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1. This paper is a study of the oscillation properties of solutions of the
differential equation

(1.1) Yy +p@)y +f(t, ¥)=0.
Throughout we shall assume that p(#) is continuous and does not change sign
on [, ©0),a>0 and f(¢, y)€ C[[a, o) X(—o0, 0)=S] with a(®)e(y)> f(t, Nk (y)
for (¢, y)€S, where a(f) and A(¢) are locally integrable functions and

20) TO) S 4.

Yy y

A non-trivial solution of a differential equation is said to be oscillatory if it has
zeros for arbitrarily large values of the independent variable. Motivation for
the study of oscillation properties of the solutions of comes from two
directions. The equation

¥+ p@)y +4q()y=0
has been studies extensively and some recent papers are those of Gregus [31,
Hanan [4], Zliémal [14), Lazer and Svec [10]. On the other hand the non-
linear second order differential equations have been studies by Atkinson [1],
Bhatia 2], Nehari [11] and Waltman and third order by Waltman and
Heidel [5). Two cases a(t), h(2) nonnegative and a(?), k() nonpositive are discussed
in this paper. The technics used to prove theorems in this paper are not new.

2. The case a(f) and A(f) are nonnegative is considered in this section and
two theorems are provided.

Theorem 2.1. Let p(¢) be nonpositive and a(t), h(t) nonnegative. If

S“[“ )= 3o P(t))“/z]dtzoo

and
S"[a a(t)— %(— p(t))S/z:Idt= oo

then every continuable solution of [(1.1), which has a zero is oscillatory.
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Proof. Let y(f) be any solution of which has a zero and is nonoscilla-
tory. Let its last zero be o and y(£)>0 for £>%. (Similar proof follows when
3()<0, for t>%). Now we assert that y’(f) cannot change signs more than
twice in [fo, ). Let us assume that 71 and T: are two consecutive points in
[to, ) where y’(t) changes sign. Multiplying (1.1) by »’(#) and integrating by
parts between 71 and T3, we get

Ty Ty Ty
—S y"z(t)dt+§ p(t)y”(t)dt+§ it Y@y )dt=0
T T, Ty
or
——Sr’y"Z(t)dtJrST’ P(t)y'z(t)dt+g att) 22O) yryyt)dt >0 (1)
Ty T (t)

(If y'(¢) is negative within (7%, T3), replace a(t)p(y(#)) by h@E)¥(y(#))). Since

p(6)<0, a()=>0, SD({()t)) >0, it follows from (1) that y(f)y’(¢) is nonnegative in

(T1, T2). Thus () cannot change its sign more than twice within [£, o) and
there exists a number #1>%o such that either y(¢)y’(#)<0 or ‘

y@)y'(£)>0 for t>t1.
Let y(t)y’(t)<0. Since y(¢)>0 for t>¢0 and y(to)=0, there exists £1>?%o such that
Y(£)=0, y'(#)<0 for t>t1. Multiplying (1.1) by »’() and integrating by parts
between #1 and ¢, we have

22 (£ () — ¢
Y1)y §

4

1)t — S: pE)y ()t — S £, yO)y ()it
1

> S' Y(E)dt — S' Py E)dE— S nt) "’({g’” Yy @)dt
t t

=>0.

Thus ¥”/(#)<0 and this contradicts that #, is the last zero of y(¢) and thus we
have y(2)y’(£)=>0 for t>¢1.

Let x()= l(%L >0 for t>4.
2 () — 3 () x() = — () — p(E) x(£)— f(ty, (sgt))
— U(y()
[x‘@) +p@)x(#)+h(2) =0

L —[28(2)+p(B)x () + k()] .

The minimum of the function
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x34-pt)x+ah(t), x>0

is when x=:—§(t—)-. Thus we have
a_ 3 _ 2 .
g l:x'(t)+ 3 xz(t):|< [ah(t) 2 (= p0) 2]. (2)
Integrating both the sides of (2) from £1 to £, we get
/ 4 _g. 2 __3_ 2 _S‘[ _L P 8/2]
() <x'(t) + 5 x2(t1) 2 x2(t) . ah(t) W p(t))%/2 \dt .

——oco as t—oo, consequently x(f) would become negative which is contradic-
tory. Hence y(¢) is oscillatory solution.

