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A space $X$ is said to be mildly-paracompact if every countable, regular oPen
covering (that is a covering consisting of regularly open sets) of $X$ has a local-
ly-finite open refinement. This concept has been introduced and studied in [3].

In the present note, we Propose to obtain some characterisations of $mildly- para\leftarrow$

compact spaces similar to the characterisations of countably-paracompact spaces.
obtained in [2].

Deflnitions. Let $\mathscr{A}$ and $\mathcal{B}$ be two families of subsets of a space $X$. Then
$\ovalbox{\tt\small REJECT}$ is said to be linearly cushioned in $\mathcal{B}$ with cushion map $f:\mathscr{A}\rightarrow \mathcal{B}$ if
there is a linear ordering $‘<$ on $\ovalbox{\tt\small REJECT}$ such that for every subfamily.$\ovalbox{\tt\small REJECT}^{\prime}$ of $\llcorner \mathscr{A}^{\nu}$

for which there exists an $Ae_{c}rr$ such that $A^{\prime}<A$ for all $A^{\prime}e\ovalbox{\tt\small REJECT}$ we have

$\cup\{A^{\prime} : A^{\prime}e\mathscr{A}^{\prime}\}\subseteq\cup\{f(A^{\prime}) : A^{\prime}e\mathscr{A}^{\prime}\}$ .
$\mathscr{A}$ is said to be order cushioned in ta with cushion map $f:\mathscr{A}\rightarrow \mathcal{B}$ if there
is a well ordering $‘<$ on $\mathscr{A}$ such that for every subfamily $\mathscr{A}^{\prime}$ of $\mathscr{A}$ and an
$A\in \mathscr{A}$ such that $A^{\prime}<A$ for all $A^{\prime}e\ovalbox{\tt\small REJECT}^{\prime}$ , we have

$Cl_{A}[\cup\{A^{\prime}\cap A : A^{\prime}e\ovalbox{\tt\small REJECT}^{\prime}\}]\subseteq\cup\{f(A^{\prime}) : A^{\prime}e\ovalbox{\tt\small REJECT}^{\prime}\}$ .
The above definition of linearly-cushioned is due to J. E. Vaughan [6] and.

of order-cushioned has been discussed in [4]. The definition of linearly-cushioned
with respect to a well ordering is due to H. Tamano [5].

We shall now give some definitions due to J.R. Boone [1]. A family $\mathscr{A}$ of
subsets of a space is said to be compact.finite(resp. cs-finite) if every compact

set (resp. every set which is closure of a convergent sequence) intersects finitely
many members of.-SY. $\mathscr{A}$ is said to be strongly compact.finite(resp. strongly $\cdot$

cs-finite) if the family of closures of members of $\mathscr{A}$ is compact-finite (resP.

cs-finite). $A$ family $\ovalbox{\tt\small REJECT}^{\prime}$ of subsets of a space $X$ is said to be an F-hereditary-
collection if it is a covering of $X$ and if for every closed subset $F$ of $X,$ $F\cap Ke\ovalbox{\tt\small REJECT}^{-}$

for all $Ke\ovalbox{\tt\small REJECT}^{\nearrow}$ . A family $\ovalbox{\tt\small REJECT}$ of subsets of $X$ is said to be $\ovalbox{\tt\small REJECT}^{\prime}- finite$ if every
member of $\ovalbox{\tt\small REJECT}^{\sim}$ intersects finitely many members of $\mathscr{A}$ . A space $X$ is said
to have W-weak topology with respect to an F-hereditary collection $\ovalbox{\tt\small REJECT}^{\prime}$ if a
subset $U$ of $X$ is oPen iff $U\cap K$ is open in $K$ for each $ Ke\ovalbox{\tt\small REJECT}\rightarrow$ .
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Theorem 1. For a normal space $X$, the following are equivalent:
(a) $X$ is mildly-paracompact.
(b) Every countable, regular open covering of $X$ has an open cushioned re-

finement.
(c) Every countable, regular open covering of $X$ has a $\sigma$-cushioned open re-

finement.
(d) Every countable, regular open covering of $X$ has a linearly $\cdot$ cushioned,

open refinement.
(e) Every countable, regular open covering of $X$ has an order cushioned open

refinement.
Proof. $(a)\Rightarrow(c)$ . Let $\mathcal{G}=\{G_{i} : ieN\}$ be a countable regular open covering

of $X$. Since $X$ is mildly-paracompact, therefore there exists a locally-finite open

