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Let $f$ be a complex-valued function defined in the unit disk $D$, let $C$ denote
the unit circle, and let $W$ denote the Riemann sphere. For each point $peC$ ,

let $\mathfrak{T}(p)$ denote the set of all Jordan arcs contained in $D\cup\{P\}$ and having one
end point at $p$ . For each $te\mathfrak{T}(P)$ , define the cluster set of $f$ at $p$ relative to the
arc $t$ by

$C_{\ell}(f, p)=\bigcap_{r>0}f(t\cap\{z:|z-P|<r\})$ .

We remark that if $f$ is a continuous function then for each $te\mathfrak{T}(p)$ the set
$C_{t}(f, p)$ is a non-empty closed connected subset of $W$. We shall refer to a non-
empty closed connected subset of $W$ as a continuum, even if the set is a
singleton.

If $A$ and $B$ are two non-empty closed subsets of $W$, define

$M(A, B)=\max\{\sup_{a\in A}d(a, B), \sup_{b\in B}d(b, A)\}$ ,

where $d(a, b)$ denotes the chordal distance between the pointsa and $b$ on $W$.
The distance $M(A, B)$ is a metric on the set of all non-empty closed subsets in
$W$. In particular, for a fixed $peC,$ $M$ impoees a topology on $\mathfrak{C}_{f}(p)$ , where

$\mathfrak{C}_{f}(p)=\{C_{\ell}(f, p):te\mathfrak{T}(p)\}$ ,

that is, $\mathfrak{C}_{f}(p)$ is the set whose elements are the sets $C_{\ell}(f, p)$ . We call this
topology the $M$-topology on $\mathfrak{C}_{f}(p)$ . It is easy to verify that the $M$topology on
$\mathfrak{C}_{f}(p)$ is separable.

Belna and LaPpan [1, Theorem 1, p. 2111 have proved that if $f$ is a continuous
function in $D$ and $p$ is a point of $C$, and if $\mathfrak{C}_{f}(p)$ is not compact in the
$M$-topology, then $p$ is an ambiguous point for $f$, that is, there exist two arcs $ t\iota$

and $t_{2}$ in $\mathfrak{T}(p)$ such that $ C_{t_{1}}(f, p)\cap C_{\ell_{2}}(f, p)=\phi$ . They have also given an example
of a function $f$ holomorphic in $D$ and a point $peC$ for which $\mathfrak{C}_{f}(p)$ is not com-
pact in the $M$topology[1, Remark 2, p. 212]. In this Paper we will show that
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if $f$ is a holomorphic function in $D$ which behaves nicely enough near the Point
$peC$, then $\mathfrak{C}_{f}(p)$ is a compact set in the $M$-topology.

We begin with some definitions:
Definition 1. Let $t_{1},$ $t_{2}$ , and $t_{8}$ be Jordan arcs in $\mathfrak{T}(p)$ . If there exist Jordan

arcs $t_{4},$ $t_{5}$ , and $h$ in $\mathfrak{T}(p)$ such that t1C $f_{4},$ $t_{2}\subset t_{5}$ and $t_{6}\subset t_{8}$ , where $t_{4}\cup t_{\$}$ is a
Jordan curve and $h-\{P\}$ is contained in the bounded region whose boundary is
$t_{4}\cup t_{5}$ , then we say that $t_{\theta}$ is between $t_{1}$ and $t_{2}$ .

Let $z+$ denote the set of positive integers.
Definition 2. The sequence $\{t_{\hslash}\}$ of Jordan arcs in $\mathfrak{T}(p)$ is said to be a directed

sequence if for each $neZ^{+}$ , the arc $ t*+\iota$ is between $t_{\hslash}$ and $t_{*+2}$ .
Lemma 1. Let $f$ be a continuous function in $D$ and let $pe$ C. If $\{t_{n}\}$ is a

directed sequence of arcs in $\mathfrak{T}(p)$ such that $C_{\iota_{n}}(f, p)=K_{n}$ and if $K$ is a continuum
such that $M(K_{n}, K)\rightarrow 0$ but $K\not\in \mathfrak{C}_{f}(p)$ , then there exists a directed sequence of arcs
$\{s_{k}\}$ in $\mathfrak{T}(p)$ and a Positive number $\epsilon>0$ such that for each $keZ^{+}$ there exists
$n_{k}eZ^{+}$ such that si is between $t_{n_{k}}$ and $t_{n_{k\cdot 1}}$ and $d(C_{l}k(f, p),$ $K$) $>\epsilon$ .

