A NOTE ON MILDLY PARACOMPACT SPACES

By

ASHA RANI SINGAL

(Received June 28, 1969)

A space X is said to be mildly-paracompact if every countable, regular open covering (that is a covering consisting of regularly open sets) of X has a locally-finite open refinement. This concept has been introduced and studied in [3]. In the present note, we propose to obtain some characterisations of mildly-paracompact spaces similar to the characterisations of countably-paracompact spaces obtained in [2].

Definitions. Let \mathscr{A} and \mathscr{B} be two families of subsets of a space X. Then \mathscr{A} is said to be *linearly cushioned* in \mathscr{B} with cushion map $f: \mathscr{A} \to \mathscr{B}$ if there is a linear ordering '<' on \mathscr{A} such that for every subfamily \mathscr{A}' of \mathscr{A} for which there exists an $A \in \mathscr{A}$ such that A' < A for all $A' \in \mathscr{A}'$ we have

$$\overline{\cup \{A': A' \in \mathscr{A}'\}} \subseteq \cup \{f(A'): A' \in \mathscr{A}'\}.$$

 \mathscr{A} is said to be order cushioned in \mathscr{B} with cushion map $f: \mathscr{A} \to \mathscr{B}$ if there is a well ordering '<' on \mathscr{A} such that for every subfamily \mathscr{A}' of \mathscr{A} and an $A \in \mathscr{A}$ such that A' < A for all $A' \in \mathscr{A}'$, we have

 $Cl_{A}[\cup \{A' \cap A : A' \in \mathscr{A}'\}] \subseteq \cup \{f(A') : A' \in \mathscr{A}'\}.$

The above definition of linearly-cushioned is due to J. E. Vaughan [6] and of order-cushioned has been discussed in [4]. The definition of linearly-cushioned with respect to a well ordering is due to H. Tamano [5].

We shall now give some definitions due to J.R. Boone [1]. A family \mathscr{A} of subsets of a space is said to be *compact-finite* (resp. *cs-finite*) if every compact set (resp. every set which is closure of a convergent sequence) intersects finitely many members of \mathscr{A} . \mathscr{A} is said to be *strongly compact-finite* (resp. *strongly cs-finite*) if the family of closures of members of \mathscr{A} is compact-finite (resp. *cs-finite*) if the family \mathscr{K} of subsets of a space X is said to be an *F-hereditarycollection* if it is a covering of X and if for every closed subset F of X, $F \cap K \in \mathscr{K}$ for all $K \in \mathscr{K}$. A family \mathscr{A} of subsets of X is said to be \mathscr{K} -finite if every member of \mathscr{K} intersects finitely many members of \mathscr{A} . A space X is said to have W-weak topology with respect to an F-hereditary collection \mathscr{K} if a subset U of X is open iff $U \cap K$ is open in K for each $K \in \mathscr{K}$.

ASHA RANI SINGAL

Theorem 1. For a normal space X, the following are equivalent:

(a) X is mildly-paracompact.

(b) Every countable, regular open covering of X has an open cushioned refinement.

(c) Every countable, regular open covering of X has a σ -cushioned open refinement.

(d) Every countable, regular open covering of X has a linearly-cushioned, open refinement.

(e) Every countable, regular open covering of X has an order cushioned open refinement.

Proof. (a) \Longrightarrow (c). Let $\mathscr{G} = \{G_i : i \in N\}$ be a countable regular open covering of X. Since X is mildly-paracompact, therefore there exists a locally-finite open refinement $\mathscr{H} = \{H_{\alpha} : \alpha \in \Lambda\}$ of \mathscr{G} . Since X is normal, \mathscr{H} is shrinkable, that is, there exists another locally-finite open covering $\mathscr{H}^* = \{H_{\alpha}^* : \alpha \in \Lambda\}$ of X such that $\overline{H_{\alpha}^*} \subseteq H_{\alpha}$ for all $\alpha \in \Lambda$. It is easy to verify now, that \mathscr{H}^* is an open cushioned refinement of \mathscr{G} .