refinement $\ovalbox{\tt\small REJECT}=\{H_{\alpha} : \alpha e\Lambda\}$ of $\mathcal{G}$ . Since $X$ is normal, $\mathscr{G}$ is shrinkable, that
is, there exists another locally-finite open covering $\mathscr{G}^{*}=\{H_{\alpha}^{*} : \alpha e\Lambda\}$ of $X$ such
that $\overline{H_{\alpha}^{*}}\subseteq H_{\alpha}$ for all $\alpha e\Lambda$ . It is easy to verify now, that $\mathscr{G}^{*}$ is an open

cushioned refinement of $\mathcal{G}$ .
$(b)\Rightarrow(c)$ is obvious.
$(c)\Rightarrow(d)$ . It is easy to verify that every $\sigma$-cushioned refinement is linearly-

cushioned. Hence the implication.
$(d)\Rightarrow(e)$ . Let $\mathcal{G}$ be any countable, regular open covering of $X$. There

exists a linearly-cushioned, open refinement $\mathscr{G}$ of $\mathcal{G}$ with cushion map $ f:\mathscr{G}\rightarrow$

$\mathcal{G}$ . It may be assumed without any loss of generality that the ordering on
$\ovalbox{\tt\small REJECT}$ is a well ordering (cf. [6], Theorem 1). Let $\mathscr{G}^{\prime}$ be any subfamily of $\mathscr{G}$

and let He $\mathscr{G}$ such that $H<H$ for all $H^{\prime}e\mathscr{G}^{\prime}$ . Then, $Cl_{H}[\cup\{H^{\prime}\cap H:He$

$\ovalbox{\tt\small REJECT}^{\prime}\}]=Cl_{H}[(\cup\{H^{\prime} : H^{\prime}e\mathscr{F}\})\cap H]=\overline{\cup\{H}$: $He\mathscr{G}^{\prime}$} $\cap H\subseteq\overline{\cup\{H^{\prime}}$: $He\mathscr{G}$ }
$\cap H\subseteq\overline{\cup\{H}$: $He\mathscr{G}^{\prime}$ } $\subseteq\cup\{f(H^{\prime}):H^{\prime}e\mathscr{G}’\}$ . This shows that $\ovalbox{\tt\small REJECT}$ is order
cushioned in $\mathcal{G}$

$(e)\Rightarrow(a)$ . Let $\mathscr{A}$ be any countable, regular open covering of $X$. Let $\mathcal{B}$

be an open, order cushioned refinement of $\ovalbox{\tt\small REJECT}$ with cushion map $f:\mathcal{B}\rightarrow \mathscr{A}$ .
We shall construct a cushioned refinement of $\mathscr{A}$ . Let $C_{B}=B\sim\cup\{B^{\prime} : B<B\}$

for each Be $\mathcal{B}$ . Let $C=$ {$C_{B}$ : Be $\mathcal{B}$ }. Let $g:C\rightarrow \mathscr{A}$ be a mapping defined
as $g(C_{B})=f(B)$ . We shall show that $C$ is cushioned in $\mathscr{A}$ with cushion map $g$.
If $xeX$, then $xe$ CB where $B$ is the smallest Be $\mathcal{B}$ containing $x$ . This shows
that $C$ is a refinement of $\mathscr{A}$ . To prove that $C$ is cushioned in $\mathscr{A}$ , let $C^{\prime}$

be any subfamily of $C$ and let $ye\overline{\cup\{C_{B}:C_{B}eC^{\prime}\}}$ . Since $\mathcal{B}$ is a covering of
$x$ , there exists Be $\mathcal{B}$ such that $y\in B$ . Then $ B\cap C_{B^{\prime}}=\phi$ for all $B>B$. If now
$C^{\prime\prime}=\{C_{B^{\prime}} : B^{\prime}<B, C_{B^{\prime}}eC^{\prime}\}$ , it can be easily verified that $ye\overline{\cup\{C_{B^{\prime}}}$: $C_{B^{\prime}}eC^{\prime}$}.
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Let $\mathscr{G}’’=\{B^{\prime}e\mathcal{B} : C_{B^{\prime}}eC^{\prime}\}$ . Then $B^{\prime}<B$ for all $B^{\prime}e\mathcal{B}’’$ . Therefore, we
have,

$Cl_{B}[(\cup\{B : B^{\prime}<B, Be\mathcal{B}’\})\cap B]=Cl_{B}[\cup\{B^{\prime}\cap B:Be\mathcal{B}^{\prime\prime}\}]\subseteq\cup\{f(B^{\prime})$ : $Be$
$\mathcal{B}’’\}=U\{g(C_{B^{\prime}}):C_{B^{\prime}}eC^{\prime}I\subseteq\cup\{g(C_{B^{\prime}}):C_{B^{\prime}}eC^{\prime}\}$ . Since $B$ is an open set, there-
fore we have,

