ARC CLUSTER SETS OF HOLOMORPHIC FUNCTIONS

By

Peter Lappan

(Received April 21, 1970)

Let f be a complex-valued function defined in the unit disk D, let C denote the unit circle, and let W denote the Riemann sphere. For each point $p \in C$, let $\mathfrak{I}(p)$ denote the set of all Jordan arcs contained in $D \cup\{p\}$ and having one end point at p. For each $t \in \mathfrak{T}(p)$, define the cluster set of f at p relative to the $\operatorname{arc} t$ by

$$
\left.C_{t}(f, p)=\bigcap_{r>0} \overline{f(t \cap\{z:|z-p|<r\}}\right) .
$$

We remark that if f is a continuous function then for each $t \in \mathscr{T}(p)$ the set $C_{t}(f, p)$ is a non-empty closed connected subset of W. We shall refer to a nonempty closed connected subset of W as a continuum, even if the set is a singleton.

If A and B are two non-empty closed subsets of W, define

$$
M(A, B)=\max \left\{\sup _{a_{\in A}} d(a, B), \sup _{b \in B} d(b, A)\right\}
$$

where $d(a, b)$ denotes the chordal distance between the points a and b on W. The distance $M(A, B)$ is a metric on the set of all non-empty closed subsets in W. In particular, for a fixed $p \in C, M$ imposes a topology on $\mathbb{\circledast}_{f}(p)$, where

$$
\mathfrak{C}_{f}(p)=\left\{C_{t}(f, p): t \in \mathscr{T}(p)\right\},
$$

that is, $\mathscr{C}_{f}(p)$ is the set whose elements are the sets $C_{t}(f, p)$. We call this topology the M-topology on $\mathbb{C}_{f}(p)$. It is easy to verify that the M-topology on $\mathbb{C}_{f}(p)$ is separable.

Belna and Lappan [1, Theorem 1, p. 211] have proved that if f is a continuous function in D and p is a point of C, and if $\mathbb{C}_{f}(p)$ is not compact in the M-topology, then p is an ambiguous point for f, that is, there exist two arcs t_{1} and t_{2} in $\mathscr{I}(p)$ such that $C_{t_{1}}(f, p) \cap C_{t_{2}}(f, p)=\phi$. They have also given an example of a function f holomorphic in D and a point $p \in C$ for which $\mathbb{\Phi}_{f}(p)$ is not compact in the M-topology [1, Remark 2, p. 212]. In this paper we will show that

[^0]if f is a holomorphic function in D which behaves nicely enough near the point $p \in C$, then $\mathfrak{G}_{f}(p)$ is a compact set in the M-topology.

We begin with some definitions:
Definition 1. Let t_{1}, t_{2}, and t_{3} be Jordan arcs in $\mathfrak{T}(p)$. If there exist Jordan arcs t_{4}, t_{5}, and t_{6} in $\mathfrak{I}(p)$ such that $t_{1} \subset t_{4}, t_{2} \subset t_{5}$ and $t_{6} \subset t_{3}$, where $t_{4} \cup t_{5}$ is a Jordan curve and $t_{6}-\{p\}$ is contained in the bounded region whose boundary is $t_{4} \cup t_{5}$, then we say that t_{3} is between t_{1} and t_{2}.

Let Z^{+}denote the set of positive integers.
Definition 2. The sequence $\left\{t_{n}\right\}$ of Jordan arcs in $\mathfrak{F}(p)$ is said to be a directed sequence if for each $n \in Z^{+}$, the arc t_{n+1} is between t_{n} and t_{n+2}.

Lemma 1. Let f be a continuous function in D and let $p \in C$. If $\left\{t_{n}\right\}$ is a directed sequence of arcs in $\mathfrak{F}(p)$ such that $C_{t_{n}}(f, p)=K_{n}$ and if K is a continuum such that $M\left(K_{n}, K\right) \rightarrow 0$ but $K \notin \mathbb{E}_{f}(p)$, then there exists a directed sequence of arcs $\left\{s_{k}\right\}$ in $\mathfrak{T}(p)$ and a positive number $\varepsilon>0$ such that for each $k \in Z^{+}$there exists $n_{k} \in Z^{+}$such that s_{k} is between $t_{n_{k}}$ and $t_{n_{k+1}}$ and $d\left(C_{s_{k}}(f, p), K\right)>\varepsilon$.

