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1. Introduction.

In recent years several authors ([1], [3], [8], [11], [13]) applied the Laplace

transform to solve convolution equations which are special cases of

z —$\b—1 °

(1.1) S GO bas b cx—1) FOdi=g(x) Reb>0,
o I'(d)

discussed by the present author by a use of fractional integration. The

purpose of this paper is to discuss an integral equation of a much more general

nature, viz. equation
(1.2) S"(x—t)ﬁ-lEz, A(x—Df(Ddt=g(x) Rep>0,
for any real number ¢>0 where the function

(1.3) Eg_ﬂ(z)=7§0ﬁf§;!— Rea>0,
is an entire function of order (Rea)™ and contains several well-known special
functions as particular cases.

We define a linear operator G(a, 5; p; ) on a space L of functions by the
integral in and employ an operator of fractional integration I*:L—L to
prove results on &(a, 8; p; A); these results are subsequently used to discuss
theorems on the solutions of [1.2). The technique used can be applied to obtain
analogous results on the integral equation

L4 Ga, B 03 Df ()= S"(t—x)ﬂ-lEz,ﬁz(t—x>af(t>dt="g(x) Re >0,

which contains as particular cases the equations considered in [9] and [10]. The
symbol = is the usual notation for equality a.e.

2. Definitions and preliminary results.

The function E%? ;(z). We define Ef 4(2) by the series [(1.3), the parameters
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a, B and p being complex numbers with Re a>0. Some of the well-known func-
tions which are particular cases of Ej 4(z) are the Mittag Leffler’s function
E«(2) ((5), (6)), the Wiman’s function E., s(2) [12] and the confluent hypergeometric
function 1Fi(p; 8; 2). Indeed

E«(2)=E; 1(2), E«8(2)=E} p(2) and 1Fi(o; B; 2)=1"(B)- E{,4(2) .
‘When a is a positive integer, say #, then

=1 B B+l | BAn—l 2z,
E:v’nﬂ(z) P(‘B) 1Fn(P, ” ’ n "o )s

also
hi(x, n)=x1EL (2™,

ki(x, n)=x""1Ey (—2x™) ,

ki and ki being generalized hyperbolic and generalized trigonometrical functions
{2]. If p is a negative integer say —# and a is a positive integer %, then one
set of the biorthogonal polynomial pair discussed by Konhauser is given by

Z5(x; R)=I'(kn+c+1)Ex™41(x%) .

‘The polynomial Z3(x; k) is related to E% ;(z) just the same way as the Laguerre
polynomial L%(x) is related to Kummer’s 1Fi.

The function E% z(2) as well as the polynomial Zj(x; k) has a number of
properties which may be of independent interest. We give below a few results
which can be easily verified:— '

@1 () B2 s@=0n B Femaa)

2.2) (%)'" (P18, p(2*)] =28 1EP 4_n(2%) .

2.3) <z-——+p) B2 (@) =pELt(@)

2.4) (B—ap—1)Ef ((2)=E¢ 5-1(2)—apEfT}(2) ,

@5 SUES (m)=p-F(1—2p~=)* for Rep,Rep>0, |p|>|a%7 ,

where &{f(#)} denotes the Laplace transform of f(¢).
The operator /*. L denotes the linear space of (equivalent classes of) complex-
valued functions f which are L-integrable on a finite [a, b}, >0 with the norm
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b
\f ]l:S |f(®)|dt. For complex g with Reu>0, I*: L—> L is a linear operator
defined by the fractional integral

(2.6) I f ()= S% F(t)dt for almost all xe(a, b) .

It is easily verified that [* is bounded and it is a standard result that
I*f=0=—>f=0, so that the inverse operator exists on subspace L. of L. If
O<Re #<Rev, then it is easily proved that L,c L. L and the inclusion is proper.

For Re ¢<0, I" is defined as the inverse of I™*. If Re #+#0, Rev+#0, then
I*Pf=I**f for suitable functions f. For Rex=0, [* is defined on L: with
Re 2>0 as IIt*e,

Theorem 1. If Re y>0 and fe<L, then the integral
@n S”(x—t)ﬂ—lEg, A(x—1) f (Dt

defines a function in L.
It is sufficient to prove that

@.8) dex S (x— LB a(x—t) f(DdE< oo .