$Cl_{B}[(\cup\{B^{\prime} : B^{\prime}e\ovalbox{\tt\small REJECT}^{\prime\prime}\})\cap B]=\overline{\cup\{B^{\prime}}$: $B^{\prime}e\mathcal{B}^{\prime\prime}I\cap B$. Now, $yeB$ and $\gamma e\overline{\cup\{C_{B^{\prime}}}$:
$\overline{C_{B^{\prime}}eC^{\prime\prime}\}}\subseteq\overline{\cup\{B^{\prime}}$: $Be\mathcal{B}^{\prime\prime}$}. Thus $ye\cup\{g(C_{B^{\prime}}):C_{B^{\prime}}eC^{\prime}\}$ and hence $C$ is a
cushioned refinement of $\mathscr{A}$ . Therefore $X$ is mildly-Paracompact (cf. [3] Theorem
1.10. $(b))$ .

Theorem 2. For a normal space $X$, the following are equivalent:
(a) $X$ is mildly-Paracompact.
(b) Every countable, regular open covering of $X$ has a strongly compact-

finite, open refinement.
(c) Every countable, regular open covering of $X$ has a comPact-finite, open

refinement.
(d) Every countable, regular open covering of $X$ has a strongly $cs$.finite oPen

refinement.
(e) Every countable, regular open covering of $X$ has a cs-finite open refine-

ment.
Proof. $(a)\Rightarrow(b)$ . Let $\mathcal{G}$ be any countable, regular open covering of $X$.

Since $X$ is mildly-Paracompact, there exists a locally-finite, open refinement $\ovalbox{\tt\small REJECT}$

of $\mathcal{G}$ . Then the family of closures of members of $\ovalbox{\tt\small REJECT}$ is locally-finite. It is
easily verified that every locally-finite family is comPact-finite. This means that
$\ovalbox{\tt\small REJECT}$ is strongly compact-finite.

$(b)\Rightarrow(c)$ . Obvious.
$(c)\Rightarrow(d)$ . Let $\mathscr{A}$ be any countable, regular open covering of $X$. Then

there exists a comPact-finite, open refinement $\mathcal{B}=\{B_{\alpha} ; \alpha e\Lambda\}$ of $\mathscr{A}$ . Now, $\mathcal{B}$

being comPact-finite is also Point-finite. Since $X$ is normal, there exists another
open covering $C=\{C_{a} ; \alpha e\Lambda\}$ of $X$ such that $\overline{C}_{\alpha}\subseteq B_{\alpha}$ for all $\alpha\in\Lambda$ . Since $\mathcal{B}$ is
comPact-finite therefore $\{C_{\alpha} : \alpha\in\Lambda\}$ is also compact.finite and hence also cs-finite.
Thus $C$ is a strongly cs-finite open refinement of $\mathscr{A}$ .

$(d)\Rightarrow(e)$ . Obvious.
$(e)\Rightarrow(a)$ . Let $\mathscr{A}$ be any countable, regular open covering $ofX$. Let

$\mathcal{B}=\{B_{\alpha} : \alpha e\Lambda\}$ be cs-finite open refinement of $\ovalbox{\tt\small REJECT}$ . We shall show that $\mathcal{B}$ is
point-finite. Let $xeX$ and let $A_{x}$ be the closure of the convergent, constant
sequence $\langle x\rangle$ . Then $xeA_{x}$ and therefore since $\mathcal{B}$ is cs-finite, $A_{x}$ can intersect
at most finitely many members of $\mathcal{B}$ . Thus every countable, regular open
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covering of $X$ has a Point-finite, open refinement and hence $X$ is mildly-para-
compact (cf. [3], Theorem 1.6 $(c)$).

Theorem 3. If a normal space $X$ has W-weak topology with respect to an
F.hereditary collection $\ovalbox{\tt\small REJECT}^{\prime}$ and if every countable, regular open covering of $X^{-}$

has a $\ovalbox{\tt\small REJECT}^{\prime}- finite$ , closed refinement, then $X$ is mildly-Paracompact.
Proof. Since every $\ovalbox{\tt\small REJECT}- finite$ , closed family in such a space is locally-finite

(cf. [1], Lemma 2.1), therefore every countable, regular open covering of such
a space will have a $1\propto ally- finite$ , closed refinement and hence also a countable,

locally-finite, closed refinement. Therefore $X$ is mildly-Paracompact (cf. [3],.

