ARC CLUSTER SETS OF HOLOMORPHIC FUNCTIONS

By

PETER LAPPAN

(Received April 21, 1970)

Let f be a complex-valued function defined in the unit disk D, let C denote the unit circle, and let W denote the Riemann sphere. For each point $p \in C$, let $\mathfrak{T}(p)$ denote the set of all Jordan arcs contained in $D \cup \{p\}$ and having one end point at p. For each $t \in \mathfrak{T}(p)$, define the *cluster set of f at p relative to the arc t* by

$$C_t(f, p) = \bigcap_{r>0} \overline{f(t \cap \{z : |z-p| < r\})}.$$

We remark that if f is a continuous function then for each $t \in \mathfrak{T}(p)$ the set $C_t(f, p)$ is a non-empty closed connected subset of W. We shall refer to a nonempty closed connected subset of W as a continuum, even if the set is a singleton.

If A and B are two non-empty closed subsets of W, define

 $M(A, B) = \max \{ \sup_{a \in A} d(a, B), \sup_{b \in B} d(b, A) \},\$

where d(a, b) denotes the chordal distance between the points a and b on W. The distance M(A, B) is a metric on the set of all non-empty closed subsets in W. In particular, for a fixed $p \in C$, M imposes a topology on $\mathbb{G}_{f}(p)$, where

 $\mathbb{G}_f(p) = \{C_t(f, p) : t \in \mathfrak{T}(p)\},\$

that is, $\mathfrak{C}_f(p)$ is the set whose elements are the sets $C_t(f, p)$. We call this topology the *M*-topology on $\mathfrak{C}_f(p)$. It is easy to verify that the *M*-topology on $\mathfrak{C}_f(p)$ is separable.

Belna and Lappan [1, Theorem 1, p. 211] have proved that if f is a continuous function in D and p is a point of C, and if $\mathbb{C}_f(p)$ is not compact in the M-topology, then p is an ambiguous point for f, that is, there exist two arcs t_1 and t_2 in $\mathfrak{T}(p)$ such that $C_{t_1}(f, p) \cap C_{t_2}(f, p) = \phi$. They have also given an example of a function f holomorphic in D and a point $p \in C$ for which $\mathbb{C}_f(p)$ is not compact in the M-topology [1, Remark 2, p. 212]. In this paper we will show that

The author acknowledges partial support from the National Science Foundation under NSF Grant No. GP-11825.

PETER LAPPAN

if f is a holomorphic function in D which behaves nicely enough near the point $p \in C$, then $\mathbb{C}_f(p)$ is a compact set in the M-topology.

We begin with some definitions:

Definition 1. Let t_1 , t_2 , and t_8 be Jordan arcs in $\mathfrak{T}(p)$. If there exist Jordan arcs t_4 , t_5 , and t_6 in $\mathfrak{T}(p)$ such that $t_1 \subset t_4$, $t_2 \subset t_5$ and $t_6 \subset t_8$, where $t_4 \cup t_5$ is a Jordan curve and $t_6 - \{p\}$ is contained in the bounded region whose boundary is $t_4 \cup t_5$, then we say that t_8 is between t_1 and t_2 .

Let Z^+ denote the set of positive integers.

Definition 2. The sequence $\{t_n\}$ of Jordan arcs in $\mathfrak{T}(p)$ is said to be a directed sequence if for each $n \in \mathbb{Z}^+$, the arc t_{n+1} is between t_n and t_{n+2} .

Lemma 1. Let f be a continuous function in D and let $p \in C$. If $\{t_n\}$ is a directed sequence of arcs in $\mathfrak{T}(p)$ such that $C_{t_n}(f, p) = K_n$ and if K is a continuum such that $M(K_n, K) \rightarrow 0$ but $K \notin \mathfrak{C}_f(p)$, then there exists a directed sequence of arcs $\{s_k\}$ in $\mathfrak{T}(p)$ and a positive number $\varepsilon > 0$ such that for each $k \in Z^+$ there exists $n_k \in Z^+$ such that s_k is between t_{n_k} and $t_{n_{k+1}}$ and $d(C_{\epsilon_k}(f, p), K) > \varepsilon$.