Proof. The conclusion of this lemma can be reformulated as follows: there exists $\varepsilon>0$ such that for each $n \in Z^{+}$and for each real number $\delta>0$ there exists $m \in Z^{+}$where $m>n$ such that $t_{n} \cap\{z \in D:|z-p|<\delta\}$ and $t_{m} \cap\{z \in D:|z-p|<\delta\}$ are contained in different components of $\{z \in D: d(f(z), K)<\varepsilon,|z-p|<\delta\}$, where we assume that $M\left(f\left(t_{n}\right), K\right)<\varepsilon$ for each $n \in Z^{+}$. Let us assume that the lemma is false. Then for each $k \in Z^{+}$there exists an integer N_{k} such that for each $\delta>0$ we have that $n>N_{k}$ implies that all of the sets $t_{n} \cap\{z \in D:|z-p|<\delta\}$ lie in the same component of $\{z \in D: d(f(z), K)<1 / k,|z-p|<\delta\}$. Thus, for each $n>N_{k}$ and each $\delta>0$ there exists a Jordan arc q_{n} leading from a point of t_{n} to a point of t_{n+1} such that

$$
q_{n} \subset\{z \in D:|z-p|<\delta, d(f(z), K)<1 / k\}
$$

Thus we may choose a subsequence $\left\{t_{n_{k}}\right\}$ of $\left\{t_{n}\right\}$ such that $n_{k}>N_{k}$ for each $k \in Z^{+}$, and using the same reasoning as before on the sequence $\left\{t_{n_{k}}\right\}$ we may conclude that for each $k \in Z^{+}$there exists a Jordan arc p_{k} leading from a point on $t_{n_{k}}$ to a point on $t_{n_{k+1}}$ such that for each $k \in Z^{+}$,

$$
p_{k} \subset\{z \in D:|z-p|<1 / k, d(f(z), K)<1 / k\},
$$

and the portion t_{k}^{\prime} of $t_{n_{k}}$ between the terminal point of p_{k-1} and the starting point of p_{k} satisfies the relationship $M\left(f\left(t_{k}^{\prime}\right), K\right)<1 / k$. It is no loss of generality to assume that p_{k} meets $t_{n_{k}}$ and $t_{n_{k+1}}$ in exactly one point each. Then letting t be the Jordan arc obtained by splicing together all of the arcs t_{k}^{\prime} and p_{k}, we
have that $C_{t}(f, p)=K$, in violation of the hypothesis that $K \notin \mathbb{『}_{f}(p)$. Thus the lemma is proved.

Lemma 2. If f is a continuous function in D and if $p \in C$ such that $\mathbb{G}_{f}(p)$ is not compact in the M-topology, then there exist directed sequences $\left\{t_{n}\right\}$ and $\left\{s_{n}\right\}$ of arcs in $\mathfrak{I}(p)$, a number $\varepsilon>0$, and a continuum K such that, letting $K_{n}=C_{t_{n}}(f, p)$ and $L_{n}=C_{s_{n}}(f, p)$, we have for each $n \in Z^{+}$that $M\left(K_{n}, K\right)<1 / n, d\left(L_{n}, K\right)>\varepsilon$, and the arc s_{n} is between t_{n} and t_{n+1}.

Proof. The result will follow from Lemma 1 by showing that for a sequence of $\operatorname{arcs}\left\{t_{n}\right\}$ in $\mathscr{T}(p)$ satisfying $C_{t_{n}}(f, p)=K_{n}$ and $M\left(K_{n}, K\right)<1 / n$, where $K \notin \mathbb{C}_{f}(p)$, there is a subsequence of $\left\{t_{n}\right\}$ which is a directed sequence. If the $\operatorname{arcs} t_{n}$ are not mutually disjoint then they can be shortened individually so that an infinite subset of the shortened arcs are mutually disjoint, since otherwise there would exist an $\operatorname{arc} t \in \mathscr{T}(p)$ where t is contained in the union of the t_{n} 's and $C_{t}(f, p)=K$, is violation of the assumption on K. But now a directed subsequence of the shortened arcs t_{n} can be selected. Thus the validity of the lemma depends on the existence of an appropriate continuum K and on Lemma 1. But the existence of an appropriate continuum K follows from the hypothesis that $\mathbb{๒}_{f}(p)$ is not compact in the M-topology, and the lemma is established.

