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Abstract. In this Paper we shall prove the following (1) and (2).

(1) Let $S$ be a set, $\gamma$ a a-ring of subsets of $S,$ $X$ a normed space, $m;\gamma\rightarrow X$ a

vector measure and $\mu$ a non-negative measure on $\gamma$ . Then there exist unique

$m_{0}$ and $m_{I}$ such that $m=m_{0}+m_{1}$ , where $ m_{0}\ll\mu$ and $ m_{1}\perp\mu$ (Theorem 1).

(2) Let $S$ be a locally compact Hausdorff space, $\mathfrak{B}(S)$ the $\sigma$-ring generated by the

compact subsets of $S,$ $X$ a normed space and $m;\mathfrak{B}(S)\rightarrow X$ a Borel measure.
Then there exist unique regular $m_{0}$ and antiregular $m_{1}$ such that $m=m_{0}+m_{1}$

(Theorem 3).

1. Introduction

In [1], [2] Johnson has proved the following (1) and (2).

(1) Let $S$ be a set, $\gamma$ a $\sigma$ -ring of subsets of $S,$ $\nu$ a strongly $\sigma- finite$ , non-negative

measure on $\gamma$ and $\mu$ a non-negative measure on $\gamma$ . Then there exist unique $\nu\alpha$

and Vl such that $\nu=\nu 0+\nu_{1}$ , where $\nu_{0}\ll\mu$ and $\nu_{1}\perp\mu$ ([1] Theorem 3.4).

(2) Let $S$ be a locally compact Hausdorff space, $\mathfrak{B}(S)$ the $\sigma$-ring generated by the

compact subsets of $S$ and $\mu$ a Borel measure on $\mathfrak{B}(S)$ . Then there exist unique

regular $\mu_{0}$ and antiregular $\mu_{1}$ such that $\mu=\mu_{0}+\mu_{1}$ ([2] Theorem 2.3).

In this paPer we shall extend these results to the case of vector measures.

2. The Lebesgue decomposition theorem

Let $S$ be a set, $\gamma$ a $\sigma$-ring of subsets of $S$ and $X$ a normed space.

Definition 1. A set function $m$ defined on $\gamma$ with values in $X$ is called a

vector measure if for every sequence $\{E_{n}\}$ of mutually disjoint sets of $\gamma$ we

have $m(\bigcup_{n=1}^{\infty}E_{n})=\sum_{n=1}^{\infty}m(E_{n})$ .
Definition 2. Let $m;^{\gamma}\rightarrow X$ be a vector measure and $\mu$ a non-negative measure

on $\gamma$ . $m$ is called absolutely continuous with resPect to $\mu(m\ll\mu)$ if for every

set $A$ $er$ such that $\mu(A)=0$ we have $m(A)=0$ .
Proposition 1. $ m\ll\mu$ if and only iffor every number $\epsilon>0$ there exists a number

$\delta=\delta(\epsilon)>0$ such that for every $ A\in\gamma$ with $\mu(A)<\delta$ we have $\Vert m(A)\Vert<\epsilon$ .
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Proof. The sufficiency is clear.
Necessity. If it is false, then there exists a number $\epsilon 0>0$ such that for

every number $\delta>0$ there exists a set $A_{\delta}er$ such that $\mu(A_{\delta})<\delta$ and $\Vert m(A_{\delta})\Vert\geqq\epsilon_{0}$ .
Taking $\delta=1/2^{n}$ and $A_{n}=A_{\delta}$ we have $\mu(A_{n})<1/2^{n}$ and $\Vert m(A_{n})\Vert\geqq\epsilon_{0}$ for all $n$ . If
we put $B_{n}=\bigcup_{k=n}^{\infty}A_{k}$ and $B=\bigcap_{=1}^{\infty}B_{n}$ , then $\mu(B)\leqq\sum_{k=}^{\infty}\mu(A_{k})\leqq 1/2^{n-}$ for all $n$ . Hence
$\mu(B)=0$ . For every cer with $C\subset B\mu(C)=0$ . Since $m\ll\mu,$ $m(C)=0$ . We Put
$\tilde{m}(E)=\sup\{\Vert m(A)\Vert;A\subset E, Ae\gamma\}$ . Then $\overline{m}(B)=0$ . On the other hand $\overline{m}(B_{n})$

$\geqq\overline{m}(A_{n})\geqq\Vert m(A_{n})\Vert\geqq\epsilon_{0}$ for all $n$ . Since $\{B_{n}\}$ is a decreasing sequence, by Gould ([5]
Corollary 3.6. In this case, a-field can be replaced by a a-ring) we have $\tilde{m}(B)=$

$\lim_{m\infty}\overline{m}(B_{n})\geqq\epsilon_{0}$ . Therefore we get a contradiction.

