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1. Introduction

The following considerations are based upon the semi-linear $\infty int$ of view.
Throughout this Paper a surface means a connected closed 2-submanifold in
Euclidean 3-space $E^{8}$ unless otherwise stated. J. Milnor investigated the $n-$

nected sum of connected orientable closed $3\cdot manifolds$ and its prime decompoei-
tion [71. In 2 of this Paper we will define the isotopy sum of surfaces, substituting
isotopy of $E^{8}$ for homeomorphic sense of Milnor’s definition of connected sum,
and its prime decomposition. The uniqueness of the prime decomposition for
isotopy sum of surfaces is an open problem and seem $t$ complicated. So we
will examine mainly the special case, the surfaces of genus 2. It is the main
Purpose of this Paper to prove the following theorems;

Theorem 1. (existense theorem) Every nontrivial surface has a Prime decom-
$P^{osjtion}$ .

Theorem 2. (special case of uniqueness theorem) For any surface of genus 2,
the prime decomposition is unique up to isomorphism.

Decomposition of a surface is closely related to simple $1ps$ on the surface.
Earlier, Fox [3] and Homma [5] proved the existense of a non-trivial E. or I-
unknotted $1p$ on any nontrivial surface. Recently Waldhausen [131 proved the
uniqueness of the Heegaard splitting of 3-sphere $S^{8}$ . His theorem $(3, 1)$ [13] is
a special case of the uniqueness of prime decomposition for bi-free surfaces. In
7 we will study with surfaces of genus $\geqq 2$ a little. At last we will give two
prime surfaces as examples.

Two surfaces $M$ and $M^{\prime}$ are said to be isomorphic, denoted by $M\approx M^{\prime}$ , if
there is an isotopy of $E$ throwing $M$ onto $M^{\prime}$ . Especially, a trivial surface
means a surface isomorphic to the 2-sphere $S^{2}$ . We denote the isomorphic class
of a surface $M$ by $[M]$ , so $M$ is a representative of $[M]$ . But we will not
distinguish the representative from its isomorphic class unless confusion.

I wish to thank Professor T. Homma for suggesting the problem and many
discussion.
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2. Isotopy sum

For a surface $M$ we use Int $M$ and Ext $M$ to be denote the closures of
bounded and unbounded components, respectively, of $E^{8}-M$. And define Int $M$

$=IntM-M$ and Ext $M=ExtM-M$. Two surfaces $M_{0}$ and $M_{1}$ are said to be
seParated, if there are disjoint 3-balls $B_{0}$ and $B_{1}$ such that $M_{i}\subset\mathring{B}_{i},$ $i=0,1$ .
Equivalently above, there is a 3-ball $B$ such that $M_{0}\subset\mathring{B}$ and $B\subset\mathring{E}xtM_{1}$ (or
$M_{1}\subset B^{o}$ and $B\subset E^{o}xtM_{0})^{1)}$

Deflnition 1. Let $M_{0}$ and $M_{1}$ be separated two surfaces and $B$ be an associated
$3\cdot ball;M_{0}\subset\mathring{B},$ $ B\subset$ Ext $M_{1}$ . Let $h:D^{2}\times I\rightarrow ExtM_{0}\cap ExtM_{1}$ be an embedding of
3-ball such that $h(D\times I)\cap M_{i}=h(D\times i),$ $i=0,1$ , and $h(D\times D\cap\dot{B}=h(D\times 1/2)^{2)}$

We call the surface $M_{0}\# M_{1}$ the isotopy sum of surfaces $M_{0}$ and $M_{1}$ , defined
by

$M_{0}\# M_{1}=M_{0}\cup M_{1}\cup h(\dot{D}\times I)-h(\mathring{D}\times I)$ .
Let note that

$M_{0}\approx[(M_{0}\# M_{1})\cap B]\cup[Int(M_{0}\# M_{1})\cap\dot{B}]=bd[Int(M_{0}\# M_{1})\cap B]$ ,

$ M_{1}\approx[(M_{0}\# M_{1})-B]\cup$ [Int $(M_{0}\# M_{1})\cap\dot{B}$] $=bd[Int(M_{0}\# M_{1})-\mathring{B}]$ .
Obviously $M_{0}\# M_{1}$ does not depend on order of $M_{0}$ and $M_{1}$ ; $M_{0}\# M_{1}\approx M_{1}\# M_{0}$ ,

and the $aae\propto iated$ 3-ball $B$. From the homogeneity of manifold [41 and from
that $h(D\times I)\cap\dot{B}=h(D\times 1/2),$ $M_{0}\# M_{1}$ is independent from the choice of $h$ up to
$i\infty morphism$ . So, the above isotopy sum of surfaces is well defined up to
isomorphism. Hence, $[M_{0}\# M_{1}]=[M_{0}]\#[M_{1}]$ is also well defined. The sum opera-
tion $\#$ is commutative, $ass\propto iative$ and trivial surface serves as identity; $[M]$

$=[M]\#[S^{2}]$ .
We call $M\approx M_{1}\# M_{2}\#\cdots\# M_{k}$ a decomposition of $M$ into factors $M_{j},$ $j=1,$ $\cdots,$

$k$ .
A nontrivial decomposition means a decomposition of which each factor is non
trivial.

Definition 2. A non.trivial surface $M$ is said to be prime, if either $M_{1}$ or
$M_{2}$ is trivial for any decomposition $M\approx M_{1}\# M_{2}$ of M. A $pr\dot{l}me$ decomposition
means a decomposition of which each factor is prime.