Proof. The conclusion of this lemma can be reformulated as follows: there exists $\varepsilon > 0$ such that for each $n \in Z^+$ and for each real number $\delta > 0$ there exists $m \in Z^+$ where m > n such that $t_n \cap \{z \in D: |z-p| < \delta\}$ and $t_m \cap \{z \in D: |z-p| < \delta\}$ are contained in different components of $\{z \in D: d(f(z), K) < \varepsilon, |z-p| < \delta\}$, where we assume that $M(f(t_n), K) < \varepsilon$ for each $n \in Z^+$. Let us assume that the lemma is false. Then for each $k \in Z^+$ there exists an integer N_k such that for each $\delta > 0$ we have that $n > N_k$ implies that all of the sets $t_n \cap \{z \in D: |z-p| < \delta\}$ lie in the same component of $\{z \in D: d(f(z), K) < 1/k, |z-p| < \delta\}$. Thus, for each $n > N_k$ and each $\delta > 0$ there exists a Jordan arc q_n leading from a point of t_n to a point of t_{n+1} such that

$$q_n \subset \{z \in D: |z-p| < \delta, d(f(z), K) < 1/k\}$$
.

Thus we may choose a subsequence $\{t_{n_k}\}$ of $\{t_n\}$ such that $n_k > N_k$ for each $k \in Z^+$, and using the same reasoning as before on the sequence $\{t_{n_k}\}$ we may conclude that for each $k \in Z^+$ there exists a Jordan arc p_k leading from a point on t_{n_k} to a point on $t_{n_{k+1}}$ such that for each $k \in Z^+$,

$$p_k \subset \{z \in D: |z-p| < 1/k, d(f(z), K) < 1/k\},\$$

and the portion t'_k of t_{n_k} between the terminal point of p_{k-1} and the starting point of p_k satisfies the relationship $M(f(t'_k), K) < 1/k$. It is no loss of generality to assume that p_k meets t_{n_k} and $t_{n_{k+1}}$ in exactly one point each. Then letting t be the Jordan arc obtained by splicing together all of the arcs t'_k and p_k , we

88

have that $C_t(f, p) = K$, in violation of the hypothesis that $K \notin \mathfrak{C}_f(p)$. Thus the lemma is proved.

Lemma 2. If f is a continuous function in D and if $p \in C$ such that $\mathfrak{C}_f(p)$ is not compact in the M-topology, then there exist directed sequences $\{t_n\}$ and $\{s_n\}$ of arcs in $\mathfrak{T}(p)$, a number $\varepsilon > 0$, and a continuum K such that, letting $K_n = C_{t_n}(f, p)$ and $L_n = C_{s_n}(f, p)$, we have for each $n \in Z^+$ that $M(K_n, K) < 1/n$, $d(L_n, K) > \varepsilon$, and the arc s_n is between t_n and t_{n+1} .

Proof. The result will follow from Lemma 1 by showing that for a sequence of arcs $\{t_n\}$ in $\mathfrak{T}(p)$ satisfying $C_{t_n}(f, p) = K_n$ and $M(K_n, K) < 1/n$, where $K \notin \mathfrak{G}_f(p)$, there is a subsequence of $\{t_n\}$ which is a directed sequence. If the arcs t_n are not mutually disjoint then they can be shortened individually so that an infinite subset of the shortened arcs are mutually disjoint, since otherwise there would exist an arc $t \in \mathfrak{T}(p)$ where t is contained in the union of the t_n 's and $C_t(f, p) = K$, is violation of the assumption on K. But now a directed subsequence of the shortened arcs t_n can be selected. Thus the validity of the lemma depends on the existence of an appropriate continuum K and on Lemma 1. But the existence of an appropriate continuum K follows from the hypothesis that $\mathfrak{C}_f(p)$ is not compact in the M-topology, and the lemma is established.

