THE DECOMPOSITION THEOREMS FOR VECTOR MEASURES

By

Sachio OHBA

(Received Oct. 1, 1970)

Abstract. In this paper we shall prove the following (1) and (2).

(1) Let S be a set, \tilde{r} a σ -ring of subsets of S, X a normed space, $m; \tilde{r} \to X$ a vector measure and μ a non-negative measure on \tilde{r} . Then there exist unique m_0 and m_1 such that $m=m_0+m_1$, where $m_0 \ll \mu$ and $m_1 \perp \mu$ (Theorem 1).

(2) Let S be a locally compact Hausdorff space, $\mathfrak{B}(S)$ the σ -ring generated by the compact subsets of S, X a normed space and m; $\mathfrak{B}(S) \to X$ a Borel measure. Then there exist unique regular m_0 and antiregular m_1 such that $m=m_0+m_1$ (Theorem 3).

1. Introduction

In [1], [2] Johnson has proved the following (1) and (2).

(1) Let S be a set, $\tilde{\gamma}$ a σ -ring of subsets of S, ν a strongly σ -finite, non-negative measure on $\tilde{\gamma}$ and μ a non-negative measure on $\tilde{\gamma}$. Then there exist unique ν_0 and ν_1 such that $\nu = \nu_0 + \nu_1$, where $\nu_0 \ll \mu$ and $\nu_1 \perp \mu$ ([1] Theorem 3.4).

(2) Let S be a locally compact Hausdorff space, $\mathfrak{B}(S)$ the σ -ring generated by the compact subsets of S and μ a Borel measure on $\mathfrak{B}(S)$. Then there exist unique regular μ_0 and antiregular μ_1 such that $\mu = \mu_0 + \mu_1$ ([2] Theorem 2.3).

In this paper we shall extend these results to the case of vector measures.

2. The Lebesgue decomposition theorem

Let S be a set, γ a σ -ring of subsets of S and X a normed space.

Definition 1. A set function *m* defined on $\tilde{\gamma}$ with values in *X* is called a vector measure if for every sequence $\{E_n\}$ of mutually disjoint sets of $\tilde{\gamma}$ we have $m(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} m(E_n)$.

Definition 2. Let $m; \gamma \to X$ be a vector measure and μ a non-negative measure on γ . m is called absolutely continuous with respect to μ ($m \ll \mu$) if for every set $A \in \gamma$ such that $\mu(A)=0$ we have m(A)=0.

Proposition 1. $m \ll \mu$ if and only if for every number $\varepsilon > 0$ there exists a number $\delta = \delta(\varepsilon) > 0$ such that for every $A \in \tilde{\tau}$ with $\mu(A) < \delta$ we have $||m(A)|| < \varepsilon$.

SACHIO OHBA

Proof. The sufficiency is clear.

Necessity. If it is false, then there exists a number $\varepsilon_0 > 0$ such that for every number $\delta > 0$ there exists a set $A_{\delta} \in \tilde{i}$ such that $\mu(A_{\delta}) < \delta$ and $||m(A_{\delta})|| \ge \varepsilon_0$. Taking $\delta = 1/2^n$ and $A_n = A_{\delta}$ we have $\mu(A_n) < 1/2^n$ and $||m(A_n)|| \ge \varepsilon_0$ for all n. If we put $B_n = \bigcup_{k=n}^{\infty} A_k$ and $B = \bigcap_{n=1}^{\infty} B_n$, then $\mu(B) \le \sum_{k=n}^{\infty} \mu(A_k) \le 1/2^{n-1}$ for all n. Hence $\mu(B) = 0$. For every $C \in \tilde{i}$ with $C \subset B$ $\mu(C) = 0$. Since $m \ll \mu$, m(C) = 0. We put $\tilde{m}(E) = \sup \{||m(A_n)|| \ge \varepsilon_0 \text{ for all } n$. Then $\tilde{m}(B) = 0$. On the other hand $\tilde{m}(B_n)$ $\ge \tilde{m}(A_n) \ge ||m(A_n)|| \ge \varepsilon_0$ for all n. Since $\{B_n\}$ is a decreasing sequence, by Gould ([5] Corollary 3.6. In this case, σ -field can be replaced by a σ -ring) we have $\tilde{m}(B) =$ $\lim_{n \to \infty} \tilde{m}(B_n) \ge \varepsilon_0$. Therefore we get a contradiction.

