also belongs to Co.

First part is proved in (4.5). To prove the second part of assume
GeCo. Let f(x)=e*G(x). By [4.1), there is g€ Co such that

IG(x)=e*I"g(x) .
Let e*g(x)=F(x). If g€ Co, then F€Co and we have
IFG(x)=e*I*e*F(x) .
Hence given G€ Co there is a function F€ Co such that holds.
We shall, now; prove that necessary and sufficient condition for the existence

of solution, in Co, of the integral equation (5.1) is that g€ C..
Indeed, let f € C. then using we get

Iee*g(x)=Ie*I"*f(x) ,
=l ce"u(x) ,
where #€ Co. Also use of and (2.10) gives
e*g(x)=Fe*u(x) .
Another application of yields
gx)=rlv(x),

where v€ Co. Hence g€ C: is necessary condition.
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Now suppose that g(x)=I¢(x), ¢€ Co. Then

Ice—xIc—af(x) — Ic—ae—xIc¢(x) s
=F"Fe*u(x), by [5.6),

where #€ Co. Using and (2.10) we obtain

eI f(x)=IF"e*u(x) ,
=e*I%v(x), by [5.6),

where v€ Co. Hence another application of (2.10) yields

S(x)=v(x) .

Hence ge€C. is sufficient condition.
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