Proposition 2. For any vector measure $m;r\rightarrow X$ there exists a finite non-
negative measure $\nu$ on $\gamma$ such that
(1) $ m\ll\nu$ .
\langle 2) $\nu(E)\leqq\tilde{m}(E)=\sup$ { $\Vert m(A)\Vert;A\subset E,$ A $e\gamma$ } for every $ E\in\gamma$ .

Proof. See Dinculeanu and Kluvanek ([4] Theorem 1).

Deflnition 3. (1) $A$ set $A\subset S$ is called locally measurable if $ A\cap E\in\gamma$ for
every $Eer$ .
(2) Let $m;\gamma\rightarrow X$ be a vector measure and $\mu$ a non-negative measure on $\gamma$ . $m$

is singular with respect to $\mu(m\perp\mu)$ if there exists a locally measurable set $A$

such that $m(E\cap A)=0$ and $\mu(E-A)=0$ for every $ E\in\gamma$ .
Lemma 1. Any vector measure $m;r\rightarrow X$ which is both $ m\ll\mu$ and $ m\perp\mu$ is the

zero measure.
Proof. Since $ m\perp\mu$ , there exists a locally measurable set $A$ such that

$m(E\cap A)=0$ and $\mu(E-A)=0$ for every $ E\in\gamma$ . Since $ m\ll\mu$ we have $m(E-A)=0$ .
Hence $m(E)=m(E\cap A)+m(E-A)=0$ for every $ Ee\gamma$ . Therefore $m$ is the zero
measure.

Theorem 1. Let $m;\gamma\rightarrow X$ be a vector measure and $\mu$ a non-negative measure on
$\gamma$ . Then there exist unique $m_{0}$ and $m_{1}$ such that $m=m_{0}+m_{1}$ , where $ m_{0}\ll\mu$ and $ m_{1}\perp\mu$ .

Proof. By Proposition2 there exists a finite non-negative measure $\nu$ on $\gamma$

such that $ m\ll\nu$ . Since $\nu$ is finite, $\nu$ is strongly $\sigma$ finite ([1] p. 631).

By Johnson ([1] Theorem 3.4) there exist unique VO and $\nu_{1}$ such that $\nu=\nu 0+\nu_{1}$ ,
where $\nu_{0}\ll\mu$ and $\nu_{1}\perp\mu$ . Since $\nu_{1}\perp\mu$ there exists a locally measurable set $A\subset S$

such that $\nu_{1}(E\cap A)=0=\mu(E-A)$ for every $Eer$ . Since $\nu_{0}\ll\mu$ we have $\nu_{0}(E-A)=0$ .
Hence $\nu(E\cap A)=\nu_{0}(E\cap A)+\nu_{1}(E\cap A)=\nu_{0}(E\cap A)=\nu_{0}(E\cap A)+\nu_{0}(E-A)=\nu_{0}(E)$ and
$\nu(E-A)=\nu_{0}(E-A)+\nu_{1}(E-A)=\nu_{1}(E-A)=\nu_{1}(E\cap A)+\nu_{1}(E-A)=\nu_{1}(E)$ . We put
$fn_{0}(E)=m(E\cap A)$ and $m_{1}(E)=m(E-A)$ for every $Eer$ . Then $m_{0}$ and $m_{1}$ are
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vector measure and $m(E)=m(E\cap A)+m(E-A)=m_{0}(E)+m_{1}(E)$ . If $\mu(E)=0$ , then
$\nu_{0}(E)=\nu(E\cap A)=0$ . Since $ m\ll\nu$ , we have $m_{0}(E)=m(E\cap A)=0$ , which shows $ m_{0}\ll\mu$ .
Since $\nu_{1}\perp\mu$ , there exists a locally measurable set $A\subset S$ such that $\nu_{1}(E\cap A)=0=$