Theorem 1. If $p \in C$ and if f is a holomorphic function in D which is bounded in a neighborhood (relative to D) of p, then $\mathbb{F}_{f}(p)$ is compact in the M-topology.

Proof. Suppose that $\mathbb{®}_{f}(p)$ is not compact in the M-topology. Let $\left\{t_{n}\right\}$, $\left\{s_{n}\right\}$, K_{n}, L_{n}, K, and ε all be as in Lemma 2. It is no loss of generality to assume that all of the arcs s_{n} and t_{n} originate at the origin, terminate at p, and that no pair of these arcs have any point in common outside the set $\{0, p\}$. We may further assume that $M\left(K_{n}, K\right)<\varepsilon / 2$ for each $n \in Z^{+}$. Let Δ_{n} be the bounded region whose boundary is the Jordan curve $t_{n} \cup t_{n+1}$, and let Δ_{n}^{\prime} be the bounded region whose boundary is the Jordan curve $s_{n} \cup s_{n+1}$. Since $s_{n}-\{0, p\} \subset \Delta_{n}$ and $t_{n+1}-\{0, p\} \subset \Delta_{n}^{\prime}$, we obtain the cluster set relationships $L_{n} \subset C_{\Delta_{n}}(f, p)$ and $K_{n+1} \subset C_{\Delta_{n^{\prime}}}(f, p)$, where if G is a subset of D we define $C_{G}(f, p)$ by

$$
\left.C_{G}(f, p)=\cap_{r>0} \overline{f(G \cap\{z:|z-p|<r\}}\right) .
$$

Also, by [2, Theorem 5.2.1, p. 91], we have the relationship

$$
B d C_{\Delta_{n}}(f, p) \subset C_{t_{n}}(f, p) \cup C_{t_{n+1}}(f, p)=K_{n} \cup K_{n+1}
$$

and

$$
B d C_{\Delta_{n^{\prime}}}(f, p) \subset C_{s_{n}}(f, p) \cup C_{s_{n+1}}(f, p)=L_{n} \cup L_{n+1},
$$

where $B d E$ is used to denote the boundary of the set E.
Let n be a fixed integer greater than 1 . Since f is bounded in a neighborhood of p, each of the cluster sets mentioned above is a bounded set. Since $M\left(K_{k}, K\right)<\varepsilon / 2$ and $d\left(L_{k}, K\right)>\varepsilon$ for each $k \in Z^{+}$, and by the boundary cluster set relationship given above, there exists a point $w_{0} \in L_{n} \cup L_{n+1}$ such that

$$
\left|w_{0}\right|>\sup \{|w|: d(w, K)<\varepsilon / 2\} .
$$

If $w_{0} \in L_{n}$, then the fact that L_{n} is contained in a bounded set whose boundary is $K_{n} \cup K_{n+1}$ leads to the existence of a point $w_{1} \in K_{n} \cup K_{n+1}$ such that $\left|w_{1}\right|>\left|w_{0}\right|$. But $d\left(w_{1}, K\right)<\varepsilon / 2$, is violation of the choice of w_{0}. Similarly, if $w_{0} \in L_{n+1}$, then the fact that L_{n+1} is contained in a bounded set whose boundary is $K_{n+1} \cup K_{n+2}$ leads to the existence of a point $w_{2} \in K_{n+1} \cup K_{n+2}$ such that $\left|w_{2}\right|>\left|w_{0}\right|$. But $d\left(w_{2}, K\right)<\varepsilon / 2$, also is violation of the choice of w_{0}. Thus the assumption that $\mathbb{C}_{f}(p)$ is not compact in the M-topology is untenable, and this proves the theorem.

We remark that the proof of Theorem 1 used only the assumption that f is bounded on a union of three consecutive regions Δ_{n}. We will make use of this in the procf of Lemma 3 below.

Theorem 2. If f is holomorphic and bounded in D, then $\mathbb{๒}_{f}(p)$ is compact in: the M-topology for each point $p \in C$.