(b) \Longrightarrow (c) is obvious.

(c) \Longrightarrow (d). It is easy to verify that every σ -cushioned refinement is linearlycushioned. Hence the implication.

 $(d) \Longrightarrow (e).$ Let \mathscr{G} be any countable, regular open covering of X. There exists a linearly-cushioned, open refinement \mathscr{H} of \mathscr{G} with cushion map $f: \mathscr{H} \to \mathscr{G}$. It may be assumed without any loss of generality that the ordering on \mathscr{H} is a well ordering (cf. [6], Theorem 1). Let \mathscr{H}' be any subfamily of \mathscr{H} and let $H \in \mathscr{H}$ such that H' < H for all $H' \in \mathscr{H}'$. Then, $Cl_{H}[\cup \{H' \cap H : H' \in \mathscr{H}'\}] = Cl_{H}[(\cup \{H' : H' \in \mathscr{H}'\}) \cap H] = \overline{\cup \{H' : H' \in \mathscr{H}'\}} \cap H \subseteq \overline{\cup \{H' : H' \in \mathscr{H}'\}} \subseteq \cup \{f(H') : H' \in \mathscr{H}'\}$. This shows that \mathscr{H} is order cushioned in \mathscr{G} .

(e) \Longrightarrow (a). Let \mathscr{A} be any countable, regular open covering of X. Let \mathscr{B} be an open, order cushioned refinement of \mathscr{A} with cushion map $f: \mathscr{B} \to \mathscr{A}$. We shall construct a cushioned refinement of \mathscr{A} . Let $C_B = B \sim \bigcup \{B' : B' < B\}$ for each $B \in \mathscr{B}$. Let $\mathscr{C} = \{C_B : B \in \mathscr{B}\}$. Let $g: \mathscr{C} \to \mathscr{A}$ be a mapping defined as $g(C_B) = f(B)$. We shall show that \mathscr{C} is cushioned in \mathscr{A} with cushion map g. If $x \in X$, then $x \in C_B$ where B is the smallest $B \in \mathscr{B}$ containing x. This shows that \mathscr{C} is a refinement of \mathscr{A} . To prove that \mathscr{C} is cushioned in \mathscr{A} , let \mathscr{C}' be any subfamily of \mathscr{C} and let $y \in \bigcup \{C_B : C_B \in \mathscr{C}'\}$. Since \mathscr{B} is a covering of x, there exists $B \in \mathscr{B}$ such that $y \in B$. Then $B \cap C_{B'} = \phi$ for all B' > B. If now $\mathscr{C}'' = \{C_{B'} : B' < B, C_{B'} \in \mathscr{C}'\}$, it can be easily verified that $y \in \bigcup \{C_{B'} : C_{B'} \in \mathscr{C}''\}$.

2

A NOTE ON MILDLY PARACOMPACT SPACES

Let $\mathscr{B}'' = \{B' \in \mathscr{B} : C_{B'} \in \mathscr{C}''\}$. Then B' < B for all $B' \in \mathscr{B}''$. Therefore, we have,

 $Cl_B[(\cup \{B': B' < B, B' \in \mathscr{B}''\}) \cap B] = Cl_B[\cup \{B' \cap B: B' \in \mathscr{B}''\}] \subseteq \cup \{f(B'): B' \in \mathscr{B}''\} = \cup \{g(C_{B'}): C_{B'} \in \mathscr{C}''\} \subseteq \cup \{g(C_{B'}): C_{B'} \in \mathscr{C}'\}.$ Since B is an open set, therefore we have,