Proposition 2. For any vector measure $m; \gamma \to X$ there exists a finite nonnegative measure ν on γ such that

(1)
$$m \ll \nu$$
.

(2) $\nu(E) \leq \tilde{m}(E) = \sup \{ ||m(A)||; A \subset E, A \in \mathcal{I} \} \text{ for every } E \in \mathcal{I} .$

Proof. See Dinculeanu and Kluvanek ([4] Theorem 1).

Definition 3. (1) A set $A \subset S$ is called locally measurable if $A \cap E \in \mathcal{I}$ for every $E \in \mathcal{I}$.

(2) Let $m; \gamma \to X$ be a vector measure and μ a non-negative measure on γ . *m* is singular with respect to μ $(m \perp \mu)$ if there exists a locally measurable set A such that $m(E \cap A)=0$ and $\mu(E-A)=0$ for every $E \in \gamma$.

Lemma 1. Any vector measure m; $\tilde{\tau} \to X$ which is both $m \ll \mu$ and $m \perp \mu$ is the zero measure.

Proof. Since $m \perp \mu$, there exists a locally measurable set A such that $m(E \cap A) = 0$ and $\mu(E-A) = 0$ for every $E \in \mathcal{I}$. Since $m \ll \mu$ we have m(E-A) = 0. Hence $m(E) = m(E \cap A) + m(E-A) = 0$ for every $E \in \mathcal{I}$. Therefore m is the zero measure.

Theorem 1. Let $m; \gamma \to X$ be a vector measure and μ a non-negative measure on γ . Then there exist unique m_0 and m_1 such that $m=m_0+m_1$, where $m_0 \ll \mu$ and $m_1 \perp \mu$.

Proof. By Proposition 2 there exists a finite non-negative measure ν on $\tilde{\gamma}$ such that $m \ll \nu$. Since ν is finite, ν is strongly σ finite ([1] p. 631).

By Johnson ([1] Theorem 3.4) there exist unique ν_0 and ν_1 such that $\nu = \nu_0 + \nu_1$, where $\nu_0 \ll \mu$ and $\nu_1 \perp \mu$. Since $\nu_1 \perp \mu$ there exists a locally measurable set $A \subseteq S$ such that $\nu_1(E \cap A) = 0 = \mu(E-A)$ for every $E \in \mathcal{I}$. Since $\nu_0 \ll \mu$ we have $\nu_0(E-A) = 0$. Hence $\nu(E \cap A) = \nu_0(E \cap A) + \nu_1(E \cap A) = \nu_0(E \cap A) = \nu_0(E \cap A) + \nu_0(E-A) = \nu_0(E)$ and $\nu(E-A) = \nu_0(E-A) + \nu_1(E-A) = \nu_1(E-A) = \nu_1(E \cap A) + \nu_1(E-A) = \nu_1(E)$. We put $m_0(E) = m(E \cap A)$ and $m_1(E) = m(E-A)$ for every $E \in \mathcal{I}$. Then m_0 and m_1 are

THE DECOMPOSITION THEOREMS FOR VECTOR MEASURES

vector measure and $m(E) = m(E \cap A) + m(E - A) = m_0(E) + m_1(E)$. If $\mu(E) = 0$, then $\nu_0(E) = \nu(E \cap A) = 0$. Since $m \ll \nu$, we have $m_0(E) = m(E \cap A) = 0$, which shows $m_0 \ll \mu$. Since $\nu_1 \perp \mu$, there exists a locally measurable set $A \subset S$ such that $\nu_1(E \cap A) = 0 =$ $\mu(E - A)$ for every $E \in \Gamma$, we have $m_1(E \cap A) = m(E \cap A - A) = m(\phi) = 0$. Hence $m_1 \perp \mu$.

