ON SURFACES IN 3-SPACE

By
Yasuyuki Tsukui

(Received September 16, 1970)

1. Introduction

The following considerations are based upon the semi-linear point of view. Throughout this paper a surface means a connected closed 2 -submanifold in Euclidean 3 -space E^{8} unless otherwise stated. J. Milnor investigated the connected sum of connected orientable closed 3 -manifolds and its prime decomposition [7]. In 2 of this paper we will define the isotopy sum of surfaces, substituting isotopy of E^{8} for homeomorphic sense of Milnor's definition of connected sum, and its prime decomposition. The uniqueness of the prime decomposition for isotopy sum of surfaces is an open problem and seem too complicated. So we will examine mainly the special case, the surfaces of genus 2 . It is the main purpose of this paper to prove the following theorems;

Theorem 1. (existense theorem) Every nontrivial surface has a prime decomposition.

Theorem 2. (special case of uniqueness theorem) For any surface of genus 2, the prime decomposition is unique up to isomorphism.

Decomposition of a surface is closely related to simple loops on the surface. Earlier, Fox [3] and Homma [5] proved the existense of a non-trivial E- or Iunknotted loop on any nontrivial surface. Recently Waldhausen [13] proved the uniqueness of the Heegaard splitting of 3 -sphere S^{3}. His theorem $(3,1)$ [13] is a special case of the uniqueness of prime decomposition for bi-free surfaces. In 7 we will study with surfaces of genus $\geqq 2$ a little. At last we will give two prime surfaces as examples.

Two surfaces M and M^{\prime} are said to be isomorphic, denoted by $M \approx M^{\prime}$, if there is an isotopy of E^{8} throwing M onto M^{\prime}. Especially, a trivial surface means a surface isomorphic to the 2 -sphere S^{2}. We denote the isomorphic class of a surface M by [M], so M is a representative of $[M]$. But we will not distinguish the representative from its isomorphic class unless confusion.

I wish to thank Professor T. Homma for suggesting the problem and many discussion.

2. Isotopy sum

For a surface M we use $\operatorname{Int} M$ and Ext M to be denote the closures of bounded and unbounded components, respectively, of $E^{3}-M$. And define İnt M $=\operatorname{Int} M-M$ and Ext $M=\operatorname{Ext} M-M$. Two surfaces M_{0} and M_{1} are said to be separated, if there are disjoint 3 -balls B_{0} and B_{1} such that $M_{i} \subset ®_{i}, i=0,1$. Equivalently above, there is a 3-ball B such that $M_{0} \subset \stackrel{\circ}{B}$ and $B \subset \circ$ Ext M_{1} (or $M_{1} \subset ®_{B}$ and $B \subset$ Eixt $\left.^{\circ} M_{0}\right) .{ }^{1)}$

Definition 1. Let M_{0} and M_{1} be separated two surfaces and B be an associated 3-ball; $M_{0} \subset \stackrel{\circ}{B}, B \subset \stackrel{\circ}{E} \operatorname{Ext} M_{1}$. Let $h: D^{2} \times I \longrightarrow E x t M_{0} \cap \operatorname{Ext} M_{1}$ be an embedding of 3-ball such that $h(D \times I) \cap M_{i}=h(D \times i), i=0,1$, and $h(D \times I) \cap \dot{B}=h(D \times 1 / 2) .{ }^{2)}$

We call the surface $M_{0} \# M_{1}$ the isotopy sum of surfaces M_{0} and M_{1}, defined by

$$
M_{0} \# M_{1}=M_{0} \cup M_{1} \cup h(\dot{D} \times I)-h(\dot{D} \times \dot{I}) .
$$

Let note that

$$
\begin{aligned}
& M_{0} \approx\left[\left(M_{0} \# M_{1}\right) \cap B\right] \cup\left[\operatorname{Int}\left(M_{0} \# M_{1}\right) \cap \dot{B}\right]=\mathrm{bd}\left[\operatorname{Int}\left(M_{0} \# M_{1}\right) \cap B\right], \\
& M_{1} \approx\left[\left(M_{0} \# M_{1}\right)-B\right] \cup\left[\operatorname{Int}\left(M_{0} \# M_{1}\right) \cap \dot{B}\right]=\operatorname{bd}\left[\operatorname{Int}\left(M_{0} \# M_{1}\right)-\dot{B}\right] .
\end{aligned}
$$

Obviously $M_{0} \# M_{1}$ does not depend on order of M_{0} and $M_{1} ; M_{0} \# M_{1} \approx M_{1} \# M_{0}$, and the associated 3-ball B. From the homogeneity of manifold [4] and from that $h(D \times I) \cap \dot{B}=h(D \times 1 / 2), M_{0} \# M_{1}$ is independent from the choice of h up to isomorphism. So, the above isotopy sum of surfaces is well defined up to isomorphism. Hence, $\left[M_{0} \# M_{1}\right]=\left[M_{0}\right] \#\left[M_{1}\right]$ is also well defined. The sum operation \# is commutative, associative and trivial surface serves as identity; [M] $=[M]$ \# $\left[S^{2}\right]$.

We call $M \approx M_{1} \# M_{2} \# \cdots \# M_{k}$ a decomposition of M into factors $M_{j}, j=1, \cdots, k$. A nontrivial decomposition means a decomposition of which each factor is non trivial.

Definition 2. A non-trivial surface M is said to be prime, if either M_{1} or M_{2} is trivial for any decomposition $M \approx M_{1} \# M_{2}$ of M. A prime decomposition means a decomposition of which each factor is prime.