Theorem 1. If $p \in C$ and if f is a holomorphic function in D which is bounded in a neighborhood (relative to D) of p, then $\mathbb{C}_f(p)$ is compact in the M-topology.

Proof. Suppose that $\mathfrak{C}_f(p)$ is not compact in the *M*-topology. Let $\{t_n\}, \{s_n\}, K_n, L_n, K$, and ε all be as in Lemma 2. It is no loss of generality to assume that all of the arcs s_n and t_n originate at the origin, terminate at p, and that no pair of these arcs have any point in common outside the set $\{0, p\}$. We may further assume that $M(K_n, K) < \varepsilon/2$ for each $n \in Z^+$. Let \mathcal{A}_n be the bounded region whose boundary is the Jordan curve $t_n \cup t_{n+1}$, and let \mathcal{A}'_n be the bounded region whose boundary is the Jordan curve $s_n \cup s_{n+1}$. Since $s_n - \{0, p\} \subset \mathcal{A}_n$ and $t_{n+1} - \{0, p\} \subset \mathcal{A}'_n$, we obtain the cluster set relationships $L_n \subset C_{\mathcal{A}_n}(f, p)$ and $K_{n+1} \subset C_{\mathcal{A}_{n'}}(f, p)$, where if G is a subset of D we define $C_G(f, p)$ by

$$C_G(f, p) = \bigcap_{r>0} \overline{f(G \cap \{z : |z-p| < r\})}.$$

Also, by [2, Theorem 5.2.1, p. 91], we have the relationship

$$BdC_{4_n}(f, p) \subset C_{t_n}(f, p) \cup C_{t_{n+1}}(f, p) = K_n \cup K_{n+1}$$

and

$$BdC_{4_{n'}}(f, p) \subset C_{s_n}(f, p) \cup C_{s_{n+1}}(f, p) = L_n \cup L_{n+1}$$

PETER LAPPAN

where Bd E is used to denote the boundary of the set E.

Let *n* be a fixed integer greater than 1. Since *f* is bounded in a neighborhood of *p*, each of the cluster sets mentioned above is a bounded set. Since $M(K_k, K) < \epsilon/2$ and $d(L_k, K) > \epsilon$ for each $k \in Z^+$, and by the boundary cluster set relationship given above, there exists a point $w_0 \in L_n \cup L_{n+1}$ such that

$$|w_0| > \sup \{|w|: d(w, K) < \varepsilon/2\}$$
.

If $w_0 \in L_n$, then the fact that L_n is contained in a bounded set whose boundary is $K_n \cup K_{n+1}$ leads to the existence of a point $w_1 \in K_n \cup K_{n+1}$ such that $|w_1| > |w_0|$. But $d(w_1, K) < \varepsilon/2$, is violation of the choice of w_0 . Similarly, if $w_0 \in L_{n+1}$, then the fact that L_{n+1} is contained in a bounded set whose boundary is $K_{n+1} \cup K_{n+2}$ leads to the existence of a point $w_2 \in K_{n+1} \cup K_{n+2}$ such that $|w_2| > |w_0|$. But $d(w_2, K) < \varepsilon/2$, also is violation of the choice of w_0 . Thus the assumption that $\mathfrak{C}_f(p)$ is not compact in the *M*-topology is untenable, and this proves the theorem.

We remark that the proof of Theorem 1 used only the assumption that f is bounded on a union of three consecutive regions Δ_n . We will make use of this in the proof of Lemma 3 below.

Theorem 2. If f is holomorphic and bounded in D, then $\mathcal{C}_f(p)$ is compact in the M-topology for each point $p \in C$.

Theorem 2 follows immediately from Theorem 1.