Proof. The conclusion of this lemma can be reformulated as folows: there
exists $\epsilon>0$ such that for each $neZ^{+}$ and for each real number $\delta>0$ there exists
$meZ^{+}$ where $m>n$ such that $t_{n}\cap\{zeD:|z-p|<\delta\}$ and $t_{m}\cap\{zeD:|z-p|<\delta\}$ are
contained in different $com\infty nents$ of $\{zeD:d(f(z), K)<\epsilon, |z-p|<\delta\}$ , where we
assume that $ M(f(t_{n}), K)<\epsilon$ for each $neZ^{+}$ . Let us assume that the lemma is
false. Then for each $keZ^{+}$ there exists an integer $N_{k}$ such that for each $\delta>0$

we have that $n>N_{k}$ implies that all of the sets $t_{n}\cap\{zeD:|z-P|<\delta\}$ lie in the
same component of $\{zeD:d(f(z), K)<1/k, |z-p|<\delta\}$ . Thus, for each $n>N_{k}$ and
each $\delta>0$ there exists a Jordan arc $q_{n}$ leading from a point of $t_{*}$ to a point of
$t_{n+1}$ such that

$q_{n}\subset\{zeD:|z-p|<\delta, d(f(z), K)<1/k\}$ .
Thus we may $chse$ a subsequence $\{t_{n_{k}}\}$ of $\{t_{n}\}$ such that $n_{k}>N_{k}$ for each $keZ^{+}$ ,
and using the same reasoning as before on the sequence $\{t_{n_{k}}\}$ we may conclude
that for each $keZ^{+}$ there exists a Jordan arc $p_{k}$ leading from a point on $t_{n_{k}}$ to
a point on $t_{n_{k}+1}$ such that for each $keZ^{+}$ ,

$p_{k}\subset\{zeD:|z-P|<1/k, d(f(z), K)<1/k\}$ ,

and the portion $t_{k}^{\prime}$ of $t_{\hslash}k$ between the terminal point of $p_{k-1}$ and the starting
point of $p_{k}$ satisfies the relationship $M(f(t_{k}^{\prime}), K)<1/k$ . It is no loss of generality
to assume that $p_{k}$ meets $t_{*}k$ and $t_{n_{k+1}}$ in exactly one point each. Then letting
$t$ be the Jordan arc obtained by splicing together all of the arcs $t_{l}^{\prime}$ and $p_{k}$ , we
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have that $C_{\ell}(f, p)=K$, in violation of the hypothesis that $K\not\in \mathfrak{C}_{f}(p)$ . Thus the
lemma is proved.

Lemma 2. If $f$ is a continuous function in $D$ and if $peC$ such that $\mathfrak{C}_{f}(p)$ is
not compact in the $M$-topology, then there exist directed sequences $\{t_{n}\}$ and $\{s_{\#}\}$ of
.arcs in $\mathfrak{T}(p)$ , a number $\epsilon>0$, and a continuum $K$ such that, letting $K,=C_{\ell_{n}}(f, p)$

.and $L_{n}=C_{\epsilon_{n}}(f, p)$ , we have for each $neZ^{+}$ that $M(K_{n}, K)<1/n,$ $ d(L_{n}, K)>\epsilon$ , and
the arc $s_{n}$ is between $t_{n}$ and $t_{n+1}$ .

Proof. The result will follow from Lemma 1 by showing that for a sequence
.of arcs $\{t_{n}\}$ in $\mathfrak{T}(p)$ satisfying $C_{\ell_{n}}(f, p)=K$, and $M(K_{*}, K)<1/n$ , where $K\not\in \mathfrak{C}_{f}(p)$ ,

there is a subsequence of $\{t_{n}\}$ which is a directed sequence. If the arcs $t_{n}$ are
not mutually disjoint then they can be shortened individualy so that an infinite
subset of the shortened arcs are mutually disjoint, since otherwise tkere would
exist an arc $t\in \mathfrak{T}(p)$ where $t$ is contained in the union of the $t_{n}’ s$ and $C_{t}(f, p)=K$,

is violation of the assumption on $K$. But now a directed subsequence of the
shortened arcs $t_{n}$ can be selected. Thus the validity of the lemma depends on
the existence of an aPpropriate continuum $K$ and on Lemma 1. But the existence
.of an aPpropriate continuum $K$ follows from the hypothesis that $\mathfrak{C}_{f}(p)$ is not
compact in the M-topology, and the lemma is established.