 $Cl_B[(\cup \{B' : B' \in \mathscr{B}''\}) \cap B] = \overline{\cup \{B' : B' \in \mathscr{B}''\}} \cap B. \text{ Now, } y \in B \text{ and } y \in \overline{\cup \{C_{B'} : C_{B'} \in \mathscr{C}''\}} \subseteq \overline{\cup \{B' : B' \in \mathscr{B}''\}}. \text{ Thus } y \in \cup \{g(C_{B'}) : C_{B'} \in \mathscr{C}'\} \text{ and hence } \mathscr{C} \text{ is a cushioned refinement of } \mathscr{A}. \text{ Therefore } X \text{ is mildly-paracompact (cf. [3] Theorem 1.10. (b)).}$

Theorem 2. For a normal space X, the following are equivalent:

(a) X is mildly-paracompact.

(b) Every countable, regular open covering of X has a strongly compactfinite, open refinement.

(c) Every countable, regular open covering of X has a compact-finite, open refinement.

(d) Every countable, regular open covering of X has a strongly cs-finite open refinement.

(e) Every countable, regular open covering of X has a cs-finite open refinement.

Proof. (a) \Longrightarrow (b). Let \mathscr{G} be any countable, regular open covering of X. Since X is mildly-paracompact, there exists a locally-finite, open refinement \mathscr{H} of \mathscr{G} . Then the family of closures of members of \mathscr{H} is locally-finite. It is easily verified that every locally-finite family is compact-finite. This means that \mathscr{H} is strongly compact-finite.

(b) \Longrightarrow (c). Obvious.

(c) \Longrightarrow (d). Let \mathscr{A} be any countable, regular open covering of X. Then there exists a compact-finite, open refinement $\mathscr{B} = \{B_{\alpha} : \alpha \in \Lambda\}$ of \mathscr{A} . Now, \mathscr{B} being compact-finite is also point-finite. Since X is normal, there exists another open covering $\mathscr{C} = \{C_{\alpha} : \alpha \in \Lambda\}$ of X such that $\overline{C}_{\alpha} \subseteq B_{\alpha}$ for all $\alpha \in \Lambda$. Since \mathscr{B} is compact-finite therefore $\{\overline{C}_{\alpha} : \alpha \in \Lambda\}$ is also compact-finite and hence also cs-finite. Thus \mathscr{C} is a strongly cs-finite open refinement of \mathscr{A} .

(d) \Longrightarrow (e). Obvious.

(e) \Longrightarrow (a). Let \mathscr{A} be any countable, regular open covering of X. Let $\mathscr{B} = \{B_{\alpha} : \alpha \in \Lambda\}$ be cs-finite open refinement of \mathscr{A} . We shall show that \mathscr{B} is point-finite. Let $x \in X$ and let A_x be the closure of the convergent, constant sequence $\langle x \rangle$. Then $x \in A_x$ and therefore since \mathscr{B} is cs-finite, A_x can intersect at most finitely many members of \mathscr{B} . Thus every countable, regular open

3

ASHA RANI SINGAL

covering of X has a point-finite, open refinement and hence X is mildly-paracompact (cf. [3], Theorem 1.6 (c)).

Theorem 3. If a normal space X has W-weak topology with respect to an F-hereditary collection \mathcal{K} and if every countable, regular open covering of X has a \mathcal{K} -finite, closed refinement, then X is mildly-paracompact.

Proof. Since every \mathcal{K} -finite, closed family in such a space is locally-finite (cf. [1], Lemma 2.1), therefore every countable, regular open covering of such a space will have a locally-finite, closed refinement and hence also a countable, locally-finite, closed refinement. Therefore X is mildly-paracompact (cf. [3], Theorem 1.8 (b)).

Corollary 1. If a normal space X has the W-weak topology with respect to F-hereditary collection \mathcal{K} and if every countable, regular open covering of X has a \mathcal{K} -finite, open refinement, then X is mildly-paracompact.