1) bd $A$ and $\dot{A}=the$ boundary of $A$ ,
int $A$ and $A^{o}=the$ interior of $A$ , and
cl $A$ and $\overline{A}=the$ closure of $A$ , throughout this paper.

2) $I$ means a closed unit interval; $I=[0,1]$ .
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Lemma $(2, 1)$ . For any decomposition $M\approx M_{1}\# M_{2}$ of $M,$ $g(M)=g(M_{1})+g(M_{2})$ ,
where $g(M)$ is the genus of $M$.

Corollary to Lemma $(2, 1)$ . Any surface of genus 1 is Prime.
$Prfs$ of above are trivial and we drop them.

Proof of Theorem 1. If a nontrivial surface $M$ is non prime, then there
exists a nontrivial decomposition $M\approx M_{1}\# M_{2}$ . And if either $M_{1}$ or $M_{2}$ is non
prime, one can decompose $M$ to $M\approx M_{1}^{\prime}\# M_{2}^{\prime}\# M_{8}^{\prime}$ , and so on. By lemma $(2, 1)$ ,
$g(M)=g(M_{1}^{\prime})+g(M_{g}^{\prime})+g(M_{8}^{\prime})$ . Then from above corollary this $pr\propto ess$ must
terminate after a finite number $<g(M)$ of steps.

Remark. In this Paper we disregard the orientation of surfaces in $E^{\prime}$ .
Considering an oriented 2-submanifold $M$ in $S^{8}$ (ofcourse $M$ is orientable if $M\subset S^{8}$),

the orientation of $M$ is determined by aPpointing one of components of $S^{8}-M$.
Then isomorphism and isotopy sum of surfaces in $S^{8}$ , similarly, could be defined
as in $E^{8}$ . But in this situation we must careful with respect to the position of
two surfaces in $S^{8}$ from which we will construct the isotopy sum of them. That
is, separated condition in $S^{8}$ is defined by adding to the same in $E$ that two
$appo\ddagger nting$ components (with respect to the orientation) of them are set disjoint.
Further, for oriented surfaces $M_{1}$ and $M_{2}$ in oriented closed $3\cdot manifolds$ Ni and
$N_{2}$ , respectively, the sum of them can be also defined by “ relative connected
sum” of 3-manifolds. For more precise, see [131.

3. Simple loops on surfaces.

A $1p$ (a simple closed polygonal curve) $J$ on a surface $M$ is said to be E-
unknotted (I-unknotted), if there exists a Proper 2-disk in Ext $M(IntM)$ which
is bounded by $J^{8)}$ By Dehn’s lemma, if $J\simeq 1$ in Ext $M(IntM)$ then $J$ is an E-
unknotted (I-unknotted) $1p$ . We say $J$ a bi-unknotted $1p$ if both E- and I-
unknotted. And a $1pJ$ is trivial on $M$ if $J\simeq 1$ on $M^{4)}$

Lemma $(3, 1)$ . If a loop $J$ on a surface $M$ is bi-unknotted, then $J\sim O$ on $M^{\$)}$

Proof. From the definition, there are two Proper disks $D_{1}$ and $D_{2}$ in Ext $M$

and Int $M$, respectively, such that $D_{1}=\dot{D}_{2}=J$. $D_{1}\cup D_{2}$ is a polyhedral2-sphere

in $E^{8}$ . Int $(D_{1}\cup D_{2})$ and Ext $(D_{1}\cup D_{2})$ are separated in $E^{8}$ by $(D_{1}\cup D_{2})$ . Since

3) $M$ is proper in $N$ if $\dot{N}\cap M=\dot{M}$.
4) $\simeq$ means homotopic to, ( $\simeq 1$ means null homotopic),
5) $\sim$ means homologue to, ( $\sim 0$ means null homologues),
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$M$ is orientable $J$ has a bi collar neighborhood $V$ on $M$ such that (V, $J$) $\simeq(S^{1}\times I$,
$S^{1}\times 1/2)^{6)}$ $J$ separates $V-J$ into $V_{0}=(S’ \times[0,1/2))$ and $V_{1}=(S^{1}\times(1/2,1$]). We may

assume that $Vo\subset I_{nt}(D_{1}\cup D_{2})$ and $v_{\iota}\subset B_{xt}(D_{1}UD_{2})$ . $Sup\alpha$)$seJ\neq 0$ on $M(i.e$ . $J$

does not separate $M$), then any pair of $\infty intsp_{0}eV_{0}$ and $p_{1}eV_{1}$ are joined by

an arc $A$ on $M$ which does not intersect with $J$. Then $(D_{1}UD_{2})\cap A\neq\phi$, but
$(D\iota\cup D_{l})\cap M=J$. This contradicts to $ J\cap A=\phi$ .