Theorem 2.2. Let p(t), a(t) and h(t) be nonnegative. If [aa(t)—p'(f)] and
[ab(t)—p’(D)] are positive and

S“t{aa(t)—p'(tndtmo, S”t[ah(t)—ﬁ(t)]dt:oo

then every continuable solution of (1.1) which has a zero is oscillatory.

Proof. Suppose y(f) is a solution of which has a zero but does not
oscillate. Let Zo be its last zero and y(£)>0, for ¢>%. (Similar proof follows if
¥(@)<0, t>t)). Now there are two possibilities. Either y’(f) has a zero after fo
or ¥'(t)>0 for t>to.

In first possibility, let £1>%0 be the first zero of y/(¢) after #. Multiplying
(1.1) by y(¢) and integrating from % to ¢, we get

§E YO + 532 (E0) — —=3E) + - plEWD)
+St y4(s) [ah(s)—-—l—p’(s)]ds<0 . (3)
¢y 2 :

From (3) it follows that at every zero of y’(¢), y(£)y’”/(¢)<0 and thus #1 is the only
zero of y'(f) and y’()<0 for £>¢1. Now y’/(f) can not remain negative, otherwise
o is not the last zero of y(f). If y//(¢) remains positive then Eim y'(t) exists but

from (3), we have

30> O30 + 32t + 5O

b _ P’(S)]
+St° y2(s) [ah(s) 5 ds. (4)
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Here all the terms on the right are positive and the last term is increasing.
Since lim y'(t) exists and is finite, it follows at once that y(f) has a zero within

(¢1, 0) which is contradictory.
If y”/(t) changes its sign for arbitrarily large #, y’(f) has maxima for arbi-
trarily large £. Since }im () exists and is finite and y’(#)<0 lir? sup y'()=0

and thus the set of maxima of y’(f) must contain a subsequence {f»} such that
lim y’(2»)=0. But putting Z» in (4), we get lim [y’2(¢»)]>0, which is contradiction.
n—>c0

Thus we proved that if y(fo)=3y'(£1)=0, then ?o is not the last zero of y(f) which
contradicts y(£)>0, ¢>t. ‘ '

In case of second possibility, since y/(£)>0, t>t,, we have y'”’(t)=—p(#)y’(t)
—f(t,y)<0 and thus y’’(f) is a decreasing function for #>%. Suppose there
exists £1>%o such that y”/()<0, t>¢1. Then there exists f2>%1 such that ¥ () <0,
t>t:. Hence y’(¢) is positive and monotone decreasing and %LIB y'(t) exists and
is finite and nonnegative. But

V@) =y'(ts) + S: yHs)ds <y () E—ts) .

Since y’/(:) is negative it follows that y’(f)——oco as f—oo, which is contradiction.
Thus we have y’/(¢) is a decreasing function and nonnegative for £>#1. Now
integrating from ¢ to ¢, we get

1P(4\ Py ¢ f(s,y(s))_ ’ —
PE)—y )+ DY) p<t1>y(t1)+§t1y(s> [———-— 22D <s>]ds 0

or

' () + p(ts) y(t1) > S: y(S)ah(s)—p'(s)lds .
1
Since y(#)>y'(¢)(¢—11), we get
Y (E)+p(E)y(E) >y () S‘ (s—t)lah(s)—p'(s)lds .
e}

The left hand side is independent of #, but right hand side has ¢ and tends to
oo as f—oo, which is contradictory. Thus y(¢) is not nonoscillatory solution.

3. Now we shall deal with the case when p(¢), a(f) and k() are nonpositive.
If we denote

Fly@®)]=2y@)y"" () —y"* @)+ p(t)y*(2) , (5)
where y(f) is a solution of [(1.1), then
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Fly®l=Fly@)]+ S,[" 2 LEXD |yrrar

This can be verified by direct differentiation and we shall use this identity in
this section several times. The first two lemmas can be proved in a same way
as proved by Lazer [6] for the linear case.