Let m'_0 and m'_1 be another decomposition for m. i.e $m = m'_0 + m'_1$, where $m'_0 \ll \mu$ and $m'_1 \perp \mu$. Then $m = m_0 + m_1 = m'_0 + m'_1$ and $m_0 - m'_0 = m'_1 - m_1$. Since $m_0 \ll \mu$ and $m'_0 \ll \mu$, we have $(m_0 - m'_0) \ll \mu$. Since $m_1 \perp \mu$ and $m'_1 \perp \mu$, there exist locally measurable set A_1 and A_2 such $m_1(E \cap A_1) = 0$, $\mu(E - A_1) = 0$, $m'_1(E \cap A_2) = 0$ and $\mu(E - A_2) = 0$ for every $E \in \mathcal{T}$. We put $A = A_1 \cap A_2$. Then A is locally measurable. Since $E - A = (E - A_1) \cup (E - A_1)$ we have $\mu(E - A) \leq \mu(E - A_1) + \mu(E - A_2) = 0$. As $E \cap A_2 \in \mathcal{T}$, we have $m_1(E \cap A) = m_1((E \cap A_2) \cap A_1) = 0$ and $\mu(E \cap A_2 - A_1) = 0$. Similarly $m'_1(E \cap A)$ = 0 and $\mu(E \cap A_1 - A_2) = 0$. Hence $(m'_1 - m_1) \perp \mu$. Since $(m_0 - m'_0) \ll \mu$ and $(m_0 - m'_0) \perp \mu$, by Lemma 1 $m_0 = m'_0$ and $m_1 = m'_1$.

3. Regular Borel measures

Let S be a locally compact Hausdorff space, $\mathfrak{B}(S)$ ($\mathfrak{B}_0(S)$) the σ -ring generated by the compact (compact G_d) sets of S and X a normed space.

Definition 4. Any vector measure m; $\mathfrak{B}(S)$ $(\mathfrak{B}_0(S)) \to X$ is called a Borel (Baire) measure on S and any non-negative measure on $\mathfrak{B}(S)$ $(\mathfrak{B}_0(S))$ is called a Borel (Baire) measure if it is a Borel (Baire) measure in the sense of Halmos' (Halmos [6] § 52).

Definition 5. A Borel measure $m; \mathfrak{B}(S) \to X$ is called regular if for every $A \in \mathfrak{B}(S)$ and every number $\varepsilon > 0$ there exist a compact set $K \subset A$, $K \in \mathfrak{B}(S)$ and an open set $G \supset A$, $G \in \mathfrak{B}(S)$ such that for every $A' \in \mathfrak{B}(S)$ with $A' \subset G - K$ we have $||m(A')|| < \varepsilon$. The regularity of Baire measure is similar.

We note that the above regularity is equivalent to Halmos' regularity for a finite non-negative measure.

Theorem 2. Let m; $\mathfrak{B}(S) \to X$ be a Borel measure and μ a finite non-negative regular Borel measure. If $m \ll \mu$, then m is regular.

Proof. Since $m \ll \mu$, by Proposition 1 there exists for every number $\varepsilon > 0$ a number $\delta = \delta(\varepsilon) > 0$ such that $\mu(A) < \delta \Longrightarrow ||m(A)|| < \varepsilon$. By the regularity of μ , for any $A \in \mathfrak{B}(S)$ and the above number $\delta > 0$ there exist a compact set $K \subset A$, $K \in \mathfrak{B}(S)$ and an open set $G \supset A$, $G \in \mathfrak{B}(S)$ such that for every $A' \in \mathfrak{B}(S)$ with $A' \subset G - K$ we have $\mu(A') < \delta$. Hence $||m(A)|| < \varepsilon$. Therefore *m* is regular.

Proposition 3. Let m; $\mathfrak{B}(S) \to X$ be a Borel measure and ν the measure determined by Proposition 2. Then m is regular if and only if ν is regular.

SACHIO OHBA

Proof. The necessity is clear by Proposition 2 (2).