[^0]Lemma (2, 1). For any decomposition $M \approx M_{1} \# M_{2}$ of $M, g(M)=g\left(M_{1}\right)+g\left(M_{2}\right)$, where $g(M)$ is the genus of M.

Corollary to Lemma (2,1). Any surface of genus 1 is prime.
Proofs of above are trivial and we drop them.
Proof of Theorem 1. If a nontrivial surface M is non prime, then there exists a nontrivial decomposition $M \approx M_{1} \# M_{2}$. And if either M_{1} or M_{2} is non prime, one can decompose M to $M \approx M_{1}^{\prime} \# M_{2}^{\prime} \# M_{3}^{\prime}$, and so on. By lemma (2,1), $g(M)=g\left(M_{1}^{\prime}\right)+g\left(M_{2}^{\prime}\right)+g\left(M_{3}^{\prime}\right)$. Then from above corollary this process must terminate after a finite number $<g(M)$ of steps.

Remark. In this paper we disregard the orientation of surfaces in E^{8}. Considering an oriented 2 -submanifold M in S^{8} (ofcourse M is orientable if $M \subset S^{8}$), the orientation of M is determined by appointing one of components of $S^{3}-M$. Then isomorphism and isotopy sum of surfaces in S^{3}, similarly, could be defined as in E^{8}. But in this situation we must careful with respect to the position of two surfaces in S^{3} from which we will construct the isotopy sum of them. That is, separated condition in S^{3} is defined by adding to the same in E^{3} that two appointing components (with respect to the orientation) of them are set disjoint. Further, for oriented surfaces M_{1} and M_{2} in oriented closed 3-manifolds N_{1} and N_{2}, respectively, the sum of them can be also defined by "relative connected sum" of 3 -manifolds. For more precise, see [13].

3. Simple loops on surfaces.

A loop (a simple closed polygonal curve) J on a surface M is said to be E unknotted (I-unknotted), if there exists a proper 2-disk in Ext M (Int M) which is bounded by $J .{ }^{8)}$ By Dehn's lemma, if $J \simeq 1$ in Ext M (Int M) then J is an E unknotted (I-unknotted) loop. We say J a bi-unknotted loop if both E - and I unknotted. And a loop J is trivial on M if $J \simeq 1$ on M. ${ }^{4}$

Lemma (3,1). If a loop J on a surface M is bi-unknotted, then $J \sim 0$ on $M .{ }^{5)}$
Proof. From the definition, there are two proper disks D_{1} and D_{2} in Ext M and Int M, respectively, such that $\dot{D}_{1}=\dot{D}_{2}=J . \quad D_{1} \cup D_{2}$ is a polyhedral 2-sphere in E^{3}. $\operatorname{Int}\left(D_{1} \cup D_{2}\right)$ and $\operatorname{Ext}\left(D_{1} \cup D_{2}\right)$ are separated in E^{3} by $\left(D_{1} \cup D_{2}\right)$. Since

[^1]M is orientable J has a bi-collar neighborhood V on M such that $(V, J) \cong\left(S^{1} \times I\right.$, $\left.S^{1} \times 1 / 2\right)$. ${ }^{6)} \quad J$ separates $V-J$ into $V_{0}=\left(S^{1} \times[0,1 / 2)\right)$ and $V_{1}=\left(S^{1} \times(1 / 2,1]\right)$. We may assume that $V_{0} \subset \operatorname{Int}\left(D_{1} \cup D_{2}\right)$ and $V_{1} \subset E ̊ x t\left(D_{1} \cup D_{2}\right)$. Suppose $J \nsim 0$ on M (i.e. J does not separate M), then any pair of points $p_{0} \in V_{0}$ and $p_{1} \in V_{1}$ are joined by an $\operatorname{arc} A$ on M which does not intersect with J. Then $\left(D_{1} \cup D_{2}\right) \cap A \neq \phi$, but $\left(D_{1} \cup D_{2}\right) \cap M=J$. This contradicts to $J \cap A=\phi$.

Lemma (3,2). For any non-trivial surface M, the following statements are equivalent;
(1) M is prime, and
(2) any bi-unknotted loop on M is trivial on M.

Proof. (2) \longrightarrow (1) is trivial from the definition 1 , then we will show only $(1) \longrightarrow(2)$. Suppose there is a non-trivial bi-unknotted loop J on M. Then there exist proper 2 -disks D_{1} and D_{2} in $\operatorname{Ext} M$ and Int M, respectively, such that $D_{1} \cap D_{2}=\dot{D}_{1}=\dot{D}_{2}=J$. By lemma (3,1) J~0 on M. Let $f: D^{2} \times I \longrightarrow$ Int M be an embedding such that $f(D \times 1 / 2)=D_{2}, f(\dot{D} \times I) \subset M$ and $f(\dot{D} \times I) \subset$ Int M. And let $M_{1}=\operatorname{bd}[\operatorname{Int} M-f(D \times i)] \cap\left[\operatorname{Int}\left(D_{1} \cup D_{2}\right)\right]$, and $M_{2}=\operatorname{bd}[\operatorname{Int} M-f(D \times I)]-M_{1}$. Since J is nontrivial on M, both surfaces M_{1} and M_{2} are nontrivial. Put Int ($D_{1} \cup D_{2}$) $=B^{3}$. Then $f(D \times I) \cap \dot{B}^{8}=f(D \times 1 / 2)$. The conditions of definition 1 are satisfied; $M \approx M_{1} \# M_{2}$. Hence M is non prime, and this completes the proof.