Lemma $(3, 2)$ . For any non-trivial surface $M$, the fdlowing statements are
equivalent;

(1) $M$ is prime, and
(2) any $bi$.unknotted loop on $M$ is trivial on $M$.
Proof. (2) $\rightarrow(1)$ is trivial from the deflnition 1, then we will show only

(1) $\rightarrow(2)$ . $Suppoee$ there is a non-trivial bi-unknotted $1pJ$ on $M$. Then there
exist Proper 2-disks $D_{1}$ and $D_{2}$ in Ext $M$ and Int $M$, respectively, such that
$D_{1}\cap D_{2}=\dot{D}_{1}=\dot{D}_{2}=J$. By lemma $(3, 1)$ $J\sim O$ on $M$. Let $f:D^{2}\times I\rightarrow IntM$ be an
embedding such that $f(D\times 1/2)=D_{2},$ $f(\dot{D}\times l)\subset M$ and $ f(\mathring{D}\times I)\subset IntM\circ$. And let
$M_{1}=bd$ [Int $M-f(D\times f)$ ] $\cap[\mathring{I}nt(D_{1}\cup D_{2})|$ , and $M_{2}=bd$ [Int $M-f(D\times f)$ ] $-M_{1}$ . Since
$J$ is nontrivial on $M$, both surfaces $M_{1}$ and $M_{2}$ are nontrivial. Put Int ($ D_{1}\cup D_{2}\rangle$

$=B^{8}$ . Then $f(D\times I)\cap\dot{B}^{8}=f(D\times 1/2)$ . The conditions of definition 1 are satisfied;
$M\approx M_{1}\# M_{2}$ . Hence $M$ is non prime, and this completes the $prf$ .

Definition 3. Let $L_{1}$ and $L_{2}$ be two $1ps$ on a surface $M$. We may assume
that $(L_{1}\cap L_{2})$ consist of finite number of points and that $L_{1}$ and $L_{2}$ are crossing

each other at each point of $L_{1}\cap L_{2}$ . Let denote the number of points of ($ L_{1}\cap L_{2}\rangle$

by $n(L_{1}, L_{2})$ . A Pair of loops $L_{1}$ and $L_{2}$ are said to be normal on $M$ (or, $\dot{t}n$

normal Position on $M$), if $n(L_{1}, L_{Z})\leqq n(L_{1}, h_{1}(L_{2}))$ for any isotoPy $h_{t}(0\leqq t\leqq 1)$ of
$M^{7)}$ If $L_{1}$ and $L_{2}$ are normal pair of $1ps$ on $M$, then $L_{2}$ and $L_{1}$ are also
normal pair on $M$.

4. Some lemmas

Lemma $(4, 1)$ . For any surface $M$ of genus $n$ , $H_{1}(ExtM)\sim\approx H_{1}(IntM)$ is
isomorphic to free abelian $\Psi ouP$ with $n$ bases.

Proof. From [31, Int $M$ is homeomorphic to the complement of some solid
torus of genus $n$ in $S^{8}$ . And lemma is obtained by the Alexander duality.

6) $\simeq$ means homeomorphic to, or group isomorphism in later.
7) Throughout this paper, isotopy $h(0\leqq t\leqq 1)$ means such that $h=1$ (identity).
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Lemma $(4, 2)$ . Let $N^{8}$ be a compact 3-manifold in $E^{8}$ with connected boun-
dary $\dot{N}=M$ of $genus\geqq 2$. Suppose the homomorphism $i^{*};\pi_{1}(M)\rightarrow\pi_{1}(N)$ , induced
by the inclusion $i:M\rightarrow N$, has a non-trivial kernel. Then there exists a Proper
$2\cdot diskD$ in $N$ with non.trivial boundary $\dot{D}$ on $M$ such that $D\sim O$ on $M$.

Proof. From the $1p$ theorem [81, there exists a nontrivial simple $1p$ on
$M$ which is null homotopic in $N$. By Dehn’s lemma [91 it bounds a Proper 2-disk
$D$ in $N$. If $D\neq 0$ on $M$, we can construct another disk $D^{\prime}$ in $N$ satisfying the
required Properties from $D$.

Corollary $(4, 3)$ . For any surface $M$ of genus $\geqq 2$ , there exists an E- or I-
unknotted non-trivial loop $J$ on $M$ such that $J\sim O$ on $M$.

Corollary $(4, 3)$ is obtained from $(4, 2)$ and that for any surface of genus $\geqq 1$

there is an E- or I- unknotted non-trivial $1p$ on $M[3][5]$ .
Lemma $(4, 4)$ . Let $N^{8}$ be a compact 3-manifold in $E^{8}$ with connected boundary

of genus $n$ . If $\pi_{1}(N)$ is a free group then $N$ is a solid torus of genus $n$ .
$Prf$ of $(4, 4)$ is trivial by induction on genus of the boundary surface from

$(4, 1)$ and $(4, 2)$ .
Lemma $(4, 5)$ . Suppose $h$ is an isotopy of a surface $M$, then there is an isotopy

$H$ of $E^{8}$ which is an extension of $h$ .
Proof. We can decompoee $h$ into a finite number of isotopies of $M$ of which

each factor is suPported by a 2-disk. And extends each isotopy to the isotopy
of $E^{8}$ suPported by a regular $neighborhd$ of a 2-disk. Required $H$ is a $pn$)$duct$

of them.