Lemma 3.1. Let p(t), a(t) and h(t) be nonpositive and y(t) any solution of
(1.1). If y(£)>0, ¥'(£)<0 and y"(t)>0(t € [a, ), arbitrary), then

y()>0, ¥(@)>0, y()>0, y"()=>0 for 1>t
and %im y(f)=}im Yy (t)=o00. Again if y(£)<0, ¥'(£)<0, and y''(t:)<0, then y()<O0,
¥ (H<0, (<0, ¥ ($)<0 for t>to and lim y()=lim y'()=—co.
Lemma 3.2. Let p(t), a(t) and h(t) be nonpositive. If y(t) be a nonoscillatory

solution of (1.1), then there exists a number CE€ [a, ) such that either y(t)y’ (>0
or y()y'(£)<0 for t>C.

Theorem 3.3. Let p(2), a(t), h(t) be nonpositive and p(t) bounded. If

§°°[p'(t)—2aa(t>1dt=oo ,

S- [#/(t)—2ah(t)ldt=c0

and y(t) is any continuable nonoscillatory solution of (1.1) then either
lim ly@)= lim | y(t)| =00

or
ltim | y(8)|= ltim inf [ y/(t)|= %im inf|y”’(#)|=0.

Proof. Let y(f) be a nonoscillatory solution of such that y(#)>0 for
t>to. (Similar proof follows for y(2)<0 for £>?0). By lemma 3.2, there exists
a number #1>?, such that either

@)y ©)>0
or

y(B)y' (<0

for t>%1. When y(£)y’(¢)>0, we have y’(£)>0 for ¢>¢:1 and y(?) is an increasing
function and thus we can take y(#)>c¢ for £>#:. Now
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T [, )

Flyol=Flyei+ | | po—2L50 |y
1
>Fy()]+c? S' [#/(5)—2aa(®)ldt .
1

Since last term is increasing, there exists t2>11 such that F[y(¢)]>0 which gives
from (5) that y()y’’(¢)>0 and thus y”/(£)>0 for £>¢:. Also

Y )=—p@)y t)—f(¢, ») = —p@)y () —aa(t)y(t) >0 .
Thus we have
}irgly(t)[=}£rg.}ly’(t)l=°° .

When y(#)y’#<0, then y(#)>0, y'(#)<0 for t># and y() is bounded and

ltim y(t) exists. It can easily be proved by the use of mean value theorem that
lintl inf ly’(t)l=lirr} inf |y"/(£)|=0
We assert that lim | y(f)|=0. Suppose this is not true, i.e.
tlim ly@)|=A>=0.
Integrating by parts from #1 to ¢, we get
Y (#)+p@)y(@)—y" (t1)—p(t1)y (1)

=S:l[p'(t)——f—‘yt—(’t‘)”—’:| yd)dt

> A S: [ §/(t)—aalt)]d .
1
Here right hand side tends to o as {—occ and left hand side is bounded, which
shows that %1_{2 y()=0 and proves the theorem.

Lemma 3.4. Let p(?), a(t) and h(t) be nonpositive. Let y(t) be a solution of
ZE:;)]ZO. If y(t) has a constant sign
in cerlain right hand neighborhood of t., them it retains the same sign for all
t>t.

(1.1) such that FLy(t)]=0 and [ 'p'(t)—za(

Proof. Let us assume that #1 be the first number greater than #o such that
y(t1)=0. Now

Flyt)]=Flyt)] + S:’[p'(t) _p L) (’Z t’;’] (t)dt
0

> Fly(to)] + S' (5 () —2aa®)] y*B)at
0
>0.
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(When y(¢) is negative, change a(f) by h()). But F[y(t)]=—y"*(!s), which is
contradiction and thus the lemma follows.

Theorem 3.5. Let p(#), a(t) and h(t) be nonpositive. If

r [0/ () —2aa(t)ldt=00 ,
S. [p' @) —2ah(t)ldt=0c0

and

S:tp(t)dt>—oo ,

then every continuable nontrivial solution y(t) of is either nonmoscillatory such
that

}irgrolly(t)|=}£!}.l|y'(t)l=°°
or oscillatory if and only if F[y(H1<0, for all tela, ).