Proof. Let \mathscr{U} be any countable, regular open covering of X. Let $\mathscr{V} = \{V_{\alpha} : \alpha \in \Lambda\}$ be a \mathscr{K} -finite, open refinement of \mathscr{U} . Now \mathscr{V} is \mathscr{K} -finite and X has W-weak topology with respect to \mathscr{K} . Therefore \mathscr{V} is point-finite. Since X is normal, there exists an open covering $\mathscr{W} = \{W_{\alpha} : \alpha \in \Lambda\}$ of \mathscr{V} such that $\overline{W}_{\alpha} \subseteq V_{\alpha}$ for each α . Then $\{\overline{W}_{\alpha} : \alpha \in \Lambda\}$ is a \mathscr{K} -finite, closed refinement of \mathscr{U} and hence X is mildly-paracompact by the above theorem.

Corollary 2. A normal, k space is mildly-paracompact iff every countable, regular open covering of X has a compact finite, closed refinement.

Proof. Only the 'if' part need be proved. Since X is a k-space, therefore X has W-weak topology with respect to the F-hereditary collection of all compact sets and therefore every compact finite, closed family is locally-finite. The result now follows from the above theorem.

Corollary 3. A normal, sequential space is mildly-paracompact iff every countable, regular open covering of X has a cs-finite, closed refinement.

Proof. To prove the 'if' part, we need only observe that a space is a sequential space iff it has W-weak-topology with respect to the F-hereditary collection of all sets which are closures of convergent sequences in X.

Theorem 4. A k-space is mildly-paracompact iff every countable, regular open covering of X has a strongly compact-finite open refinement.

Proof. Only the 'if' part need be proved. Let \mathscr{A} be any countable, regular open covering of X. Then there exists a strongly compact-finite, open refinement \mathscr{B} of \mathscr{A} . Since X is a k-space, it has W-weak topology with respect to the F-hereditary collection of all compact subsets of X. Therefore, the family of closures of members of \mathscr{B} being compact-finite, is locally-finite. Hence \mathscr{B}

4

A NOTE ON MILDLY PARACOMPACT SPACES

is a locally-finite open refinement of \mathcal{A} and X is therefore mildly-paracompact.

Theorem 5. A locally-compact space X is mildly-paracompact iff every countable, regular open covering of X has a compact-finite open refinement.

Proof. Every compact-finite family in a locally-compact space is locally-finite.

Theorem 6. A sequential space is mildly-paracompact iff every countable, regular open covering of X has a strongly-cs-finite, open refinement.

Proof. The 'only if' part is obvious. To prove the 'if' part, let \mathscr{A} be any countable, regular open covering of X. Let \mathscr{B} be a strongly cs-finite, open refinement of \mathscr{A} . Since X is sequential, it has W-weak topology with respect to the F-hereditary collection of all closures of convergent sequences. Therefore the family of closures of members of \mathscr{B} is locally-finite and hence \mathscr{B} is a locally-finite, open refinement of \mathscr{A} . This proves that X is mildly-compact.

Theorem 7. A first-axiom space is mildly-paracompact iff every countable, regular open covering of X has a cs-finite, open refinement.

Proof. Every cs-finite family in a first-axiom space is locally-finite (cf. [1], Lemma 3.9).

The author wishes to express her gratitude to Dr. M. K. Singal for his encouragement throughout the preparation of this note.

REFERENCES

- [1] J.R. Boone: Some characterisations of paracompactness in k-spaces. To appear.
- [2] Asha Rani Singal: On countably-paracompact spaces. To appear.
- [3] M.K. Singal and Shashi Prabha Arya: On mildly-paracompact spaces. Bull. Aust. Math. Soc. 4 (1971), 273-277.
- [4] ____: A note on order paracompactness. Annales de la Société Scientifique de Bruxelles, 84 (1970), 21-35.
- [5] H. Tamano: A characterisation of paracompactness. To appear.
- [6] J.E. Vaughan: Linearly ordered collections and paracompactness. To appear.

Janki Devi Mahavidyalaya, Poorvi Marg, New Delhi. India. Meerut University, Meerut, India