Definition 3. Let L_{1} and L_{2} be two loops on a surface M. We may assume that ($L_{1} \cap L_{2}$) consist of finite number of points and that L_{1} and L_{2} are crossing each other at each point of $L_{1} \cap L_{2}$. Let denote the number of points of ($L_{1} \cap L_{2}$) by $n\left(L_{1}, L_{2}\right)$. A pair of loops L_{1} and L_{2} are said to be normal on M (or, in normal position on M), if $n\left(L_{1}, L_{2}\right) \leqq n\left(L_{1}, h_{1}\left(L_{2}\right)\right)$ for any isotopy $h_{t}(0 \leqq t \leqq 1)$ of $M .{ }^{7}$) If L_{1} and L_{2} are normal pair of loops on M, then L_{2} and L_{1} are also normal pair on M.

4. Some lemmas

Lemma (4, 1). For any surface M of genus $n, H_{1}(\operatorname{Ext} M) \cong H_{1}(\operatorname{Int} M)$ is isomorphic to free abelian group with n bases.

Proof. From [3], Int M is homeomorphic to the complement of some solid torus of genus n in S^{3}. And lemma is obtained by the Alexander duality.

[^2]Lemma (4,2). Let N^{3} be a compact 3-manifold in E^{3} with connected boundary $\dot{N}=M$ of genus $\geqq 2$. Suppose the homomorphism $i^{*}: \pi_{1}(M) \longrightarrow \pi_{1}(N)$, induced by the inclusion $i: M \longrightarrow N$, has a non-trivial kernel. Then there exists a proper 2-disk D in N with non-trivial boundary \dot{D} on M such that $D \sim 0$ on M.

Proof. From the loop theorem [8], there exists a nontrivial simple loop on M which is null homotopic in N. By Dehn's lemma [9] it bounds a proper 2-disk D in N. If $D \nsim 0$ on M, we can construct another disk D^{\prime} in N satisfying the required properties from D.

Corollary (4,3). For any surface M of genus $\geqq 2$, there exists an E - or I unknotted non-trivial loop J on M such that $J \sim 0$ on M.

Corollary $(4,3)$ is obtained from $(4,2)$ and that for any surface of genus $\geqq 1$ there is an E - or I - unknotted non-trivial loop on M [3] [5].

Lemma (4, 4). Let N^{8} be a compact 3 -manifold in E^{3} with connected boundary of genus n. If $\pi_{1}(N)$ is a free group then N is a solid torus of genus n.

Proof of (4,4) is trivial by induction on genus of the boundary surface from $(4,1)$ and $(4,2)$.

Lemma (4,5). Suppose h is an isotopy of a surface M, then there is an isotopy H of E^{8} which is an extension of h.

Proof. We can decompose h into a finite number of isotopies of M of which each factor is supported by a 2 -disk. And extends each isotopy to the isotopy of E^{8} supported by a regular neighborhood of a 2 -disk. Required H is a product of them.

Lemma (4, 6). Let D_{1} and D_{2} be proper 2-disks in Ext M (or Int M). If $\dot{D}_{\mathbf{1}}$ and \dot{D}_{2} are normal on M, then there is a proper 2-disk D_{1}^{\prime} in Ext M (or Int M) such that $\dot{D}_{1}^{\prime}=\dot{D}_{1}$ and $\left(D_{1}^{\prime} \cap D_{2}\right)$ consist of $1 / 2 n\left(\dot{D}_{1}, \dot{D}_{2}\right)$ proper arcs. In the case that D_{1} and D_{2} are in $\operatorname{Int} M$, we can choose D_{1}^{\prime} isotopic to D_{1} in Int M (so, in E^{3}) keeping M fixed.

Proof. We may assume that $D_{1} \cap D_{2}$ consists of a finite number of disjoint simple loops $L_{1}, L_{2}, \cdots, L_{k}$ and $1 / 2 n\left(\dot{D}_{1}, \dot{D}_{2}\right)$ disjoint proper arcs. One of loops, say L_{1}, must bound a 2-disk D_{0} in $\stackrel{\circ}{D}_{2}$ such that $D_{0} \cap D_{1}=\dot{D}_{0}=L_{1}$. On the other hand, there is a 2-disk, say D_{0}^{\prime}, in D_{1}° bounded by L_{1}. Let $\hat{D}_{1}^{\prime}=\left(D_{1}-D_{0}^{\prime}\right) \cup D_{0}$, and deform slightly away from D_{2}. One obtains a proper 2 -disk D_{1}^{*} such that (1) $\dot{D}_{1}^{*}=\dot{D}_{1}$, (2) loops in $D_{1}^{*} \cap D_{2}$ are some of $L_{2}, L_{3}, \cdots, L_{k}$, and (3) arcs in $D_{1}^{*} \cap D_{2}$
are the same of $D_{1} \cap D_{2}$. In the above step, if $\operatorname{Ext}\left(D_{0} \cup D_{0}^{\prime}\right) \supset M$, we will show that D_{1}^{*} could be taken isotopic to D_{1} in E^{s} keeping M fixed. Let $N=N$ (Int ($D_{0} \cup D_{0}^{\prime}$) ; E^{3}) be a regular neighborhood of $\operatorname{Int}\left(D_{0} \cup D_{0}^{\prime}\right)$ in E^{8} (it is sufficient that N is a 2-nd derived neighborhood of $\operatorname{Int}\left(D_{0} \cup D_{0}^{\prime}\right)$ in E^{8} for some trianguration of E^{8} with M, D_{1}, D_{2}, etc. subcomplexes). A connected component \hat{D}_{0} of $N \cap D_{2}$ which contains D_{0} is a proper 2-disk in N. \hat{D}_{0} separates N into two 3-balls N_{1} and $N_{2} ; N_{1} \cup N_{2}=N, N_{1} \cap N_{2}=\hat{D}_{0}$. Int ($D_{0} \cup D_{0}^{\prime}$) is in either N_{1} or N_{2}, say in N_{1}. Let $h_{t}(0 \leqq t \leqq 1)$ be an isotopy of N such that $h_{t} \mid \dot{N}=1$ and $h_{1}\left[\operatorname{Int}\left(D_{0} \cup D_{0}^{\prime}\right)\right] \subset N_{2}-\hat{D}_{0}$. Extend h_{t} to an isotopy $H_{t}(0 \leqq t \leqq 1)$ of E^{3} by $H_{t} \mid N=h_{t}$ and $H_{t} \mid E^{3}-N=1$. Then $H_{1}\left(D_{1}\right)$ satisfies the conditions (1)-(3) of the above as D_{1}^{*}. Repeating the above process, one obtains 2-disk D_{1}^{\prime} such that $\dot{D}_{1}^{\prime}=\dot{D}_{1}$ and $D_{1}^{\prime} \cap D_{2}$ contains no loops. This completes the proof.