The integral in (2.8) is at most
b b ' b b
S | f(t)ldtS l(x-—t)"“lEg,.52(x—t)"|dx<g If(t)ldtS |0A-1E2 ,3p%ldy |
a t a [}
The entire function E%, 4(2) is bounded in [a, 0], let
|E2 j20°1<M  for vela,b] .
Hence the double integral does not exceed
M(Re )75 #| | .
The operator €(a, B; p; ). For complex «a, 3, p, 2 with Re >0 and feL, the
linear operator €(a, 8; p; 2) on L into itself is defined by
Gle, B; p; ) ()= S”<x—t)ﬁ—1Eg,pz(x~t>a FOdt  a<z<b.
For brevity we shall denete €(«, 8; 0; ) by €(8) when it is understood that the
other parameters are unaltered.

Theorem 2. If Re #>0, Re 8>0, then




10 TILAK RAJ PRABHAKAR

; ‘ . - . -1 _Ha —_— — — ' AY 4
29 o St(x N (s— )5BS pA(s—t) ds=(x—HF**1EL sA(x—D)" ,
(2.10) ﬁ S: (s—D)* Y x—8)P1ES pA(x—s)*ds=(x—t)F*+1EL pA(x—1)* .

For Re ¢, Re >0 and z any complex number

(2.11) F}ﬁ) Sl(l_u)”_luﬁ_lEZ.p(zua)du
0
—_— < (Ao)nZ” 1 1. g _
=& I'(wl'(an+p)n! So(l—u)!‘ tustttldu=Eg p+4(2) 5

interchanging the order of integration and summation and evaluating the Eulerian

integral. The justification for the interchange is provided by Lebesgue’s theorem.

Finally [(2.9) is obtained by putting in (2.11), u= s: , 2=A(x—¢t)*; to prove (2.10)
;, z=A(x—1)".

put u=>—
x.——

8. Results on the operator €(a, 3; p; 2).

Theorem 3. If Re u>—Re B, then operating on L
3.1 I'G(a, B; 0; H)=€(a, B+p; 05 4),
that is, I'G(B)=C(B+p) .

(i) Suppose Re ¢>0. For feL, G(B)f is in L so that I"E(B)f(x) exists in L
and equals
@ S:("_s)""lds S:“‘”“’“Eﬁ.,sl(s—t)af(ndt

::?L” Q_— —Le— B LE? _Ax—1)®
) Saf (’)‘”S,(" S)rN(s— )9 1EL pA(x—1)°ds

= S”(x—t)w-lEz.Wz(x—t)“f(t)dt by (29].

The correctness of the inversion in the order of integration is easily verified by
an application of Fubini's theorem.

(ii) Suppose 0>Re p>—Re f. Since Re (8+)>0, for fin L, €(8+p)f exists
in L. Also by (i), I"*G(8+m)f=C(B)f. As €(B+p)f exists in L, we can write
C(B+pf=I"CB)S.

(iii) Let Re #=0. By case (ii)

E(B+p)=I"""C(B+1)=LT"EBE+D]=IC(H) .
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Theorem 4. If Re #>0 and feL, then for almost all xe(a, b)
(3.2) I"EP) f(x)=CP)I* f (x) .
Since Re #>0, I*f is in L and

GBI f(x)= S (x—u)pLEL, p2(x—10)du S (z‘—;g;:l—f(t)dt

o 1 [ i e
~ T Saf (’)‘”St(x WF—Hu— 1) E8, pA(x—u)*du

= Sz(x—t)ﬁ”""“‘Ez, p+ud(x—1)*f(t)dt  using (2.10)
=C(B+p) f(x)=I"€(B)f(x), by [Theorem 3.

Theorem 4a. If Re <0 and I*f exists in L, then also (3.2) holds.
(i) Suppose Re #<0, let I*f(x)=¢(x). By

I G (R (x)=C(B) [ *9(x) .
But €(B)#(x) exists in L, so that
C(B)P(x)=T"€(B) [ #P(x) ,

that is, (B f (x)=I"C(B) f (x) .
(ii) When Re ¢=0, we write I**&(B)f(x)=E(B)I***f(x)
i.e. I€(B) f (x)=T"'"€(B) [**1 f (x) =C(B) [ [I**' f (x)] .

Theorems 4 and 4a together can be combined in
Theorem 4b. If f and I"f exist in L, p being any complex number, then

I'E(B) F(x)=C(B)[" f(x) ,
that is, the operator &(B) commutes with I*.
Theorem 5. For Re 8, Re B’>0, operating on L
(3.3 C(a, B; p; NE&(a, B/; 0'; A=C(a, B+p; 0+0'; 2) .
For feL and x¢(a, b)
(3.4) €(ax, B; 0; DC(a, B’; p’; 2) f(x)
= S (x— ) B2 A (x—u)du g" (wU—1)F'E2’ 5 (u—t) (1)t

= S F@)dt S (K— )P~ Hu— ) E A (x— )" EY. g A(u— 1)t ,
e ¢

reversing the order of integration which is easily justified.