Lemma 3. Let f be holomorphic in D and let $p \in C$. If $\{t_n\}$ is a directed sequence of arcs in $\mathfrak{T}(p)$, if $K_n = C_{t_n}(f, p)$ for each $n \in Z^+$, and if K is a continuum such that $M(K_n, K) \rightarrow 0$, then either $K \in \mathfrak{C}_f(p)$, $\infty \in K$, or there exist three arcs q_1 , q_2 , and q_3 in $\mathfrak{T}(p)$ such that $f(z) \rightarrow \infty$ on q_1 and on q_3 as $z \rightarrow p$, f is bounded on q_2 , and q_2 is between q_1 and q_3 .

Proof. Assume that $K \notin \mathbb{G}_f(p)$ that $\infty \notin K$, and that each K_n is a bounded set. By defining \mathcal{A}_n as in the proof of Theorem 1, we have that if there exists an integer N such that f is bounded in each of the regions \mathcal{A}_n for n > N, then by the remark following the proof of Theorem 1 we must have that $K \in \mathbb{G}_f(p)$, in violation of our assumption. Thus there exist $n_1, n_2 \in \mathbb{Z}^+$, $n_2 > n_1$, such that f is unbounded in each of \mathcal{A}_{n_1} and \mathcal{A}_{n_2} . There exist paths q_1, q_3 in $\mathfrak{T}(p)$ such that $q_1 - \{p\} \subset \mathcal{A}_{n_1}, q_3 - \{p\} \subset \mathcal{A}_{n_2}$, and $f(z) \to \infty$ as $z \to p$ along q_1 and q_3 . Letting $q_2 = t_{n_2}$, we have that $C_{q_2}(f, p) = K_{n_2}$ is a bounded set, so that f is bounded on q_2 , and further q_2 is between q_1 and q_3 . This completes the proof of the lemma.

Lemma 3 suggests the following definition.

Definition 3. Let p be a point in C. We say that the function f is in the class I_p if f is holomorphic in D and if for each pair of arcs t_1 , t_2 in $\mathfrak{T}(p)$ for

90

ARC CLUSTER SETS OF HOLOMORPHIC FUNCTIONS

which $f(z) \rightarrow \infty$ as $z \rightarrow p$ along $t_j(j=1, 2)$ we have that f is unbounded on each path t in $\mathfrak{T}(p)$ for which t is between t_1 and t_2 .

For each $p \in C$ the class I_p includes all holomorphic functions in D for which ∞ is not an asymptotic value at p. We will relate the class I_p to the class of all normal holomorphic functions (see [2, p. 86] and [3] for a discussion of normal holomorphic functions).

Theorem 3. If f is a normal holomorphic function in D, then f is in the class I_p for each $p \in C$.

Proof. If $p \in C$ and if ∞ is an asymptotic value of f at p along two disjoint paths t_1 and t_2 in $\mathfrak{T}(p)$, and if t is any path in $\mathfrak{T}(p)$ between t_1 and t_2 , then by a remark of Lehto and Virtanen [3, p. 53] $f(z) \to \infty$ as $z \to p$ along t. Thus f is in the class I_p and the theorem is proved.

We next show that if f is in the class I_p then f cannot have very many distinct asymptotic values at p.

Theorem 4. If p is a point in C and if f is a holomorphic function in the class I_p , then f may have at most two finite asymptotic values at p.

Proof. If f is a holomorphic function in D having three distinct finite asymptotic values a_1 , a_2 , a_3 at p, then there exist three disjoint arcs t_1 , t_2 , t_3 in $\mathfrak{T}(p)$ such that $f(z) \rightarrow a_j$ as $z \rightarrow p$ along $t_j(j=1, 2, 3)$. But then there exist paths $q_1 q_2$ in $\mathfrak{T}(p)$ such that q_j is between t_j and t_{j+1} and $f(z) \rightarrow \infty$ as $z \rightarrow p$ along $q_j(j=1, 2)$. This means that t_2 is between q_1 and q_2 and f is bounded on t_2 . It follows that f cannot be in the class I_p , and the theorem is proved.