Lemma (4, 7). Suppose $M \approx M_{1} \# M_{2}$ is a decomposition of M, then

$$
\begin{aligned}
& \pi_{1}(\operatorname{Ext} M)=\pi_{1}\left(\operatorname{Ext} M_{1}\right) * \pi_{1}\left(\operatorname{Ext} M_{2}\right), \text { and } \\
& \pi_{1}(\operatorname{Int} M)=\pi_{1}\left(\operatorname{Int} M_{1}\right) * \pi_{1}\left(\operatorname{Int} M_{2}\right), \text { where } * \text { means free product of groups. }
\end{aligned}
$$

Proof of this lemma is trivial from definition 1 and by the van. Kampen theorem.
Definition 4. A surface M is said to be E-free (I-free), if $\pi_{1}(\operatorname{Ext} M) \pi_{1}(\operatorname{Int} M)$ is a free group of rank>0. We say a surface M bi-free if both E - and I-free.

Suppose a surface M of genus 1 is in S^{8}, then the closure of one of components of $S^{3}-M$ is a solid torus [1]. From this the following lemma is trivial.

Lemma (4,8). For any surface M of genus 1, one of the following three different cases arises;
(1) M is bi-free,
(2) M is I-free and $\pi_{1}(\operatorname{Ext} M) \cong a$ knot group $\varsubsetneqq Z$, and
(3) M is E-free and $\pi_{1}(\operatorname{Int} M) \cong a$ knot group $\varsubsetneqq Z$.

Lemma (4,9). Any nonprime surface M of genus 2 fall in one of the following different 6 cases (i.e. for a non-trivial decomposition $M \approx M_{1} \# M_{2}$ of M, we have the following table by reordering indices). ${ }^{8)}$

	M_{1}	M_{2}	$\pi_{1}(\operatorname{Int} M)$	π_{1} (ExtM)
(1)	bi-free	bi-free	$Z * K$	$Z * Z$
(2)	bi-free	E-nonfree	$Z * Z$	$Z * K$
(3)	bi-free	I-nonfree	$Z * K$	$Z * Z$
(4)	E-nonfree	E-nonfree	$Z * Z$	$K_{1} * K_{2}$
(5)	I-nonfree	I-nonfree	$K_{1} * K_{2}$	$Z * Z$
(6)	E-nonfree	I-nonfree	$Z * K$	$K^{\prime} * Z$

8) in the table, each of K, K^{\prime}, K_{i} means any knot group but Z (infinite cyclic).

Proof. It follows from $(4,7)$ and $(4,8)$ and by that any knot group is indecomposable with respect to the free product of group [9].

Lemma (4,10). Any two bi-free surfaces M and M^{\prime} of genus 1 are isomorphic.
Proof. By $(4,4)$ Int M is a solid trous of genus 1. Then there is a polygonal loop L in $\operatorname{In} \mathrm{n} t M$ such that $\operatorname{Int} M$ is a regular neighborhood of L in E^{8}. $\pi_{1}\left(E^{8}-L\right)$ $\cong \pi_{1}(\operatorname{Ext} M) \cong Z$. By Dehn's lemma L is a trivial knot in E^{3}. Similarly for M^{\prime}, there is a loop L^{\prime} of which $\operatorname{Int} M^{\prime}$ is a regular neighborhood in E^{8}. Hence there exists an isotopy of E^{8} throwing L onto L^{\prime}. From the uniqueness of the regular neighborhoods this gives an isomorphism of M to M^{\prime}.

By $(4,10)$, there may be no confusion if we denote a bi-free surface of genus 1 by T. And we also denote $m T \approx T_{1} \# T_{2} \# \cdots \# T_{m}$, where each T_{i} is a surface isomorphic to T.

5. Existence of prime surfaces.

Theorem. (Suzuki) [11] [12]. For any integer $n \geqq 1$, there exists a prime surface of genus n.