Theorem 1.8 $(b))$ .
Corollary 1. If a normal space $X$ has the W-weak toPology with respect to

F-hereditary collection $\ovalbox{\tt\small REJECT}^{\nearrow}$ and if every countable, regular open covering of $X^{-}$

has a $\ovalbox{\tt\small REJECT}^{\prime}\cdot finite$ , open refinement, then $X$ is mildly-Paracompact.
Proof. Let $\ovalbox{\tt\small REJECT}^{\prime}$ be any countable, regular open covering of $X$. Let $r=$

$\{V_{a} ; \alpha e\Lambda\}$ be a $\ovalbox{\tt\small REJECT}^{\prime}$-finite, open refinement of Zf’. Now $r$ is $\ovalbox{\tt\small REJECT}$-finite and $X$

has W-weak topology with respect to $\ovalbox{\tt\small REJECT}^{\nearrow}$ . Therefore $\ovalbox{\tt\small REJECT}^{\wedge}$ is Point-finite. Since
$X$ is normal, there exists an open covering $\mathscr{C}^{\nearrow}=\{W_{\alpha} : \alpha\in\Lambda\}$ of $r$ such that
$W_{\alpha}\subseteq V_{\alpha}$ for each $\alpha$ . Then $\{\overline{W}_{\alpha} : \alpha e\Lambda\}$ is a $\ovalbox{\tt\small REJECT}^{\prime}$-finite, closed refinement of $\mathscr{F}$

and hence $X$ is mildly-Paracompact by the above theorem.
Corollary 2. A normal, $k$ space is mildly.paracompact iff every countable,

regular open covering of $X$ has a compact finite, closed refinement.
Proof. Only the ’if’ part need be proved. Since $X$ is a $k$-space, therefore $\cdot$

$X$ has W-weak topology with respect to the F-hereditary collection of all compact

sets and therefore every compact finite, closed family is $1\propto ally- finite$ . The result
now follows from the above theorem.

Corollary 3. A normal, sequential space is mildly-paracompact iff every co-
untable, regular open covering of $X$ has a cs-finite, closed refinement.

Proof. To prove the ’if’ Part, we need only observe that a space is a
sequential space iff it has W-weak-topology with respect to the F-hereditary col-
lection of an sets which are closures of convergent sequences in $X$.

Theorem 4. A $k$-space is $mildly\cdot paracompact$ iff every countable, regular open
covering of $X$ has a strongly compact.finite open refinement.

Proof. Only the ‘if’ part need be proved. Let $\mathscr{A}$ be any countable, regular
open covering of $X$. Then there exists a strongly comPact-finite, open refine–
ment $\mathcal{B}$ of..SV‘. Since $X$ is a $k$-space, it has W-weak topology with respect

to the F-hereditary collection of all compact subsets of $X$. Therefore, the family
of closures of members of $\mathcal{B}$ being compact-finite, is locally-finite. Hence $\mathscr{P}$
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ls a locally-finite open refinement of $\ovalbox{\tt\small REJECT}$ and $X$ is therefore mildly-paracompact.
Theorem 5. A locally-compact space $X$ is mildly-Paracompact iff every counta-

ble, regular open covering of $X$ has a compact.finite open refinement.
Proof. Every comPact-finite family in a locally-compact space is locally-

finite.
Theorem 6. A sequential space is $mildly\cdot paracompact$ iff every countable,

regular open covering of $X$ has a strongly-cs-finite, open refinement.
Proof. The ’only if’ part is obvious. To prove the ’if’ part, let $\mathscr{A}$ be any

countable, regular open covering of $X$. Let $\mathcal{B}$ be a strongly cs-finite, open
refinement of $\mathscr{A}$ . Since $X$ is sequential, it has W-weak topology with respect
to the F-hereditary collection of all closures of convergent sequences. Therefore
the family of closures of members of ta is locally-finite and hence $\mathcal{B}$ is a
locally-finite, open refinement of $\mathscr{A}$ . This proves that X is mildly-compact.

Theorem 7. $A$ first-axiom space is mildly-Paracompact iff every countable,
regular open covering of $X$ has a cs-finite, open refinement.

Proof. Every cs-finite family in a first-axiom space is locally-finite (cf. [1],
Lemma 3.9).

The author wishes to express her gratitude to Dr. M. K. Singal for his en-
couragement throughout the Preparation of this note.
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