Theorem 1. If $peC$ and if $f$ is a holomorphic function in $D$ which is
.bounded in a neighborhood (relative to $D$) of $p$, then $\mathfrak{C}_{f}(p)$ is compact in the
$M$ toPology.

Proof. $Suppoee$ that $\mathfrak{C}_{f}(p)$ is not compact in the $M$-topology. Let $\{t_{n}\},$ $\{s_{l}\}$ ,
$X_{n},$ $L_{n},$ $K$, and $\epsilon$ all be as in Lemma 2. It is no loss of generality to assume
that all of the arcs $s_{n}$ and $t_{n}$ originate at the origin, terminate at $p$ , and that
no pair of these arcs have any point in common outside the set $\{o, p\}$ . We may
further assume that $M(K_{n}, K)<\epsilon/2$ for each $neZ^{+}$ . Let $\Delta_{n}$ be the bounded
region whose boundary is the Jordan curve $t_{n}\cup t_{n+1}$ , and let $\Delta_{n}^{\prime}$ be the bounded
region whose boundary is the Jordan curve $s_{n}\cup s_{n+1}$ . Since $s_{n}-\{0, p\}\subset\Delta_{f}$ and

$-t_{n+1}-\{0, p\}\subset\Delta_{n}^{\prime}$ , we obtain the cluster set relationships $L_{n}\subset C_{A_{n}}(f, p)$ and
$K_{n+1}\subset C_{A_{n^{\prime}}}(f, p)$ , where if $G$ is a subset of $D$ we define $C_{G}(f, p)$ by

$C_{G}(f, p)=\bigcap_{r>0}\overline{f(G\cap\{z:|z-p|<r\}})$ .

Also, by [2, Theorem 5. 2. 1, p. 91], we have the relationship

$BdC_{A_{n}}(f, p)\subset C_{\ell_{n}}(f, p)\cup C_{\ell_{\hslash+1}}(f, p)=K_{n}\cup K_{n+1}$

and
$BdC_{4_{*^{\prime}}}(f, p)\subset C_{n}(f, p)\cup C_{\iota_{n+1}}(f, p)=L\cup L_{n+1}$ ,
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where $BdE$ is used to denote the boundary of the set $E$.
Let $n$ be a fixed integer greater than 1. Since $f$ is bounded in a neigh-

$brhd$ of $p$ , each of the cluster sets mentioned above is a bounded set. Since
$M(K_{k}, K)<\epsilon/2$ and $ d(L_{k}, K)>\epsilon$ for each $keZ^{+}$ , and by the boundary cluster set
relationship given above, there exists a point $w_{0}eL_{n}\cup L_{n+1}$ such that

$|w_{0}|>\sup\{|w|:d(w, K)<\epsilon/2\}$ .

If $w_{0}eL_{n}$ , then the fact that $L_{n}$ is contained in a bounded set whose boundary

is $K_{n}\cup K_{n+1}$ leads to the existence of a point $w_{1}\in K_{n}\cup K_{n+1}$ such that lwil $>|w_{0}|$ .
But $d(w_{1}, K)<\epsilon/2$ , is violation of the choice of $w_{0}$ . Similarly, if $w_{0}eL_{n+1}$ , then
the fact that $L_{n+1}$ is contained in a bounded set whose boundary is $K_{n+1}\cup K_{n+}*$

leads to the existence of a point $w_{2}eK_{n+1}\cup K_{n+2}$ such that $|w_{2}|>|w_{0}|$ . But
$d(w_{2}, K)<\epsilon/2$ , also is violation of the choice of $w_{0}$ . Thus the assumption that
$\mathfrak{C}_{f}(p)$ is not compact in the $M$-topology is untenable, and this proves the theorem.

We remark that the $pr\infty f$ of Theorem 1 used only the assumption that $f$ is.
bounded on a union of three consecutive regions $\Delta_{n}$ . We will make use of this
in the procsf of Lemma 3 below.