Suzuki [11] [12] constructed so complicated surfaces in S^{8} which are extension of Homma's example [5]. In his paper Suzuki defined the primeness of the surfaces in S^{8} by the property (2) in our lemma (3,2). Through the natural inclusion $n: E^{8} \longrightarrow S^{8}$, where $S^{8}-n\left(E^{8}\right)=\infty$ is an infinite point of E^{8}, primeness of the surface in E^{8} and in S^{8} are equivalent. We denote the one-point compactification of Ext M by Ext $M=S^{8}-n$ (İnt M) for any surface M in E^{8}. Here we will show only the primeness of the Homma's example H of genus 2.

Example 1. The surface H (in Figure 1) of genus 2 is prime.
Proof. At first it is easily cheked that $\pi_{1}(\operatorname{Int} H) \cong K * K$, where K is a knot

Figure 1.

Figure 2.
group of the clover leaf. By $(4,10)$ we prove H prime if we check that π_{1} (Ext H) $\not \approx Z * Z$. It is obvious that Ext $H \cong E^{8}-L$, where L is a connected linear graph in Figure 2. Calculdting $\pi_{1}\left(E^{3}-L\right)$ by the way of Kinoshita [6], we obtain that;
$\pi_{1}\left(E^{3}-L\right) \cong\left(y_{1}, y_{2}, y_{3} ; y_{1} y_{3} y_{1}^{-1} y_{3}^{-1} y_{2} y_{3} y_{2}^{-1}\right)$, and 2-nd Alexander polynomial $\Delta_{L}^{(2)}(t)$ $=2 t-1$, where generators y_{1}, y_{2}, and y_{3} are as in Figure 2. Hence $\pi_{1}(\operatorname{Ext} H)$ is indecomposable with respect to free product (then there exists no nontrivial E-unknotted loop on H), and H is prime.