Lemma $(4, 6)$ . Let $D_{1}$ and $D_{2}$ be proper 2-disks in Ext $M$ (or Int $M$). If $\dot{D}_{1}$

and $\dot{D}_{2}$ are normal on $M$, then there is a proper 2-disk $D_{1}^{\prime}$ in Ext $M$ (or Int $M$)

such that $\dot{D}_{\iota}^{\prime}=\dot{D}_{1}$ and $(D_{1}^{\prime}\cap D_{2})$ consist of 1/2 $n(D_{1},\dot{D}_{2})$ Proper arcs. In the case
that $D_{1}$ and $D_{2}$ are in Int $M$, we can choose $D_{1}^{\prime}isotop\dot{t}C$ to $D_{1}$ in Int $M$ (so, in $E^{l}$)

keeping $M$ fixed.
Proof. We may assume that $D_{1}\cap D_{2}$ consists of a finite number of disjoint

simple $1psL_{1},$ $L_{2},$
$\cdots,$

$L_{k}$ and 1/2 $n(\dot{D}_{1}, D_{2})$ disjoint Proper arcs. One of $1ps$ ,
say $L_{1}$ , must bound a 2-disk $D_{0}$ in $\mathring{D}s$ such that $D_{0}\cap D_{1}=\dot{D}_{0}=L_{1}$ . On the other
hand, there is a 2-disk, say D\’o, in $D_{1}^{o}$ bounded by $L_{1}$ . Let $\hat{D}_{1}^{\prime}=(D_{1}-D_{0}^{\prime})\cup D_{0}$ ,
and deform slightly away from $D_{2}$ . One obtains a Proper 2-disk $D_{1}^{*}$ such that
(1) $D_{1}^{*}=D_{1},$ (2) $1ps$ in $D_{1}^{*}\cap D_{2}$ are some of $L_{2},$ $L,,$ $\cdots,$

$L_{k}$ , and (3) arcs in $DY\cap Dg$
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are the same of $D_{1}\cap D_{2}$ . In the above step, if Ext $(D_{0}\cup D_{0}^{\prime})\supset M$, we will show
that $D_{1}^{*}$ could be taken isotopic to $D_{1}$ in $E^{8}$ keeping $M$ fixed. Let $N=N(Int$

\langle $Do\cup D_{0}^{\prime}$) $;E$ ) be a regular neighborhood of Int $(D_{0}\cup D_{0}^{\prime})$ in $E$ (it is sufficient that
$N$ is a 2-nd derived $neighborhd$ of Int $(D_{0}\cup D_{0}^{\prime})$ in $E^{8}$ for some trianguration
of $E^{8}$ with $M,$ $D_{1},$ $D_{2}$ , etc. subcomplexes). A connected component $\hat{D}_{0}$ of $N\cap D_{2}$

which contains $D_{0}$ is a Proper 2-disk in N. $\hat{D}_{0}$ separates $N$ into two 3-balls $N_{1}$

and $N_{2}$ ; $N_{1}\cup N_{2}=N,$ $N_{1}\cap N_{2}=\hat{D}_{0}$ . Int $(D_{0}\cup D_{0}^{\prime})$ is in either $N_{1}$ or $N_{2},$ $sayinN_{1}$ .
Let $h_{\ell}(0\leqq t\leqq 1)$ be an isotopy of $N$ such that $h_{\ell}|\dot{N}=1$ and $h_{1}[Int(D_{0}\cup D_{0}^{\prime})]\subset N_{2}-\hat{D}_{0}$ .
Extend $h_{t}$ to an isotopy $H_{\ell}(0\leqq t\leqq 1)$ of $E^{8}$ by $H_{\ell}|N=h_{t}$ and $H_{\ell}|E^{8}-N=1$ . Then
$H_{1}(D_{1})$ satisfies the conditions (1) $-(3)$ of the above as $D_{1}^{*}$ . Repeating the above
$pr\propto ess$ , one obtains 2-disk $D_{1}^{\prime}$ such that $D_{1}^{\prime}=D_{1}$ and $D_{1}^{\prime}\cap D_{2}$ contains no $1ps$ .
This completes the $prf$ .

Lemma $(4, 7)$ . Suppose $M\approx M_{1}\# M_{2}$ is a decomposition of $M$, then
$\pi_{1}(ExtM)=\pi_{1}(ExtM_{1})*\pi_{1}(ExtM_{2})$ , and
$\pi_{1}(IntM)=\pi_{1}(IntM_{1})*\pi_{1}(IntM_{2})$ , where $*means$ free product of groups.

$Prf$ of this lemma is trivial from definition 1 and by the van. Kampen theorem.

Deflnition 4. A surface $M$ is said to be E-free (I-free), if $\pi_{1}(ExtM)\pi_{1}(IntM)$

is a free group of $rank>0$ . We say a surface $M$ bi-free if both E. a$nd$ I-free.
$Suppoee$ a surface $M$ of genus 1 is in $S^{8}$ , then the closure of one of compo-

nents of $S^{8}-M$ is a solid torus [11. From this the following lemma is trivial.

Lemma $(4, 8)$ . For any surface $M$ of genus 1, one of the following three
different cases arises;

(1) $M$ is bi-free,
(2) $M$ is I-free and $\pi_{1}(ExtM)\cong a$ knot group $\not\cong Z$, and
(3) $M$ is E-free and $\pi_{1}(IntM)\cong a$ knot group $\sim\neq Z$.

Lemma $(4, 9)$ . Any nonprime surface $M$ of genus 2 fall in one of the fol-
lowing different 6 cases ( $i$ . $e$ . for a non-trivial decomposition $M\approx M_{1}\# M_{2}$ of $M$,

we have the following table by reordering indices).8)

$M_{1}$ $M_{2}$ $\pi_{1}(IntM)$ $\pi_{1}(ExtM)$

(1) bi.free bi.free $Z*K$ $Z*Z$
(2) bi.free E.nonfree $Z*Z$ $Z*K$
(3) bi.free I.nonfree $Z*K$ $Z*Z$
(4) E.nonfree E-nonfree $Z*Z$ $K_{1}*K_{2}$

(5) I.nonfree $I\cdot nonfree$ $K_{1}*K_{2}$ $Z*Z$
(6) E.nonfree $I\cdot nonfree$ $Z*K$ $K^{\prime}*Z$

8) in the table, each of $K,$ $K^{\prime},$ $K$: means any knot group but $Z$ (infinite cyclic).
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Proof. It follows from $(4, 7)$ and $(4, 8)$ and by that any knot group is in-
decomposable with respect to the free product of group[91.