$\mu(E-A)$ for every $ E\in\gamma$ we have $m_{1}(E\cap A)=m(E\cap A-A)=m(\phi)=0$ . Hence $ m_{1}\perp\mu$ .
Let $m_{0}^{\prime}$ and $m_{1}^{\prime}$ be another decomposition for $m$ . i.e $m=m_{0}^{\prime}+m${, where $ m_{0}^{\prime}\ll\mu$

and $ m_{1}^{\prime}\perp\mu$ . Then $m=m_{0}+m_{I}=m_{0}^{\prime}+m_{1}^{\prime}$ and $m_{0}-m_{0}^{\prime}=m_{1}^{\prime}-m_{1}$ . Since $ m_{0}\ll\mu$ and
$ m_{0}^{\prime}\ll\mu$ , we have $(m_{0}-m_{0}^{\prime})\ll\mu$ . Since $ m_{1}\perp\mu$ and $ m_{1}^{\prime}\perp\mu$ , there exist locally measu-
rable set $A_{1}$ and $A_{2}$ such $m_{1}(E\cap A_{1})=0,$ $\mu(E-A_{1})=0,$ $m_{1}^{\prime}(E\cap A_{2})=0$ and $\mu(E-A_{2})=0$

for every $ E\in\gamma$ . We Put $A=A_{1}\cap A_{2}$ . Then $A$ is locally measurable. Since
$E-A=(E-A_{1})\cup(E-A_{1})$ we have $\mu(E-A)\leqq\mu(E-A_{1})+\mu(E-A_{2})=0$ . As $E\cap A_{2}er$ ,

we have $m_{1}(E\cap A)=m_{1}((E\cap A_{2})\cap A_{1})=0$ and $\mu(E\cap A_{2}-A_{1})=0$ . Similarly $m_{1}^{\prime}(E\cap A)$

$=0$ and $\mu(E\cap A_{1}-A_{2})=0$ . Hence $(m_{1}^{\prime}-m_{1})\perp\mu$ . Since $(m_{0}-m_{0}^{\prime})\ll\mu$ and $(m_{0}-m_{0}^{\prime})\perp\mu$ ,

by Lemma 1 $m_{0}=m_{0}^{\prime}$ and $m_{1}=m_{I}^{\prime}$ .

3. Regular Borel measures

Let $S$ be a locally compact Hausdorff space, $\mathfrak{B}(S)(\mathfrak{B}_{0}(S))$ the a-ring generated
by the compact(compact $G_{\delta}$ ) sets of $S$ and $X$ a normed space.

Definition 4. Any vector measure $m;\mathfrak{B}(S)(\mathfrak{B}_{0}(S))\rightarrow X$ is called a Borel (Baire)

measure on $S$ and any non-negative measure on $\mathfrak{B}(S)(\mathfrak{B}_{0}(S))$ is called a Borel
(Baire) measure if it is a Borel (Baire) measure in the sense of Halmos’ (Halmos

[6] \S 52).

Definition 5. A Borel measure $m;\mathfrak{B}(S)\rightarrow X$ is called regular if for every
$Ae\mathfrak{B}(S)$ and every number $\epsilon>0$ there exist a compact set $K\subset A,$ $Ke\mathfrak{B}(S)$ and
an open set $G\supset A,$ $Ge\mathfrak{B}(S)$ such that for every $A^{\prime}e\mathfrak{B}(S)$ with $A^{\prime}\subset G-K$ we
have $\Vert m(A^{\prime})\Vert<\epsilon$ . The regularity of Baire measure is similar.

We note that the above regularity is equivalent to Halmos’ regularity for
a finite non-negative measure.

Theorem 2. Let $m;\mathfrak{B}(S)\rightarrow X$ be a Borel measure and $\mu$ a finite non-negative
regular Borel measure. If $ m\ll\mu$ , then $m$ is regular.

Proof. Since $ m\ll\mu$ , by Proposition1 there exists for every number $\epsilon>0$ a
number $\delta=\delta(\epsilon)>0$ such that $\mu(A)<\delta\Rightarrow\Vert m(A)\Vert<\epsilon$ . By the regularity of $\mu$ , for
any $Ae\mathfrak{B}(S)$ and the above number $\delta>0$ there exist a compact set $K\subset A$ ,

$Ke\mathfrak{B}(S)$ and an open set $G\supset A,$ $Ge\mathfrak{B}(S)$ such that for every $A^{\prime}e\mathfrak{B}(S)$ with
$A^{\prime}\subset G-K$ we have $\mu(A^{\prime})<\delta$ . Hence $\Vert m(A)\Vert<\epsilon$ . Therefore $m$ is regular.