6. Proof of Theorem 2.

Since we have the rough classification of non-prime surfaces of genus 2 by lemma (4,9), then we complete the proof of the theorem if we check the 6 cases in $(4,9)$.
$(6,1)$ For the case (1) in $(4,9)$, the theorem follows directly from $(4,10)$.
Let $M \approx M_{1} \# M_{2}$ be a non-trivial decomposition (so, prime decomposition) of a given non prime surface M of genus 2 with an associated 3-ball B^{3}. Suppose $M \approx M_{1}^{\prime} \# M_{2}^{\prime}$ is another non-trivial decomposition of M with an associated 3-ball B^{\prime}. By the definition 1 , we may assume that $M_{1}=(M \cap B) \cup C, M_{2}=(M-B) \cup C$, $M_{1}^{\prime}=\left(M \cap B^{\prime}\right) \cup C^{\prime}$ and $M_{2}^{\prime}=\left(M-\dot{B}^{\prime}\right) \cap C^{\prime}$, where $C=\dot{B} \cap$ Int M and $C^{\prime}=\dot{B}^{\prime} \cap$ Int M. Let denote $\dot{B}-C^{\circ}=D$ and $\dot{B}^{\prime}-\dot{C}^{\prime}=D^{\prime}$. We may assume also that \dot{D} and \dot{D}^{\prime} are in normal position on M and that ($D \cap D^{\prime}$) and ($C \cap C^{\prime}$) have no loops by (4,5) and $(4,6)$.
$(6,2)$ For the cases (4) and (5) in (4,9). The proof for the case (5) is similar to one for the case (4). So we will prove only for the case (4). For this case, we will assert that $\dot{B} \cap \dot{B}^{\prime}=\phi$. For, if $\dot{B} \cap \dot{B}^{\prime} \neq \phi, D \cap D^{\prime}$ consists of finite union \mathscr{J} of disjoint proper arcs $J_{1}, J_{2}, \cdots, J_{k}$. \mathscr{J} separates D^{\prime} into interior disjoint $k+1$ disks $D_{1}^{\prime}, D_{2}^{\prime}, \cdots, D_{k+1}^{\prime}$ and bd \mathscr{J} separates \dot{D}^{\prime} into $2 k$ arcs $A_{1}^{\prime}, A_{2}^{\prime}, \cdots A_{2 k}^{\prime}$. Put two families $\mathscr{D}^{\prime}=\left\{D_{1}^{\prime}, D_{2}^{\prime}, \cdots, D_{k+1}^{\prime}\right\}$ and $\mathscr{A}^{\prime}=\left\{A_{1}^{\prime}, A_{2}^{\prime}, \cdots, A_{2 k}^{\prime}\right\}$. Then there must be one disk, say D_{1}^{\prime}, such that $\dot{D}_{1}^{\prime} \cap \dot{D}^{\prime}$ is connected. So, there are arcs in \dot{D}_{1}^{\prime}, say $J_{1} \subset \mathscr{J}$ and $A_{1}^{\prime} \in \mathscr{A}^{\prime}$, such that $\dot{D}_{1}^{\prime}=J \cup A_{1}^{\prime}, J_{1} \cap A_{1}^{\prime}=\dot{J}_{1}=\dot{A_{1}^{\prime}}$ and ($\left.D_{1}^{\prime}-J_{1}\right) \cap D=\phi$. On the other hand J_{1} separates D into two disks D_{1} and D_{2} such that $D_{1} \cap D_{2}=\dot{D}_{1}=\dot{D}_{2}=J_{1}, D_{1} \cup D_{2}=D$ and $D_{i} \cap D_{1}^{\prime}=\dot{D}_{i} \cap \dot{D}_{1}^{\prime}=J_{1}, i=1,2$. Put $A_{i}=\dot{D}_{i}-j_{1}, i=1,2$. Note that $A_{1} \cup A_{2}=\dot{D}$ and $A_{1} \cap A_{2}=\dot{A}_{1}=\dot{A}_{2} . \quad A_{1}^{\prime} \cup A_{i}, \imath=1,2$, are simple loops on either M_{1} or M_{2}, say on M_{1}. $A_{1}^{\prime} \cup A_{i}$ bounds a proper 2-disk ($D_{1}^{\prime} \cup D_{i}$) in Ext $M, i=1,2$. The E-unknotted loop $A_{1}^{\prime} \cup A_{i}$ on E-nonfree surface M_{1} of genus 1 must bound a 2 -disk on $M_{1}, i=1,2$. Then either $A_{1}^{\prime} \cup A_{1}$ or $A_{1}^{\prime} \cup A_{2}$
bounds a 2-disk E^{2} on $M_{1}-\stackrel{\circ}{C}(\subset M)$. This contradicts to the normality of the pair of loops \dot{D} and \dot{D}^{\prime}. Hence $\dot{B} \cap \dot{B}^{\prime}=\phi$. Then \dot{D}^{\prime} is in either ($M_{1}-\dot{C}$) or ($M_{2}-\dot{C}$). From that \dot{D}^{\prime} is non-trivial on M, \dot{D}^{\prime} is isotopic to \dot{D} on M. Hence $M_{1} \approx M_{i}^{\prime}$ and $M_{2} \approx M_{j}^{\prime}, i \neq j, i, j=1,2$.
$(6,3)$ For the cases (2) and (6) in (4,9). We may assume that M_{1} and M_{1}^{\prime} are E-free and M_{2} and M_{2}^{\prime} are E-nonfree by $(4,8)$ and $(4,9)$. If $\dot{D} \cap \dot{D}^{\prime}=\phi$, the theorem follows from the same as in (6,2). So, suppose that \dot{D} and \dot{D}^{\prime} are in normal position on M and $D \cap D^{\prime}$ contains only finite number $\neq 0$ of proper arcs. Since M_{1} is E-free of genus 1 , there is an unique proper 2-disk E_{0}^{2} in Ext M_{1}, up to isotopy of Ext M_{1}, such that $\dot{E}_{0} \subset M_{1}-\stackrel{\circ}{C}$ and $\dot{E}_{0} \nsim 0$ an M_{1}. We may assume also that $E_{0} \cap D=\phi$ and \dot{E}_{0} and \dot{D}^{\prime} are in normal position on M. Under this condition we will prove next;
$(6,4) \quad E_{0} \cap D^{\prime}=\phi$.
For, if $E_{0} \cap D^{\prime} \neq \phi$, we may assume that $E_{0} \cap D^{\prime}$ contains only a finite number of proper arcs by $(4,6)$. Let $N_{0}=N\left(E_{0} ;\right.$ Ext $\left.M\right)$ be a small regular neighborhood of E_{0} in Ext M such that $N_{0} \cap M=\dot{N}_{0} \cap\left(M_{1}-\stackrel{C}{C}\right) \cong\left(S^{1} \times I\right)$ is a regular neighborhood of \dot{E}_{0} in M. $\overline{\left(\dot{N}_{0}-M\right)}$ consists of two isotopic 2-disks F_{1} and F_{2} in Ext M. $\left(F_{i}, F_{i} \cap D^{\prime}\right) \cong\left(E_{0}, E_{0} \cap D^{\prime}\right)$. Then $D^{\prime} \cap\left(F_{1} \cup F_{2}\right)$ consists of finite union $\mathscr{K}=\left(K_{1} \cup\right.$ $\left.K_{2} \cup \cdots \cup K_{2 r}\right)$ of disjoint $2 r$ arcs. Let $Q=\operatorname{bd}\left(\operatorname{Int} M \cup N_{0}\right)$, then $Q \approx M_{2}$. \mathscr{K} separates D^{\prime} into a family $\mathscr{D}^{\prime \prime}=\left\{D_{1}^{\prime \prime}, D_{2}^{\prime \prime}, \cdots, D_{2 r+1}^{\prime \prime}\right\}$ of interior disjoint $2 r+1$ disks. And bd \mathscr{K} separates \dot{D}^{\prime} into a family $\mathscr{A}^{\prime \prime}=\left\{A_{1}^{\prime \prime}, A_{8}^{\prime \prime}, \cdots, A_{4}^{\prime \prime}\right\}$ of arcs. Then there must be one disk and two arcs as in $(6,2)$, say $D_{1}^{\prime \prime} \in \mathscr{D}^{\prime \prime}, K_{1} \subset \mathscr{K}$ and $A_{1}^{\prime \prime} \in \mathscr{A}^{\prime \prime}$ such that $\dot{D}_{1}^{\prime \prime}=K_{1} \cup A_{1}^{\prime \prime}$ and $K_{1} \cap A_{1}^{\prime \prime}=\dot{K}_{1}=\dot{A}_{1}^{\prime \prime} . K_{1}$ is in either F_{1} or F_{2}, say in F_{1}. Obviously, $D_{1}^{\prime \prime}$ is a proper disk in Ext Q, then E-unknotted loop $\dot{D}_{1}^{\prime \prime}=K_{1} \cup A_{1}^{\prime \prime}$ must bound a 2-disk U_{1} on Q. If $\dot{U}_{1} \not \supset F_{2}$, it contradicts to that the pair of loops \dot{D}^{\prime} and \dot{E}_{0} are normal on M. Then $\stackrel{\circ}{U}_{1} \supset F_{2}$. Hence there is a disk, say $D_{2}^{\prime \prime}$, in $\mathscr{D}^{\prime \prime}$ such that $D_{2}^{\prime \prime} \subset N_{0}$ and $D_{2}^{\prime \prime} \cap F_{i}=K_{i} \subset \mathscr{K}, i=1,2$. And there exists a disk $D_{3}^{\prime \prime} \in \mathscr{D}^{\prime \prime}$ proper in Ext Q such that $D_{3}^{\prime \prime} \cap F_{2}=\dot{D}_{3}^{\prime \prime} \cap F_{2}$ $\supset K_{2}$. $\dot{D}_{3}^{\prime \prime}$ must bound a disk U_{3} on Q as $\dot{D}_{1}^{\prime \prime}$. Since $\dot{D}_{1}^{\prime \prime} \cap \dot{D}_{3}^{\prime \prime}=\phi, U_{3} \subset \dot{U}_{1}$. If $\dot{D}_{s}^{\prime \prime}=\dot{U}_{3}$ does not intersect with F_{1}, it contradicts to the normality of the pair of loops \dot{D}^{\prime} and \dot{E}_{0} in M, again. Then there is an arc, say $K_{3} \subset \mathscr{K}$ in $F_{1} \cap \dot{D}_{z^{\prime}}^{\prime}$, and so on. This contradicts to the finiteness of elements of \mathscr{K}. Hence $(6,4)$ is proved.