Lemma $(4, 10)$ . Any two bi-free surfaces $M$ and $M^{\prime}$ of genus 1 are isomorphic.

Proof. By $(4, 4)$ Int $M$ is a solid trous of genus 1. Then there is a polygonal

$1pL$ in Int $M$ such that Int $M$ is a regular $neighbrhd$ of $L$ in E. $\pi_{1}(E^{t}-L)$

$\cong\pi_{1}(ExtM)\cong Z$. By Dehn’s lemma $L$ is a trivial knot in $E^{8}$ . Similarly for $M^{\prime}$ ,

there is a $1pL^{\prime}$ of which Int $M^{\prime}$ is a regular $neighbrhd$ in $E^{8}$ . Hence
there exists an isotopy of $E^{8}$ throwing $L$ onto $L^{\prime}$ . From the uniqueness of the
regular $neighkrhds$ this gives an isomorphism of $M$ to $M^{\prime}$ .

By $(4, 10)$ , there may be no confusion if we denote a bi-free surface of genus
1 by $T$. And we also denote $mT\approx T_{1}\# T_{2}\#\cdots\# T_{m}$ , where each $T$: is a surface
isomorphic to $T$.

5. Existence of prime surfaces.

Theorem. (Suzuki) [111 [121. For any integer $n\geqq 1$ , there exists a Prime
surface of genus $n$ .

Suzuki [11] [12] constructed so complicated surfaces in $S^{8}$ which are extension
of Homma’s example[5]. In his Paper Suzuki defined the primeness of the
surfaces in $S^{8}$ by the Property (2) in our lemma $(3, 2)$ . Through the natural
inclusion $n:E\rightarrow S^{8}$ , where $ S^{8}-n(E^{8})=\infty$ is an infinite point of $E^{\prime}$ , primeness

of the surface in $E^{8}$ and in $S^{8}$ are equivalent. We denote the one-point $com$.
pactification of Ext $M$ by $\tilde{E}xtM=S^{8}-n(\mathring{I}ntM)$ for any surface $M$ in $E$ . Here
we will show only the primeness of the Homma’s example $H$ of genus 2.

Example 1. The surface $H$ (in Figure 1) of genus 2 is Prime.
Proof. At first it is easily cheked that $\pi_{1}(IntH)\cong K*K$, where $K$ is a knot

Figure 1. Figure 2.
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grouP of the clover leaf. By $(4, 10)$ we prove $H$ prime if we check that $\pi_{1}(ExtH)$

$\not\cong Z*Z$. It is obvious that $E^{o}xtH\cong E-L$ , where $L$ is a connected linear graph
in Figure 2. Calculdting $\pi_{1}(E^{8}-L)$ by the way of Kinoshita [6], we obtain that;

$\pi_{1}(E^{8}-L)\cong(y_{1},y_{2},y_{8};y_{1}y_{8}y_{1}^{-1}y^{-1}y_{2}y_{8}y_{1}^{-1})$ , and 2-nd Alexander polynomial $\Delta i$
)
$(t)$

$=2t-1$ , where generators $y_{1},$ $y_{2}$ , and $y_{8}$ are as in Figure 2. Hence $\pi_{1}(ExtH)$ is
indecompoeable with respect to free product (then there exists no nontrivial
E-unknotted $1p$ on $H$), and $H$ is prime.

6. Proof of Theorem 2.

Since we have the rough classification of non-prime surfaces of genus 2 by
lemma $(4, 9)$ , then we complete the $prf$ of the $threm$ if we check the 6 cases
in $(4, 9)$ .

$(6, 1)$ For the case (1) in $(4, 9)$ , the theorem follows directly from $(4, 10)$ .
Let $M\approx M_{1}\# M_{2}$ be a non-trivial decompoeition (so, prime decompoeition) of

a given non prime surface $M$ of genus 2 with an $ass\propto iated$ 3-ball $B^{8}$ . $Suppoee$

$M\approx M_{1}^{\prime}\# M_{2}^{\prime}$ is another non-trivial decomposition of $M$ with an $ass\propto iated$ 3-ball
$B^{\prime}$ . By the definition 1, we may assume that $M_{1}=(M\cap B)\cup C,$ $M_{2}=(M-\mathring{B})\cup C$,
$M_{1}^{\prime}=(M\cap B^{\prime})\cup C^{\prime}$ and $M_{t}^{\prime}=(M-\mathring{B}^{\prime})\cap C^{\prime}$ , where $C=\dot{B}\cap IntM$ and $C^{\prime}=\dot{B}^{\prime}\cap IntM$.
Let denote $\dot{B}-\delta=D$ and $B^{\prime}-\delta’=D^{\prime}$ . We may assume also that $D$ and $D^{\prime}$ are
in normal poeition on $M$ and that $(D\cap D^{\prime})$ and $(C\cap C^{\prime})$ have no $1ps$ by $(4, 5)$

and $(4, 6)$ .
$(6, 2)$ For the cases (4) and (5) in $(4, 9)$ . The $prf$ for the case (5) is similar

to one for the case (4). So we will prove only for the case (4). For this case,

we will assert that $\dot{B}\cap\dot{B}^{\prime}=\phi$ . For, if $\dot{B}\cap\dot{B}^{\prime}\neq\phi,$ $D\cap D^{\prime}$ consists of finite union
$\mathcal{J}$ of disioint Proper arcs $J_{1},$ $J_{2},$