Proof. Let y(f) be a nonoscillatory solution of such that y(f)>0 for
t>to (Similar proof follows for y(#)<0, ¢>%). By lemma 3.2, there exists a
number #1>% such that either y(¥)y’(#)<0 or y(#)y’(t)>0 for £>#. We assert that
y()y’(¢) £0 for t>¢1. Suppose y(¢)y’(¢)<0 for ¢>%:1. Since

S:tp(t)dt> —co,

there exists #2>#1 such that S”tp(t)dtz-—l. Multiplying by ¢ and inte-
tg .
grating from £z to ¢, £2<f, we obtain

£y () —tay” (t)—y () -+t + ' (©) S' tp(t)dt
2

t s ¢
—-S ¥ (s) S up(u)du ds =— S tf(¢, y)dt
3 t3

tq ¢
or

Ly’ (t)—2y'(t)+y'(t2) — S‘ y"(s)S up(u)duds
2

tg t

> tay"" () ~ S: 8 £, y)dt (6)
2

>ty (t)—a S' ta(t)y(t)dt _ (7)
ta
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Either y"/(#)>0 for ¢>#: (change #: if necessary) or y’/(¢) has positive and negative
values for arbitrarily large f. In first case
—S: y”(s)s: up(u)dudsSS: Y ds=y't)—y ()",
2 3 3 .

therefore (7) becomes

1" (()=y O 2ty t)—e || tatt) 0t (8)

3 «

Since tlitil y(t) exists and is finite, it follows from mean value theorem that

lim inf 5(t)=lim inf 1" (#)=0 .

But this contradicts the fact that right hand side of (8) is positive and increasing.
‘Thus our assertion follows for the case y/(#)>0.

When y”/(¢) has positive and negative values for arbitrarily large #, then
there exists a sequence of points {f.}, #>3, 352 ta=co with the following pro-

perties
(i) ti<tiy, 1=3,4,5,---
@ . y)=0, i=3,4,5, -
(iii) ‘ !1_{2 y'(t:)=0.

The existence of such a sequence {#} is clear since y’(f)<0 and lin‘1 sup y/(£)=0.
Let

up(u)du, A>—1, ts>t2 .
¢

Thus
t

S

— S‘ ¥ (s) Stsup(u)duds
S
|

¢ .

N "' (s) [S:‘ up(u)du— A :l ds

tg tg

y" ’(s) r up(u)duds—AS‘ ¥ (s)ds

< S‘ y'’(s) S“up(u)duds—-y’(ts) .

t3

‘Putting this in (6) (replacing 2 by #5) gives
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t o - t .
ty"'(#)—2y"(¢)+ S y”(S)S up(u)duds > — S Lft, y)dt
tg s tg .

Let Q(s) = S.up(u)du, then

t Y (s) S. Qu)duds
tg

ty t3

t t ‘
S y'/(s)Q(s)ds = y"’ (¢) St Q(s)ds — S
: k ‘ts t ' rt
= y!(t) St Q(s)ds + St H()y'(s) St Q(w)duds
T+ S’ Fisy(s) S‘ Q(w)duds
ty tg ’
< y"(8) St Q(s)ds + St S(s, y(s)) S. Q(u)duds
tg 3 iy

or

-St y'1(8)Q(s)ds < y"'(t) S: Q(s)ds — S: (s4ts)f(s, y(s))ds .
3 3

3

Substituting this into (9), we get
£y ()= 2y (O)+5""(t) S Q(s)ds — S (s—25) f(s, y(s))ds
te n )

> — St sf(s, y(s))ds
t3
or

1y () — 25 (£) + " (8) S Qs)ds > — S ta f(s, y(s))ds .
3 . 3.

Replacing ¢ by ¢ in (10) (where {#;} is the sequente defined before), we get

—2y/(t) > —ats S:‘a(t)y(t)dt
3

(9)

(11)

The right hand side of is positive and increasing in #:, while the left hand
side converges to zero as i—co. This contradiction proves our - assertion and

thus we have only y()y’(f)>0 and now it can be proved in a similar way as of

theorem 3.3 that

lim | y(®)|= lim | y'()[=o0 .

Now remains to prove that a solution y(¢) of is oscillatory if and onlsr
if F[y(#)]<0. Suppose the above condition holds but y(f) is nonoscillatory. Then

{y(#)|—co as t—oo and from a certain %o, |y(t)|>1. Therefore,
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> S [/ (5)—2ea(t)ldt
%o

—00 as t—o0 , (12)
But we have

S [p’(t)—g{%y)— y¥)dt=Fy(t)—FLy(t)]< —FLy(t)]
0

which is contradiction with (12).
Now let F[y(t)]=>0, then y(f)>0 or y({)<0 holds in certain right hand
neighborhood and thus by lemma (3.3), y(f) is not oscillatory.
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