Since M_{z}^{\prime} is E-nonfree of genus $1, \dot{E}_{0} \subset M_{1}^{\prime}$. So, we may assume that $N_{0} \cap M$ $=\dot{N}_{0} \cap M \subset\left(M_{1}^{\prime}-C^{\prime}\right)$. Hence $\left\{\left(M-N_{0}\right) \cup F_{1} \cup F_{2}\right\}=Q \approx M_{2} \approx M_{2}^{\prime}$. And it is easily
checked that all $A_{j}^{\prime} \in \mathscr{A}^{\prime}$ in $M_{1}-C^{C}$ are isotopic relative \dot{D} on M_{1}. From this and by the same argument as above for C and C^{\prime} in Int M, one obtains that $M \approx M_{1}^{\prime}$. This completes the proof of (6,3).
$(6,5)$ It remains the proof of the theorem for the case (3) in $(4,9)$. This is entirely similar to $(6,3)$, except the order of the arguments for D, D^{\prime} in Ext M and C, C^{\prime} in Int M. Then the proof is completed.

Corollary (6, 6). Suppose either $\pi_{1}(\operatorname{Ext} M) \cong G_{1} * G_{2}$, or $\pi_{1}(\operatorname{Int} M) \cong G_{8} * G_{4}$ for a surface M, where G_{i} is an indecomposable group with respect to free product and $G_{i} \varsubsetneqq Z, i=1,2,3,4$. Then the prime decomposition of M is unique up to isomorphism.

Proof of $(6,6)$ is the same as $(6,2)$.

7. Surfaces of genus $\geqq 2$

Waldhausen proved the uniqueness of the Heegaard-splitting of 3 -sphere $S^{\mathbf{s}}$ [13]. In other words, his theorem [13, $(1,3)]$ asserts that;

Theorem. (Waldhausen). For any bi-free surface M of genus $m>0, M \approx m T .{ }^{9)}$
And also the proofs of the theorem [13, $(3,1)]$ ensure that;
Theorem 3. If $M_{1} \# m T \approx M_{2} \# m T$ for two surfaces M_{1}, M_{2} and some integer $m \geqq 1$, then $M_{1} \approx M_{2}$.

Analogous argument as $(6,2)$ will lead us the next;
Theorem 4. If a surface M has a non-trivial decomposition $M \approx M_{1} \# M_{2} \#$ $\cdots \# M_{m}$, where each of $\pi_{1}\left(\operatorname{Int} M_{i}\right)$ (or each of $\left.\pi_{1}\left(\operatorname{Ext} M_{i}\right)\right), i=1,2, \cdots, m$, is indecomposable with respect to free product and not infinite cyclic, then the prime decomposition of M is unique up to isomorphism.

Lemma (7,1). Suppose a surface M has a non-trivial decomposition $M \sim M_{1}{ }^{\#}$ $M_{2} \# \cdots M_{k} \# \cdots \# M_{m}$, where M_{i} is I-nonfree of genus 1 if $1 \leqq i \leqq k$ and E-nonfree of genus 1 if $k+1 \leqq i \leqq m$. Let $D_{j}, j=1,2, \cdots, k$, be any set of disjoint proper 2-disks in Ext M such that $\left\{\dot{D}_{j}\right\}$ are homologicaly independent on M. Then $b d\left\{\operatorname{Int} M \cup \bigcup_{j=1}^{k} N\left(D_{j} ; \operatorname{Ext} M\right)\right\} \sim M_{k+1} \# M_{k+2} \# \cdots \# M_{m}$, where $N\left(D_{j} ; \operatorname{Ext} M\right)$ is a regular neighborhood of D_{j} in $\operatorname{Ext} M, j=1,2, \cdots, k$.

This lemma $(7,1)$ is elementally proved by the way used in this paper before. Then from theorems 3,4 and $(7,1)$ we will obtain easily that;
9) see $(4,10)$.