The sufficiency is clear by the above theorem.

Proposition 4. Any Borel measure $m; \mathfrak{B}(S) \to X$ is regular if and only if for every compact set K there exists a compact G_3 set U such that $U \supset K$ and $\tilde{m}(U-K)=0.$

Proof. Let ν be the measure determined by Proposition 2.

Necessity. By Proposition 3 ν is regular. Then there exists a sequence $\{U_n\}$ of open Borel sets such that $K \subset U_n$ and $\nu(K) = \inf \nu(U_n)$. For each *n*, by Halmos ([6] § 50. Theorem D) there exists a compact G_{δ} set V_n such that $K \subset V_n \subset U_n$. Then $U = \bigcap_{n=1}^{\infty} V_n$ is a compact G_{δ} set, $U \supset K$ and $\nu(K) \leq \nu(U) \leq \nu(V_n) \leq V(V_n)$ $\nu(U_n)$ for all *n* and hence $\nu(K) = \nu(U)$. Since ν is finite, we have $\nu(U-K) = 0$. Hence $\tilde{m}(U-K)=0$.

Sufficiency. Since $\nu(E) \leq \tilde{m}(E)$ for every $E \in \mathfrak{B}(S)$, $\nu(U-K)=0$. Let $\{U_n\}$ be a sequence of open sets such that $U = \bigcap_{n=1}^{\infty} U_n$. By Halmos ([6] § 60. Theorem D) there exists, for each *n*, an open Baire set V_n such that $U \subset V_n \subset U_n$. Then we have $U = \bigcap_{n=1}^{\infty} V_n$. Hence $\lim_{n \to \infty} \nu (\bigcap_{k=1}^n V_k) = \nu(U) = \nu(K)$. Therefore by *Halmos* ([6] § 52. Theorem H) ν is regular. By Proposition 3 m

is regular.

Proposition 5. Any Baire measure $m; \mathfrak{B}_0(S) \to X$ is regular. (Dinculeanu and *Kluvanek* [4] Theorem 4).

Proof. By Proposition 2 there exists a finite non-negative measure ν on $\mathfrak{B}_0(S)$ such that $m \ll \nu$. Since ν is finite, ν is a Baire measure. By Halmos ([6] § 52. Theorem G) ν is regular. Since $m \ll \nu$, m is regular.

4. The decomposition theorem of Borel measures

Let S be a locally compact Hausdorff space, $\mathfrak{B}(S)$ the σ -ring generated by the compact sets of S and X a normed space.

Definition 6. A Borel measure $m; \mathfrak{B}(S) \to X$ is called antiregular if $m \perp \mu$ for every non-negative regular Borel measure μ .

Lemma 2. Any Borel measure $m; \mathfrak{B}(S) \to X$ which is both regular and antiregular is the zero measure.

Proof. By Proposition 2 there exists a finite non-negative measure ν on $\mathfrak{B}(S)$ such that $m \ll \nu$. Since m is regular, by Proposition 3 ν is regular. Since m is antiregular $m \perp \nu$. By Lemma 1 *m* is the zero measure.

Theorem 3. Let m; $\mathfrak{B}(S) \to X$ be a Borel measure. Then there exist unique regular m_0 and antiregular m_1 such that $m=m_0+m_1$.