$\cdots,$
$J_{k}$ . $\mathcal{J}$ separates $D^{\prime}$ into interior disioint

$R+1$ disks $D_{1}^{\prime},$ $D_{2}^{\prime},$

$\cdots,$
$D_{k+1}^{\prime}$ and bd $\mathcal{J}$ separates $D^{\prime}$ into $2k$ arcs $A_{1}^{\prime},$ $A_{f}^{\prime},$ $\cdots A_{k}^{\prime}$ .

Put two families $\mathcal{D}^{\prime}=\{D_{1}^{\prime}, D_{2}^{\prime}, \cdots, D_{k+1}^{\prime}\}$ and $\mathscr{A}^{\prime}=\{A_{1}^{\prime}, A_{l}^{\prime}, \cdots, A_{2k}^{\prime}\}$ . Then there
must be one disk, say $D_{1}^{\prime}$ , such that $D_{1}^{\prime}nD^{\prime}$ is connected. So, there are arcs
in $\dot{D}_{1}^{\prime}$ , say $J_{1}\subset \mathcal{J}$ and $A_{1}^{\prime}e\mathscr{A}^{\prime}$ , such that $D_{1}^{\prime}=J\cup A_{1}^{\prime},$ $J_{1}\cap A_{1}^{\prime}=j_{\iota}=A_{1}^{\prime}$ and
$(D_{1}^{\prime}-J_{1})\cap D=\phi$ . On the other hand $J_{1}$ separates $D$ into two disks $D_{1}$ and $D_{2}$

such that $D_{1}\cap D_{2}=D_{1}=D_{2}=J_{1},$ $D_{1}\cup D_{2}=D$ and $D_{i}\cap D_{1}^{\prime}=D_{i}nD_{1}^{\prime}=J_{1},$ $i=1,2$ . Put
$A_{i}=D_{:}-J_{1},$ $i=1,2$ . Note that $A_{1}\cup A_{2}=D$ and $A_{1}\cap A_{2}=\dot{A}_{1}=A_{2}$ . $A_{1}^{\prime}\cup A_{\ell},$ $l=1,2$ ,
are simple $1ps$ on either $M_{1}$ or $M_{2}$ , say on $M_{1}$ . $A_{1}^{\prime}\cup A_{i}$ bounds a Proper 2-disk

$\backslash \langle D_{1}^{\prime}\cup D_{i}$) in Ext $M,$ $i=1,2$ . The E-unknotted $1pA_{1}^{\prime}\cup A_{i}$ on E-nonfree surface
$M_{1}$ of genus 1 must bound a 2-disk on $M_{1},$ $i=1,2$ . Then either $A_{1}^{\prime}\cup A_{1}$ or $A_{1}^{\prime}UA_{2}$
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bounds a 2-disk $E^{g}$ on $M_{1}-\mathring{C}(\subset M)$ . This contradicts to the normality of the
pair of $1psD$ and $D^{\prime}$ . Hence $\dot{B}\cap\dot{B}^{\prime}=\phi$ . Then $D$‘ is in either $(M_{1}-\delta)$ or
$\langle M_{2}-\delta$ ). From that $D^{\prime}$ is non-trivial on $M,$ $D^{\prime}$ is isotopic to $D$ on $M$. Hence
$M_{1}\approx M_{\dot{l}}^{\prime}$ and $M_{2}\sim M_{\dot{f}}^{\prime},$ $i\neq j,$ $i,j=1,2$ .

$(6, 3)$ For the cases (2) and (6) in $(4, 9)$ . We may assume that $M_{1}$ and $M_{1}^{\prime}$

are E-free and $M_{2}$ and $M_{2}^{\prime}$ are E-nonfree by $(4, 8)$ and $(4, 9)$ . If $ DnD^{\prime}=\phi$ , the
theorem follows from the same as in $(6, 2)$ . So, $suppoee$ that $D$ and $D^{\prime}$ are in
normal poeition on $M$ and $D\cap D^{\prime}$ contains only finite number $\neq 0$ of Proper arcs.
Since $M_{1}$ is E-free of genus 1, there is an unique Proper 2-disk $E_{0}$ in Ext $M_{1}$ ,

up to isotopy of Ext $M_{1}$ , such that $\dot{E}_{0}\subset M_{1}-\mathring{C}$ and $\dot{E}_{0}\# 0$ an $M_{1}$ . We may

assume also that $ E_{0}\cap D=\phi$ and $\dot{E}_{0}$ and $D^{\prime}$ are in normal poeition on $M$. Under
this condition we will prove next;