Theorem 2. If $f$ is holomorphic and bounded in D. then $\mathfrak{C}_{f}(p)$ is compact $in^{\prime}$

the M-topology for each Point $peC$ .
Theorem 2 follows immediately from Theorem 1.
Lemma 3. Let $f$ be holomorphic in $D$ and let $pe$ C. If $\{t_{n}\}$ is a directed

sequence of arcs in $\mathfrak{T}(p)$ , if $K_{n}=C_{\iota_{n}}(f, p)$ for each $neZ^{+}$ , and if $K$ is a continuum
such that $M(K_{n}, K)\rightarrow 0$, then either $Ke\mathfrak{C}_{f}(p),$ $\infty eK$, or there exist three arcs $q_{1}$ ,
$q_{2}$ , and $q_{8}$ in $\mathfrak{T}(p)$ such that $ f(z)\rightarrow\infty$ on $q_{1}$ and on $q_{8}$ as $z\rightarrow P,$ $f$ is bounded on $q_{2}$ ,

and $q_{2}$ is between $q_{1}$ and $q_{\theta}$ .
Proof. Assume that $K\not\in \mathfrak{C}_{f}(p)$ that $\infty\not\in K$, and that each $K_{n}$ is a boundedi

set. By defining $\Delta_{n}$ as in the $prf$ of, Theorem 1, we have that if there exists.
an integer $N$ such that $f$ is bounded in each of the regions $\Delta_{n}$ for $n>N$, then
by the remark following the $prf$ of Theorem 1 we must have that $Ke\mathfrak{C}_{f}(p)_{\triangleright}$

in violation of our assumption. Thus there exist ni, $n_{2}eZ^{+},$ $n_{2}>n_{1}$ , such that
$f$ is unbounded in each of $\Delta_{n_{1}}$ and $\Delta_{n_{2}}$ . There exist Paths $q_{1},$ $q_{S}$ in $\mathfrak{T}(p)$ such
that $q_{1}-\{p\}\subset\Delta_{n_{1}},$ $q_{8}-\{p\}\subset\Delta_{n_{2}}$ , and $ f(z)\rightarrow\infty$ as $z\rightarrow p$ along $q_{1}$ and $q_{S}$ . Letting
$q_{t}=t_{n_{2}}$ , we have that $C_{q_{2}}(f, p)=K_{n_{2}}$ is a bounded set, so that $f$ is bounded on $q_{8}$ ,

jand further $q_{2}$ is between $q_{1}$ and $q_{8}$ . This completes the $prf$ of the lemma.
Lemma 3 suggests the following definition.
Definition 3. Let $P$ be a point in C. We say that the function $f$ is in the

class $I_{p}$ if $f$ is holomorphic in $D$ and if for each pair of arcs $t_{1},$ $t_{2}$ in $\mathfrak{T}(p)$ for
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which $ f(z)\rightarrow\infty$ as $z\rightarrow P$ along $t_{j}(j=1,2)$ we have that $f$ is unbounded on each path
$t$ in $\mathfrak{T}(p)$ for which $t$ is between $t_{1}$ and $t_{2}$ .

For each $peC$ the class $I_{p}$ includes all holomorphic functions in $D$ for which
$\infty$ is not an asymptotic value at $p$ . We will relate the class $I_{p}$ to the class of
all normal holomorphic functions (see [2, p. 86] and [3] for a discussion of normal
holomorphic functions).

Theorem 3. If $f$ is a normal holomorphic function in D. then $f$ is in the
class $I_{p}$ for each $peC$ .

Proof. If $peC$ and if $\infty$ is an asymptotic value of $f$ at $p$ along two disjoint

paths $t_{1}$ and $t_{2}$ in $\mathfrak{T}(p)$ , and if $t$ is any path in $\mathfrak{T}(p)$ between $ t\iota$ and $t_{2}$ , then by

a remark of Lehto and Virtanen [3, p. 53] $ f(z)\rightarrow\infty$ as $z\rightarrow p$ along $t$ . Thus $f$ is
in the class $I_{p}$ and the theorem is proved.

We next show that if $f$ is in the class $I_{p}$ then $f$ cannot have very many
distinct asymptotic values at $p$ .

Theorem 4. If $P$ is a point in $C$ and if $f$ is a holomorphic function in the
class $I_{p}$ , then $f$ may have at most two finite asymptotic values at $p$ .