THE DECOMPOSITION THEOREMS FOR VECTOR MEASURES

Proof. By Proposition 2 there exists a finite non-negative measure ν on $\mathfrak{B}(S)$ such that $m \ll \nu$. Since ν is finite, ν is a Borel measure. The restriction of ν to $\mathfrak{B}(S)$ is a Baire measure which can be extended to a unique regular Borel measure μ (Halmos [6] § 54. Theorem D). By Theorem 1 there exist ν_0 and ν_1 such that $\nu = \nu_0 + \nu_1$. where $\nu_0 \ll \mu$ and $\nu_1 \perp \mu$. As the proof of Theorem 1 we define $m_0(E) = m(E \cap A)$ and $m_1(E) = m(E - A)$ for every $E \in \mathfrak{B}(S)$ (where A is some locally measurable set). Since $m_0 \ll \nu_0$ and ν_0 is regular, by Theorem 2 m_0 is regular. By Johnson ([2] Theorem 2.3) ν_1 is antiregular and m_1 is also antiregular by $m_1 \ll \nu_1$. Let m'_0 be regular and m'_1 antiregular with $m = m'_0 + m'_1$. Then $m = m_0 + m_1 = m'_0 + m'_1$ and $m_0 - m'_0 = m'_1 - m_1$. Since m_0 and m'_0 are regular, also is $m_0 - m'_0$. The antiregularity of $m'_1 - m_1$ may be proved along the same way as the uniqueness' proof of Theorem 1. By Lemma 2 we have $m_0 = m'_0$ and $m_1 = m'_1$.

Proposition 6. If a Borel measure $m; \mathfrak{B}(S) \to X$ is antiregular, then there exists a locally Borel set A (i.e. $E \cap A \in \mathfrak{B}(S)$ for every $E \in \mathfrak{B}(S)$) such that m(E-A)=0 for every $E \in \mathfrak{B}(S)$ and such that m(C)=0 for every compact set $C \subset A$.

Proof. By Proposition 2 there exists a finite non-negative measure ν on $\mathfrak{B}(S)$ such that $m \ll \nu$. The restriction of ν to $\mathfrak{B}_0(S)$ is a Baire measure which can be extended to a unique regular Borel measure μ . Since m is antiregular, we have $m \perp \mu$. Then there exists a locally Borel set B such that $m(E \cap B)=0$ and $\mu(E-B)=0$ for every $E \in \mathfrak{B}(S)$. If we put $A=B^\circ$, then A is a locally Borel set and m(E-A)=0 for every $E \in \mathfrak{B}(S)$. Now if C is a compact subset of A, evidently $\mu(C)=0$. By regularity of μ there exists a compact G_δ set D such that $D\supset C$ and $\mu(C)=\mu(D)$. Since $0=\mu(C)=\mu(D)=\nu(D)\geq\nu(C)$, we have $\nu(C)=0$. Hence m(C)=0.

Proposition 7. If m; $\mathfrak{B}(S) \to X$ is antiregular, then $m(\{s\})=0$ for every point $s \in S$.

Proof. For each $s \in S$, let v_s be a point measure of s. Then v_s is a regular Borel measure. Hence $m \perp v_s$. It follows that $m(\{s\})=0$.

Proposition 8. Let m; $\mathfrak{B}(S) \to X$ be a Borel measure and ν the measure determined by Proposition 2. Then m is antiregular if and only if ν is antiregular.

Proof. Necessity. For every regular non-negative Borel measure μ we have $m \perp \mu$. Then there exists a locally Borel set A such that $m(E \cap A) = 0$ and $\mu(E-A)=0$ for every $E \in \mathfrak{B}(S)$. So we have m(B)=0 for every $B \in \mathfrak{B}(S)$ with $B \subset E \cap A$. Then by Proposition 2 (2) $\tilde{m}(E \cap A)=0$ implies $\nu(E \cap A)=0$. Therefore ν is antiregular.

The sufficiency is obvious.

SACHIO OHBA

REFERENCES

- R. A. Johnson, On the Lebesgue decomposition theorems, Proc. Amer. Math. Soc. 18 (1967) 628-632.
- [2] ____, Some types of Borel measures, Proc. Amer. Math. Soc. 22 (1969), 94-99.
- [3] J.K. Brooks, Decomposition theorems for vector measures, Proc. Amer. Math. Soc. 21 (1969), 27-29.
- [4] N. Dinculeanu and I. Kluvanek, On vector measures, Proc. London. Math. Soc. 17 (1967), 505-512.
- [5] G.G. Gould, Integration over vector-valued measures, Proc. London. Math. Soc. 15 (1965) 193-225.
- [6] P.R. Halmos, *Measure Theory*, New York (1950).

Kanagawa University Rokkaku-bashi, Kanagawa-ku Yokohama, Japan