Theorem 5. If a surface M has non-trivial decompositions $M \approx M_{1} \# M_{2} \# \ldots$ \# M_{m} and $M \approx M_{1}^{\prime} \# M_{2}^{\prime} \# \cdots \# M_{m}^{\prime}$, where $m=g(M)$ is the genus of M, then these two prime decmpositions of M coincide up to order and isomorphism.

The author guess the next statement which is a generalization of the theorem (Waldhausen), but yet proved even for $n=2$.

Conjecture (7, 2). If both $\pi_{1}(\operatorname{Int} M) \cong A_{1} * A_{2} * \cdots * A_{m}$ and $\pi_{1}(\operatorname{Ext} M) \cong B_{1} * B_{2} *$ $\cdots * B_{m}$ are non-trivial free products for a surface M, then if $m=g(M), M$ will be non prime.

In (7,2) if $g(M)>m$, then there is a counter example (Example 3).
Example 2. The I-free surface M_{2} (in Figure 3) of genus 2 is prime, by the following. But the primeness of M_{2} is not given by the way of example 1. $\pi_{1}\left(\operatorname{Ext} M_{2}\right)$ is presented by the form;

$$
\left(x_{1}, x_{2}, x_{3} ; x_{2} x_{1}^{-1} x_{2}^{-1} x_{1} x_{3}^{-1} x_{1}^{-1} x_{2} x_{1} x_{2}^{-1} x_{3} x_{1}^{-1} x_{2} x_{1} x_{2}^{-1} x_{3}^{-1}\right),
$$

where the generators x_{1}, x_{2} and x_{3} are represented as in Figure 2. From [10, Theorem 1], $\pi_{1}\left(\operatorname{Ext} M_{2}\right)$ is indecomposable respect to free product. Hence M_{2} is prime and homomorphism $i^{*}: \pi_{1}\left(M_{2}\right) \longrightarrow \pi_{1}\left(\right.$ Ext $\left.M_{2}\right)$ has trivial kernel, where i^{*} is induced by the inclusion $i: M \longrightarrow \operatorname{Ext} M_{2}$.

Example 3. The bi-nonfree surface M_{3} (in Figure 4) of genus 3 is constructed from M_{3} of example 2. From the construction, it is easily checked that π_{1} (Ext M_{8})

Figure 3.

Figure 4.
$\cong \pi_{1}\left(\operatorname{Int} M_{3}\right) \cong \pi_{1}\left(\operatorname{Ext} M_{2}\right) * Z$ and M_{3} is prime. Further, it is interest that Ext M_{3} \cong Int M_{3}, where Ext M_{3} is a one-point compactification of Ext M_{3} (see 5). Note that if the conjecture $(7,2)$ is true for $n=2$ then there is no prime surface M of genus 2 such that Ext $M \cong \operatorname{Int} M$.

REFERENCES

[1] J. W. Alexander, On the subdivision of 3-space by a polyhedron, Proc. N. A.S. 10 , (1924) pp. 6-8.
[2] D. B. A. Epstein, Curves on 2-manifolds and isotopy, Acta. Math. J. 115 (1966) pp. 83107.
[3] R.H. Fox, On the embeddings of polyhedron in 3-space, Ann. of Math. 49 (1948) pp. 462-470.
[4] V.K. A. Gugenheim, Piecewise linear isotopy and embedding of elements and spheres, I, Proc. London Math. (3) 3 (1953) pp. 29-53.
[5] T. Homma, On the existence of unknotted polygones on 2-manifold in E^{8}, Osaka Math. J. 6 (1954) pp. 129-134.
[6] S. Kinoshita, Alexander polynomials as isotopy invariants I, Osaka Math. J. 10 (1958) pp. 263-271.
[7] J. Milnor, A unique decomposition theorem for 3-manifolds, Amer. J. Math. 84 (1962) pp. 1-7.
[8] C. D. Papakyriakopoulos, On solid tori, Proc. London Math. 7 (1957) pp. 281-299.
[9] -, On Dehn's lemma and the asphericity of knots, Ann. of Math. 66 (1957) pp. 1-26.
[10] A. Schenitzer, Decomposition of a group with a single relation into a free product, Proc. A. M. S. 6 (1955) pp. 273-279.
[11] S. Suzuki, On closed orientable surface in 3-space. (to appear).
[12] ——, On linear graphs in 3-sphere, Osaka Math. J. (to appear).
[13] F. Waldhausen, Heegaard-Zerlegungen der 3-Sphäre, Topology 7 (1968) pp. 195-203.
[14] E. C. Zeeman, Seminar on combinatorial topology, (Mimeographed Note) Inst. Hautes Etudes Sci. Publ. Math. 1963.

[^0]: 1) $\operatorname{bd} A$ and $\dot{A}=$ the boundary of A,
 int A and \AA =the interior of A, and
 cl A and \bar{A} =the closure of A, throughout this paper.
 2) I means a closed unit interval; $I=[0,1]$.
[^1]: 3) M is proper in N if $\dot{N} \cap M=\dot{M}$.
 4) \simeq means homotopic to, ($\simeq 1$ means null homotopic),
 5) \sim means homologue to, (~ 0 means null homologues),
[^2]: 6) \cong means homeomorphic to, or group isomorphism in later.
 7) Throughout this paper, isotopy $h_{t}(0 \leqq t \leqq 1)$ means such that $h_{0}=1$ (identity).