ProposItion3. Let $m;\mathfrak{B}(S)\rightarrow X$ be a Borel measure and $\nu$ the measure de-
termined by Proposition2. Then $m$ is regular if and only if $\nu$ is regular.
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Proof. The necessity is clear by Proposition2(2).

The sufficiency is clear by the above theorem.
Proposition 4. Any Borel measure $m;\mathfrak{B}(S)\rightarrow X$ is regular if and only if for

every compact set $K$ there exists a compact $G_{\delta}$ set $U$ such that $U\supset K$ and
$\tilde{m}(U-K)=0$ .

Proof. Let $\nu$ be the measure determined by Proposition2.
Necessity. By Proposition3 $\nu$ is regular. Then there exists a sequence

$\{U_{n}\}$ of open Borel sets such that $K\subset U_{n}$ and $\nu(K)=\inf_{n}\nu(U_{n})$ . For each $n$ , by
Halmos ([6] \S 50. Theorem D) there exists a compact $G_{\delta}$ set $V_{n}$ such that
$K\subset V_{n}\subset U_{n}$ . Then $U=\bigcap_{n=1}^{\infty}V_{n}$ is a comPact $G_{\delta}$ set, $U\supset K$ and $\nu(K)\leqq\nu(U)\leqq\nu(V_{n})\leqq$

$\nu(U_{n})$ for all $n$ and hence $\nu(K)=\nu(U)$ . Since $\nu$ is finite, we have $\nu(U-K)=0$ .
Hence $\tilde{m}(U-R)=0$ .

Sufficiency. Since $\nu(E)\leqq\tilde{m}(E)$ for every $Ee^{\backslash }\mathfrak{B}(S),$ $\nu(U-K)=0$ . Let $\{U_{n}\}$ be a
sequence of open sets such that $U=\bigcap_{n=\perp}^{\infty}U_{n}$ . By Halmos ([6] \S 60. Theorem D)

there exists, for each $n$ , an open Baire set $V_{n}$ such that $U\subset V_{n}\subset U_{n}$ . Then we
$n$

have $U=\bigcap_{n=1}V_{n}$ . Hence $\lim_{n\rightarrow\infty}\nu(\bigcap_{k=1}V_{k})=\nu(U)=\nu(K)$ .
Therefore by Halmos ([61 \S 52. Theorem H) $\nu$ is regular. By Proposition3 $m$

is regular.
Proposition 5. Any Baire measure $m;\mathfrak{B}_{0}(S)\rightarrow X$ is regular. (Dinculeanu

and Kluvanek [4] Theorem 4).

Proof. By Proposition2 there exists a finite non-negative measure $\nu$ on
$\mathfrak{B}_{0}(S)$ such that $ m\ll\nu$ . Since $\nu$ is finite, $\nu$ is a Baire measure. By Halmos ([61

\S 52. Theorem G) $\nu$ is regular. Since $m\ll\nu,$ $m$ is regular.

4. The decomposition theorem of Borel measures

Let $S$ be a locally compact Hausdorff space, $\mathfrak{B}(S)$ the a-ring generated by the
compact sets of $S$ and $X$ a normed space.

Definition 6. A Borel measure $m;\mathfrak{B}(S)\rightarrow X$ is called antiregular if $ m\perp\mu$

for every non-negative regular Borel measure $\mu$ .
Lemma 2. Any Borel measure $m;\mathfrak{B}(S)\rightarrow X$ which is both regular and anti-

regular is the zero measure.
Proof. By Proposition2 there exists a finite non-negative measure $\nu$ on $\mathfrak{B}(S\rangle$

such that $ m\ll\nu$ . Since $m$ is regular, by Proposition3 $\nu$ is regular. Since $m$ is
antiregular $ m\perp\nu$ . By Lemma 1 $m$ is the zero measure.