$(6, 4)$ $ E_{0}\cap D^{\prime}=\phi$ .
For, if $ E_{0}\cap D^{\prime}\neq\phi$ , we may assume that $E_{0}\cap D^{\prime}$ contains only a finite number

of Proper arcs by $(4, 6)$ . Let $N_{0}=N$($E_{0}$ ; Ext $M$) be a small regular $neighkrhd$

of $E_{0}$ in Ext $M$ such that $N_{0}\cap M=\dot{N}_{0}\cap(M_{1}-\mathring{C})\cong(S’ \times I)$ is a regular $neighborhd$

of $\dot{E}_{0}$ in M. $\overline{(\dot{N}_{0}-M)}$ consists of two isotopic 2-disks $F_{1}$ and $F_{2}$ in $ExtM$.
$(F_{i}, F_{i}\cap D^{\prime})\cong(E_{0}, E_{0}\cap D^{\prime})$ . Then $D^{\prime}\cap(F_{1}\cup F_{2})$ consists of finite union $\ovalbox{\tt\small REJECT}^{\prime}=(K_{1}\cup$

$K_{2}\cup\cdots\cup K_{2t})$ of disjoint $2r$ arcs. Let $Q=bd(IntMUN_{0})$ , then $Q\approx M_{2}$ . $\ovalbox{\tt\small REJECT}^{\prime}$

separates $D^{\prime}$ into a family $\mathcal{D}^{\prime\prime}=\{D_{1}^{\prime\prime}, D_{2}^{\prime}’, \cdots, D_{2r+1}^{\prime\prime}\}$ of interior disjoint $2r+1$

disks. And $bd\ovalbox{\tt\small REJECT}^{\nearrow}$ separates $D^{\prime}$ into a family $\Psi^{\prime\prime}=\{A_{1}^{\prime\prime}, A_{s}^{\prime\prime}, \cdots, A_{r}^{\prime\prime}\}$ of arcs.
Then there must be one disk and two arcs as in $(6, 2)$ , say $D_{1}^{\prime\prime}e\mathcal{D}^{\prime\prime},$ $K_{1}\subset\ovalbox{\tt\small REJECT}^{\prime}$

and $A_{1}^{\prime\prime}e\ovalbox{\tt\small REJECT}^{\prime\prime}$ such that $D_{1}^{\prime\prime}=K_{1}\cup A_{1}^{\prime\prime}$ and $K_{1}\cap A_{1}^{\prime\prime}=\dot{K}_{1}=A_{1}^{\prime\prime}$ . $K_{1}$ is in either $F_{1}$

or $p_{2}$ , say in $F_{1}$ . Obviously, $D_{1}^{\prime\prime}$ is a Proper disk in Ext $Q$ , then E-unknotted
$1pD_{1}^{\prime\prime}=K_{1}\cup A_{1}^{\prime\prime}$ must bound a 2-disk $U_{1}$ on $Q$ . If $ U_{1}\not\supset F_{2}\circ$ , it contradicts to
that the pair of $1psD^{J}$ and $\dot{E}_{0}$ are normal on $M$. Then $\mathring{U}_{1}\supset F_{2}$ . Hence there
is a disk, say $D_{2}^{\prime\prime}$ , in $\mathcal{D}^{\prime\prime}$ such that $D_{2}^{\prime\prime}\subset N_{0}$ and $D_{2}^{\prime\prime}\cap F:=K_{i}\subset\ovalbox{\tt\small REJECT}^{\prime},$ $i=1,2$ .
And there exists a disk $D^{\prime\prime}e\mathcal{D}^{\prime\prime}$ Proper in Ext $Q$ such that $D^{\prime\prime}\cap F_{2}=D_{8}^{\prime\prime}\cap F_{2}$

$\supset K_{2}$ . $Di^{\prime}$ must bound a disk $U_{8}$ on $Q$ as $D_{1}^{\prime\prime}$ . Since $D_{1}^{\prime\prime}nD’=\phi,$ $U_{8}\subset\mathring{U}_{1}$ . If
$\dot{D}_{l}^{\prime\prime}=\dot{U}_{3}$ does not intersect with $F_{1}$ , it contradicts to the normality of the pair

of $1psD^{\prime}$ and $\dot{E}_{0}$ in $M$, again. Then there is an arc, say $K_{8}\subset\ovalbox{\tt\small REJECT}^{\prime}$ in $F_{1}nD^{\prime\prime}$ ,

and so on. This contradicts to the finiteness of elements of $\ovalbox{\tt\small REJECT}^{\prime}$ . Hence $(6, 4)$

is proved.

Since $M_{1}^{\prime}$ is E-nonfree of genus 1, Eoc $M_{1}^{\prime}$ . So, we may assume that $N_{0}\cap M$

$=\dot{N}_{0}\cap M\subset(M_{1}^{\prime}-C^{\prime})$ . Hence $\{(M-N_{0})\cup F_{1}\cup F_{2}\}=Q\approx M_{2}\approx M_{2}^{\prime}$ . And it is easily
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checked that an $A_{j}^{\prime}eX^{\prime}$ in $ M_{1}-\delta$ are isotopic relative $D$ on $M_{1}$ . From this
and by the same argument as above for $C$ and $C^{\prime}$ in Int $M$, one obtains that
$M\approx M_{1}^{\prime}$ . This completes the $prf$ of $(6, 3)$ .

$(6, 5)$ It remains the $prf$ of the theorem for the case (3) in $(4, 9)$ . This
is entirely similar to $(6, 3)$ , except the order of the arguments for $D,$ $D^{\prime}$ in
Ext $M$ and $C,$ $C^{\prime}$ in Int $M$. Then the $prf$ is completed.