Proof. If $f$ is a holomorphic function in $D$ having three distinct finite
asymPtotic values $a_{1},$ $a_{2},$ $a_{3}$ at $p$ , then there exist three disjoint arcs $t_{1},$ $t_{2},$ $ t\epsilon$ in
$\mathfrak{T}(p)$ such that $f(z)\rightarrow a_{j}$ as $z\rightarrow P$ along $t_{j}(j=1,2,3)$ . But then there exist paths
$q_{1}q_{2}$ in $\mathfrak{T}(p)$ such that $q_{j}$ is between $t_{j}$ and $t_{j+1}$ and $ f(z)\rightarrow\infty$ as $z\rightarrow p$ along
$q_{j}(j=1,2)$ . This means that $t_{2}$ is between $q_{1}$ and $q_{2}$ and $f$ is bounded on $t_{2}$ . It
follows that $f$ cannot be in the class $I_{p}$ , and the theorem is proved.

We now return to a consideration of the compactness of $\mathfrak{C}_{f}(p)$ in the
M-topology and we relate this to the class $I_{p}$ .

Theorem 5. If $peC$ and if $f$ is a function in the class $I_{p}$ , then $\mathfrak{C}_{f}(p)$ is
compact in the $M$-topology.

Proof. If $\mathfrak{C}_{f}(p)$ is not compact in the $M$-topology, then there exist sequences
.of continua $\{K_{n}\}$ and $\{L_{n}\}$ , a continuum $K$, and a real number $\epsilon>0$ as described
in Lemma 2. We may assume that $M(K_{n}, K)<\epsilon/2$ for each $neZ^{+}$ . Since $f$ is
in the class $I_{p}$ , then $\infty eK$ by Lemma 3. Then there exists a bounded set $L$

such that $L_{n}cL$ for each $neZ^{+}$ and $ d(L, K)>\epsilon$ . Letting $\Delta_{n}^{\prime}$ be the region
defined in the proof of Theorem 1, and using the facts that $K_{n+1}\subset C_{A_{n^{\prime}}}(f, p)$ ,
$BdC_{A_{n^{\prime}}}(f, p)\subset L_{n}\cup L_{n+1}$ , and that $\infty$ is in the same component of the complement

of $L_{n}\cup L_{n+1}$ as is $K_{n+1}$ , we obtain that $f$ must be unbounded in $\Delta^{\prime}$ for each
$neZ^{+}$ . Thus for each $neZ^{+}f$ has $\infty$ as an asymptotic value at $P$ along a path
$q_{n}$ such that $q,$ $-\{p\}\subset\Delta^{\prime},$ . Letting $\{s_{n}\}$ be the sequence of arcs described in
Lemma 2 (namely, $s_{n}$ is one part of the boundary of $\Delta^{\prime}.$ ) we have that $s_{n+1}$ is
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between $q_{n}$ and $q_{n+1}$ for $e$ach $neZ^{+}$ but $f$ is bounded on $s_{n+1}$ , is violation of the
assumption that $f$ is in the class $I_{p}$ . Thus the theorem is proved.

We note that Theorem 5 gives a sufficient, but not a necessary condition for
$\mathfrak{C}_{f}(p)$ to be compact in the $M\cdot topology$ . For example, if $f(z)=\exp\{-1/(1-z)^{2}\}_{r}$

then it is easy to verify that $\mathfrak{C}_{f}(1)$ is compact in the $M$-topology but $f$ is not

in the class $I_{1}$ .
The $pr\omega f$ of Theorem 5 actually tells us much more than the statement of

the theorem, for the proof reveals that the behavior forbidden to a function in

class $I_{p}$ must be repeated infinitely often in order that $\mathfrak{C}_{f}(p)$ not be compact in

the M-topology. We formulate this result as our final theorem.
Theorem 6. Let $f$ be a holmorphic function in D. If $peC$ and if $\mathfrak{C}_{f}(p)$ is

not compact in the $M$-topology, then there exist two directed sequences of arcs
$\{p_{n}\}$ and $\{q_{n}\}$ in $\mathfrak{T}(p)$ such that for each $neZ^{+},$ $ f(z)\rightarrow\infty$ as $z\rightarrow p$ on $p.,$ $f$ is

bounded on $q_{n}$ , and $q_{n}$ is between $p_{n}$ and $p_{n+1}$ .
The converse of Theorem 6 is not valid, as the function $ f(z)=\exp$

$\{\exp((1+z)/(1-z))\}$ shows. By using basic Properties of the exponential function

and the fact that $w=(1+z)/(1-z)$ maps $D$ onto the right half plane, it can easily

be shown that $f$ satisfies the conclusion of Theorem 6 but $\mathfrak{C}_{f}(1)$ is compact in

the M-topology.
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