Theorem 2 follows immediately from Theorem 1.
Lemma 3. Let f be holomorphic in D and let $p \in C$. If $\left\{t_{n}\right\}$ is a directed sequence of arcs in $\mathfrak{T}(p)$, if $K_{n}=C_{t_{n}}(f, p)$ for each $n \in Z^{+}$, and if K is a continuum such that $M\left(K_{n}, K\right) \rightarrow 0$, then either $K \in \mathbb{『}_{f}(p), \infty \in K$, or there exist three arcs q_{1}, q_{2}, and q_{3} in $\mathfrak{I}(p)$ such that $f(z) \rightarrow \infty$ on q_{1} and on q_{3} as $z \rightarrow p, f$ is bounded on q_{2}, and q_{2} is between q_{1} and q_{3}.

Proof. Assume that $K \notin \mathbb{S}_{f}(p)$ that $\infty \notin K$, and that each K_{n} is a bounded set. By defining Δ_{n} as in the proof of Theorem 1, we have that if there exists. an integer N such that f is bounded in each of the regions Δ_{n} for $n>N$, then by the remark following the proof of Theorem 1 we must have that $K \in \mathbb{C}_{f}(p)$, in violation of our assumption. Thus there exist $n_{1}, n_{2} \in Z^{+}, n_{2}>n_{1}$, such that f is unbounded in each of $\Delta_{n_{1}}$ and $\Delta_{n_{2}}$. There exist paths q_{1}, q_{3} in $\mathfrak{T}(p)$ such that $q_{1}-\{p\} \subset \Delta_{n_{1}}, q_{3}-\{p\} \subset \Delta_{n_{2}}$, and $f(z) \rightarrow \infty$ as $z \rightarrow p$ along q_{1} and q_{3}. Letting $\boldsymbol{q}_{2}=t_{n_{2}}$, we have that $C_{q_{2}}(f, p)=K_{n_{2}}$ is a bounded set, so that f is bounded on q_{2}, and further q_{2} is between q_{1} and q_{3}. This completes the proof of the lemma.

Lemma 3 suggests the following definition.
Definition 3. Let p be a point in C. We say that the function f is in the class I_{p} if f is holomorphic in D and if for each pair of arcs t_{1}, t_{2} in $\mathfrak{I}(p)$ for
which $f(z) \rightarrow \infty$ as $z \rightarrow p$ along $t_{j}(j=1,2)$ we have that f is unbounded on each path t in $\mathfrak{T}(p)$ for which t is between t_{1} and t_{2}.

For each $p \in C$ the class I_{p} includes all holomorphic functions in D for which ∞ is not an asymptotic value at p. We will relate the class I_{p} to the class of all normal holomorphic functions (see [2, p. 86] and [3] for a discussion of normal holomorphic functions).

Theorem 3. If f is a normal holomorphic function in D, then f is in the class I_{p} for each $p \in C$.

Proof. If $p \in C$ and if ∞ is an asymptotic value of f at p along two disjoint paths t_{1} and t_{2} in $\mathfrak{T}(p)$, and if t is any path in $\mathfrak{T}(p)$ between t_{1} and t_{2}, then by a remark of Lehto and Virtanen [3, p. 53] $f(z) \rightarrow \infty$ as $z \rightarrow p$ along t. Thus f is in the class I_{p} and the theorem is proved.

We next show that if f is in the class I_{p} then f cannot have very many distinct asymptotic values at p.

Theorem 4. If p is a point in C and if f is a holomorphic function in the class I_{p}, then f may have at most two finite asymptotic values at p.

Proof. If f is a holomorphic function in D having three distinct finite asymptotic values a_{1}, a_{2}, a_{3} at p, then there exist three disjoint arcs t_{1}, t_{2}, t_{3} in $\mathfrak{Z}(p)$ such that $f(z) \rightarrow a_{j}$ as $z \rightarrow p$ along $t_{j}(j=1,2,3)$. But then there exist paths $q_{1} q_{2}$ in $\mathfrak{I}(p)$ such that q_{j} is between t_{j} and t_{j+1} and $f(z) \rightarrow \infty$ as $z \rightarrow p$ along $q_{j}(j=1,2)$. This means that t_{2} is between q_{1} and q_{2} and f is bounded on t_{2}. It follows that f cannot be in the class I_{p}, and the theorem is proved.