Corollary $(6, 6)$ . Suppose either $\pi_{1}(ExtM)\cong G_{1}*G_{2}$ , or $\pi_{1}(IntM)\cong G_{8}*G_{4}$ for
a surface $M$, where $G_{i}$ is an indecomposable group with respect to free product
and $G_{i}\not\cong Z,$ $i=1,2,3,4$ . Then the prime decomposition of $M$ is unique up to
isomorphism.

$Prf$ of $(6, 6)$ is the same as $(6, 2)$ .

7. Surfaces of genus $\geqq 2$

Waldhausen proved the uniqueness of the Heegaard-splitting of $3\cdot sphereS^{8}$

[13]. In other words, his theorem [13, $(1, 3)$ 1 asserts that;

Theorem. (Waldhausen). For any bi-free surface $M$ of genus $m>0,$ $M\approx mT^{9\rangle}$

And also the $prfs$ of the theorem [13, $(3, 1)$1 ensure that;

Theorem 3. If $M_{1}\# mT\approx M_{2}\# mT$ for two surfaces $M_{1},$ $M_{2}$ and some integer
$m\geqq 1$ , then $M_{1}\approx M_{2}$ .

Analogous argument as $(6, 2)$ will lead us the next;

Theorem 4. If a surface $M$ has a non-trivial decomposition $ M\approx M_{1}\# M_{2}\#$

$\# M_{m}$ , where each of $\pi_{1}(IntM:)$ (or each of $\pi_{1}(ExtM_{1})$), $i=1,2,\cdots,$ $m$ , is
indecomposable with respect to free product and not infinite cyclic, then the prime
decomposition of $M$ is unique up to isomorphism.

Lemma $(7, 1)$ . Suppose a surface $M$ has a non-trivial decomposition $ M\approx M_{1}\#$

$M_{2}\#\cdots\# M_{k}\#\cdots\# M_{m}$ , where $M_{i}$ is I-nonfree of genus 1 if $1\leqq i\leqq k$ and E-nonfree
of genus ] if $k+1\leqq i\leqq m$ . Let $D_{j},$ $j=1,2,$ $\cdots,$

$k$, be any set of disjoint Proper

2-disks in ExtM such that $\{\dot{D}_{\dot{f}}\}$ are homologicaly independent on M. Then
$bd${$IntM\cup\cup kN$($D_{j}$ ; Ext $M)$}$\approx M_{k+1}\# M_{k+2}\#\cdots\# M_{m}$ , where $N$( $D_{j}$ ; Ext $M$) is a

$j=1$

regular neighborhood of $D_{j}$ in Ext $M,$ $j=1,2,$ $\cdots,$
$k$ .

This lemma $(7, 1)$ is elementally proved by the way used in this PaPer
before. Then from theorems 3, 4 and $(7, 1)$ we will obtain easily that;

9) see $(4, 10)$ .
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Theorem 5. If a surface $M$ has non-trivial decompositions $ M\approx M_{1}\# M_{2}\#\cdots$

$\# M_{m}$ and $M\approx M_{1}^{j}\# M^{\prime},\#\cdots\# M_{m}^{\prime}$ , where $m=g(M)$ is the genus of $M$, then these
two Prime decmpositions of $M$ coincide up to order and isomorphism.

The author guess the next statement which is a generalization of the
theorem (Waldhausen), but yet proved even for $n=2$ .

Conjecture $(7, 2)$ . If both $\pi_{1}(IntM)\cong A_{1}*A_{2}*\cdots*A_{m}$ and $\pi_{1}(ExtM)\cong B_{1}*B_{2}*$

. . $.*B_{m}$ are non-trivial free products for a surface $M$, then if $m=g(M),$ $M$ will
be non prime.

In $(7, 2)$ if $g(M)>m$ , then there is a counter example(Example3).

Example 2. The I-free surface $M_{2}$ (in Figure 3) of genus 2 is prime, by
the following. But the primeness of $M_{2}$ is not given by the way of example

1. $\pi_{1}(ExtM_{2})$ is presented by the form;

$(x_{1}, x_{2}, x_{8} ; x_{2}x_{1}^{-}‘ x_{2}^{-1}x_{1}x_{3}^{-1}x_{1}^{-}‘ x_{2}x_{1}x_{f}^{-}‘ x_{S}x_{1}^{-1}x_{2}x_{1}x_{2}^{-}‘ x_{8}^{-}’)$ ,

where the generators $x_{1},$ $x_{2}$ and $x_{8}$ are represented as in Figure 2. From [10,

Theorem 1], $\pi_{1}(ExtM_{2})$ is indecompoeable respect to free product. Hence $M_{2}$ is
prime and homomorphism $i^{*};$ $\pi_{1}(M_{2})\rightarrow\pi_{1}(ExtM_{2})$ has trivial kernel, where $i^{*}$ is
induced by the inclusion $i:M\rightarrow ExtM_{2}$ .

Example 3. The bi-nonfree surface $M_{8}$ (in Figure 4) of genus 3 is constructed
from $M_{3}$ of example2. From the construction, it is easily checked that $\pi_{1}(ExtM)$

Figure 3. Figure 4.
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$\cong\pi_{1}(IntM,)\cong\pi_{1}(ExtM_{2})*Z$ and $M_{8}$ is prime. Further, it is interest that $\tilde{E}xtM_{8}$

$\cong IntM_{8}$ , where Ext $M_{3}$ is a one-point compactification of Ext $M_{8}$ (see 5). Note
that if the conjecture $(7, 2)$ is true for $n=2$ then there is no prime surface $M$

of genus 2 such that $\tilde{E}$xt $M\cong IntM$.
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