We now return to a consideration of the compactness of $\mathfrak{C}_f(p)$ in the *M*-topology and we relate this to the class I_p .

Theorem 5. If $p \in C$ and if f is a function in the class I_p , then $\mathbb{G}_f(p)$ is compact in the M-topology.

Proof. If $\mathbb{C}_f(p)$ is not compact in the *M*-topology, then there exist sequences of continua $\{K_n\}$ and $\{L_n\}$, a continuum *K*, and a real number $\varepsilon > 0$ as described in Lemma 2. We may assume that $M(K_n, K) < \varepsilon/2$ for each $n \in Z^+$. Since *f* is in the class I_p , then $\infty \in K$ by Lemma 3. Then there exists a bounded set *L* such that $L_n \subset L$ for each $n \in Z^+$ and $d(L, K) > \varepsilon$. Letting \mathcal{A}'_n be the region defined in the proof of Theorem 1, and using the facts that $K_{n+1} \subset C_{\mathcal{A}_n'}(f, p)$, $BdC_{\mathcal{A}_{n'}}(f, p) \subset L_n \cup L_{n+1}$, and that ∞ is in the same component of the complement of $L_n \cup L_{n+1}$ as is K_{n+1} , we obtain that *f* must be unbounded in \mathcal{A}'_n for each $n \in Z^+$. Thus for each $n \in Z^+$ *f* has ∞ as an asymptotic value at *p* along a path \mathcal{Q}_n such that $\mathcal{Q}_n - \{p\} \subset \mathcal{A}'_n$. Letting $\{s_n\}$ be the sequence of arcs described in Lemma 2 (namely, s_n is one part of the boundary of \mathcal{A}'_n) we have that s_{n+1} is

PETER LAPPAN

between q_n and q_{n+1} for each $n \in Z^+$ but f is bounded on s_{n+1} , is violation of the assumption that f is in the class I_p . Thus the theorem is proved.

We note that Theorem 5 gives a sufficient, but not a necessary condition for $\mathfrak{G}_f(p)$ to be compact in the *M*-topology. For example, if $f(z) = \exp\{-1/(1-z)^2\}$, then it is easy to verify that $\mathfrak{G}_f(1)$ is compact in the *M*-topology but f is not in the class I_1 .

The proof of Theorem 5 actually tells us much more than the statement of the theorem, for the proof reveals that the behavior forbidden to a function in class I_p must be repeated infinitely often in order that $\mathfrak{C}_f(p)$ not be compact in the *M*-topology. We formulate this result as our final theorem.

Theorem 6. Let f be a holomorphic function in D. If $p \in C$ and if $\mathfrak{C}_f(p)$ is not compact in the M-topology, then there exist two directed sequences of arcs $\{p_n\}$ and $\{q_n\}$ in $\mathfrak{T}(p)$ such that for each $n \in Z^+$, $f(z) \to \infty$ as $z \to p$ on p_n , f is bounded on q_n , and q_n is between p_n and p_{n+1} .

The converse of Theorem 6 is not valid, as the function $f(z) = \exp \{\exp((1+z)/(1-z))\}$ shows. By using basic properties of the exponential function and the fact that w = (1+z)/(1-z) maps D onto the right half plane, it can easily be shown that f satisfies the conclusion of Theorem 6 but $\mathfrak{C}_f(1)$ is compact in the M-topology.

REFERENCES

- [1] C. Belna and P. Lappan, The compactness of the set of arc cluster sets, Michigan Math. J. 16 (1969), 211-214.
- [2] E. F. Collingwood and A. J. Lohwater, *The theory of cluster sets*, Cambridge Tracts in Mathematics and Mathematical Physics, No. 56, Cambridge University Press, 1966.
- [3] O. Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math. 97 (1957), 47-65.

Department of Mathematics Michigan State University East Lansing, Michigan 48823 U. S. A.

92