Theorem 3. Let $m;\mathfrak{B}(S)\rightarrow X$ be a Borel measure. Then there exist unique
regular $m_{0}$ and antiregular $m_{1}$ such that $m=m_{0}+m_{1}$ .
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Proof. By Proposition2 there exists a finite non-negative measure $\nu$ on
$\mathfrak{B}(S)$ such that $ m\ll\nu$ . Since $\nu$ is finite, $\nu$ is a Borel measure. The restriction
of $\nu$ to $\mathfrak{B}(S)$ is a Baire measure which can be extended to a unique regular Borel

measure $\mu$ (Halmos [6] \S 54. Theorem D). By Theorem 1 there exist $\nu_{0}$ and $\nu_{1}$

such that $\nu=\nu 0+\nu_{1}$ . where $\nu 0\ll\mu$ and $\nu_{1}\perp\mu$ . As the proof of Theorem 1 we
define $m_{0}(E)=m(E\cap A)$ and $m_{1}(E)=m(E-A)$ for every $Ee\mathfrak{B}(S)$ (where $A$ is
some locally measurable set). Since $m_{0}\ll\nu_{0}$ and $\nu 0$ is regular, by Theorem 2 $m_{0}$

is regular. By Johnson ([2] Theorem 2.3) $\nu_{1}$ is antiregular and $m_{1}$ is also antire.
gular by $m_{1}\ll\nu_{1}$ . Let $m_{0}^{\prime}$ be regular and $m_{1}^{\prime}$ antiregular with $m=m_{0}^{\prime}+m_{1}^{\prime}$ . Then
$m=m_{0}+m_{1}=m_{0}^{\prime}+m_{1}^{\prime}$ and $m_{0}-m_{0}^{\prime}=m_{1}^{\prime}-m_{1}$ . Since $m_{0}$ and $m_{0}^{\prime}$ are regular, also is
$m_{0}-m_{0}^{\prime}$ . The antiregularity of $m_{1}^{\prime}-m_{1}$ may be proved along the same way as
the uniqueness’ $prf$ of Theorem 1. By Lemma 2 we have $m_{0}=m_{0}^{\prime}$ and $m_{1}=m_{1}^{\prime}$ .

Proposition 6. If a Borel measure $m;\mathfrak{B}(S)\rightarrow X$ is antiregular, then there
exists a locally Borel set $A$ (i.e. $E\cap Ae\mathfrak{B}(S)$ for every $Ee\mathfrak{B}(S)$ ) such that
$m(E-A)=0$ for every $Ee\mathfrak{B}(S)$ and such that $m(C)=0$ for every compact set $C\subset A$ .

Proof. By Proposition2 there exists a finite non-negative measure $\nu$ on
$\mathfrak{B}(S)$ such that $ m\ll\nu$ . The restriction of $\nu$ to $\mathfrak{B}_{0}(S)$ is a Baire measure which can
be extended to a unique regular Borel measure $\mu$ . Since $m$ is antiregular, we
have $ m\perp\mu$ . Then there exists a locally Borel set $B$ such that $m(E\cap B)=0$ and
$\mu(E-B)=0$ for every $Ee\mathfrak{B}(S)$ . If we put $A=B^{c}$ , then $A$ is a locally Borel set

and $m(E-A)=0$ for every $Ee\mathfrak{B}(S)$ . Now if $C$ is a compact subset of $A$ , evidently

$\mu(C)=0$ . By regularity of $\mu$ there exists a compact $G_{\delta}$ set $D$ such that $D\supset C$

and $\mu(C)=\mu(D)$ . Since $0=\mu(C)=\mu(D)=\nu(D)\geqq\nu(C)$ , we have $\nu(C)=0$ . Hence
$m(C)=0$ .

Proposition 7. If $m;\mathfrak{B}(S)\rightarrow X$ is antiregular, then $m(\{s\})=0$ for every point
$s\in S$ .

Proof. For each $s\in S$ , let $v_{\epsilon}$ be a point measure of $s$ . Then $\nu_{\epsilon}$ is a regular

Borel measure. Hence $m\perp v_{s}$ . It follows that $m(\{s\})=0$ .
Proposition 8. Let $m;\mathfrak{B}(S)\rightarrow X$ be a Borel measure and $\nu$ the measure de-

termined by Proposition2. Then $m$ is antiregular if and only if $\nu$ is antiregular.

Proof. Necessity. For every regular non-negative Borel measure $\mu$ we have
$ m\perp\mu$ . Then there exists a locally Borel set $A$ such that $m(E\cap A)=0$ and
$\mu(E-A)=0$ for every $Ee\mathfrak{B}(S)$ . So we have $m(B)=0$ for every Be $\mathfrak{B}(S)$ with
$B\subset E\cap A$ . Then by Proposition2(2) $\tilde{m}(E\cap A)=0$ implies $\nu(E\cap A)=0$ . Therefore
$\nu$ is antiregular.

The sufficiency is obvious.
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