11
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X—U
—t’

Putting v= the inner integral is

(3.5) (x—t>ﬁ+ﬂ'-1S’vﬁ-1<1—v)ﬁ'-1Ez.,a{z<x—t}ava}Ez'.w{l(x—t)a(%v)a}dv
0

1 o _(O)m(0)a A (g — ) imEm (2 - "~
— — )8+~ am+8—-1(1 . 5y)an+pg’—1
(x t) mz=:0 n§=::) F(am—{—,@)l"(an—}—ﬁ’)m'nl S v (1 v) dv

(e pyptp—1 2 __AME—=) ™ B (0)m—n(0)n
=(x—p)pre 12—1"0 I'(am+ B+ B’) n=0 (m—n)in!

=(x )P EC L A(x—1)" .

‘The change in the order of integration and summation in (3.5) is not difficult to
justify.
Theorem 6. For Re 8>0 and feL,

@O I i 0 D@ =f)+aod || - BEdGe—tr
By [Theorem 3
[96(e, §; 05 ) F () ="C(a, 1; p; 2)f (x)= g:Ez.lx(x—t)afa)dt :
so that

3.7 Gla, 8; 0; z)f(x>=zﬁ7‘i—§’ E? A(x—t) ()t

=]8 l:f(x)—l—apl S” (x—1)*1EST A(x—1)= f(t)dt] )

which at once gives the desired result.

4. The integral equation (1.2).

We apply the results of the previous section to solve in [Theorem 8, the
integral equation under a condition which is slightly more restrictive than
the necessary condition of

Theorem 7. The existence of I8g in L is a necessary condition for the in-
tegral equation

1) §“<x——t)ﬁ-1Ez A= f B dt=g(x) ,

to admit a solution f in L.
Suppose (4.1) has a solution feL. From (3.7), the equation can be written as
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(4.2) I I:f(x) +ap2 S (x—B)* 1 ES 1, A (x—1)" f(t)dt:l —°g(x) .

For feL, the integral in is easily seen by to exist in L, since
Re a>0. Consequently I8¢ exists in L.
Theorem 8. If Re?”>Re >0 and I7g exists in L, then the integral equation

(4.3) 3 (x—1)P1EL A (x—1) f (DAt =28() ,

for a<x<b, possesses a solution (rather a class of equivalent solutions) f in L
given by

(4.4) f(x)= S:‘(x—t)f“ﬁ*E;;{’r_ pAx—1) I g(t)dt .
In our operator notation, and are respectively

(4.5) G(a, B; p; Df(D=8x) ,

(4.6) Cla, 7—B; —p; HIT7Zx)=f(x) .

Substituting for f(x) from [4.6), the left hand member of hecomes

4.7 €(e, B; p; N€(a, T—B; —p; HIT7&(x)
=C(a, 7; 0; NI7g(x) by
=g(x) ,

since it is easily verified that €(a, 7; 0; 2)¢(x)=1"d(x).
Corollary 8.1. Under the conditions of the above theorem (4.3) and (4.4) imply
each other.

It is enough to show that
Cla, 7—B; —p; DI7€(a, B; 0; A f(x)=f(x) .
But by the left hand member is
| Gler, T—B; —p; DE(a, B; o3 DI (@) ,

so that the results follows as in [(4.7).
Remark 1. When a=1, ¢=0 and 7 is a positive integer we get the trans-
form pair by Wimp (13) obtained by the use of the Laplace transform.

Remark 2. For ¢=0 and positive integral values of 7, can
also be proved by the method of the Laplace transform, using [2.5).

5. The infegral equation (1.4).

This integral equation can be discussed by a use of the fractional integra-
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tion operator J* defined by

6.1 Jof ()= S" ‘L;%_%’(t)dt .

In fact it can be verified that all the results analogous to theorems 2-6 hold for
&*(a, B; p; 7). Plainly J* plays the same role in this discussion as I* does for that
of &(a, 8; p; 2). The existence of /8¢ is a necessary whereas the existence of
J7g for Re7>Re B is a sufficient condition for (1.4) to admit a unique solution.

Corresponding to [Corollary 8.1 we have
Theorem 9. If Re7”>Re >0, feL and J7g exists in L, then

52 || =0 B2 patt—arr =)

6.3 S"(t—x)f—ﬁ-lE;f,_pz(t—xwf-fg(t)dt:"f(x) ,

imply each other.

For a=1, and by further specialization of parameters, reduces to the
integral equations solved by Saxena (9], [10]

Remark. The results can be extended to the case b=oo provided the func-
tions f and g are suitably restricted.

I express my gratitude to Professor U. N. Singh for his encouragement and
interest in this work.
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