We now return to a consideration of the compactness of $\mathfrak{C}_{f}(p)$ in the M-topology and we relate this to the class I_{p}.

Theorem 5. If $p \in C$ and if f is a function in the class I_{p}, then $⿷_{f}(p)$ is compact in the M-topology.

Proof. If $\mathbb{C}_{f}(p)$ is not compact in the M-topology, then there exist sequences of continua $\left\{K_{n}\right\}$ and $\left\{L_{n}\right\}$, a continuum K, and a real number $\varepsilon>0$ as described in Lemma 2. We may assume that $M\left(K_{n}, K\right)<\varepsilon / 2$ for each $n \in Z^{+}$. Since f is in the class I_{p}, then $\infty \in K$ by Lemma 3. Then there exists a bounded set L such that $L_{n} \subset L$ for each $n \in Z^{+}$and $d(L, K)>\varepsilon$. Letting Δ_{n}^{\prime} be the region defined in the proof of Theorem 1, and using the facts that $K_{n+1} \subset C_{\Delta_{n^{\prime}}}(f, p)$, $B d C_{d_{n^{\prime}}}(f, p) \subset L_{n} \cup L_{n+1}$, and that ∞ is in the same component of the complement of $L_{n} \cup L_{n+1}$ as is K_{n+1}, we obtain that f must be unbounded in Δ_{n}^{\prime} for each $n \in Z^{+}$. Thus for each $n \in Z^{+} f$ has ∞ as an asymptotic value at p along a path q_{n} such that $q_{n}-\{p\} \subset \Delta_{n}^{\prime \prime}$. Letting $\left\{s_{n}\right\}$ be the sequence of arcs described in Lemma 2 (namely, s_{n} is one part of the boundary of Δ_{n}^{\prime}) we have that s_{n+1} is
between q_{n} and q_{n+1} for each $n \in Z^{+}$but f is bounded on s_{n+1}, is violation of the assumption that f is in the class I_{p}. Thus the theorem is proved.

We note that Theorem 5 gives a sufficient, but not a necessary condition for $\mathbb{®}_{f}(p)$ to be compact in the M-topology. For example, if $f(z)=\exp \left\{-1 /(1-z)^{2}\right\}$, then it is easy to verify that $\mathbb{C}_{f}(1)$ is compact in the M-topology but f is not in the class I_{1}.

The proof of Theorem 5 actually tells us much more than the statement of the theorem, for the proof reveals that the behavior forbidden to a function in class I_{p} must be repeated infinitely often in order that $\mathbb{๒}_{f}(p)$ not be compact in the M-topology. We formulate this result as our final theorem.

Theorem 6. Let f be a holomorphic function in D. If $p \in C$ and if $\mathfrak{๒}_{f}(p)$ is not compact in the M-topology, then there exist two directed sequences of arcs $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ in $\mathscr{T}(p)$ such that for each $n \in Z^{+}, f(z) \rightarrow \infty$ as $z \rightarrow p$ on p_{n}, f is bounded on q_{n}, and q_{n} is between p_{n} and p_{n+1}.

The converse of Theorem 6 is not valid, as the function $f(z)=\exp$ $\{\exp ((1+z) /(1-z))\}$ shows. By using basic properties of the exponential function and the fact that $w=(1+z) /(1-z)$ maps D onto the right half plane, it can easily be shown that f satisfies the conclusion of Theorem 6 but $\mathbb{C}_{f}(1)$ is compact in the M-topology.

REFERENCES

[1] C. Belna and P. Lappan, The compactness of the set of arc cluster sets, Michigan: Math. J. 16 (1969), 211-214.
[2] E. F. Collingwood and A. J. Lohwater, The theory of cluster sets, Cambridge Tractsin Mathematics and Mathematical Physics, No. 56, Cambridge University Press, 1966.
[3] O. Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math. 97 (1957), 47-65.

> Department of Mathematics Michigan State University East Lansing, Michigan 48823 U. S. A.

[^0]: The author acknowledges partial support from the National Science Foundation under NSF Grant No. GP-11825.

