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1. Introduetion

The idea of c-continuous functions was conceived by the authors in an
entirely unrelated setting. These functions have a rather nice relationship to
the classical theorem “ Every one-to-one onto continuous function from a compact
space onto a Hausdorff space is @ homeomorphism” and have many basic properties
of their own similar to properties possessed by continuous functions.

In Section 2, we study basic properties of c-continuos functions and give
equivalent definitions of c-continuous functions. '

In Sections 3 and 4, our main theorems are proved.

Throughout this paper compaciness is taken to mean every open cover has a
finite subcover and subsets of a space are compact provided they are compact
considered as subspaces. The reader is referred to [1] and [2] for definitions not
defined in this paper.

2. Basic properties of c-continuous functions

Definition 1. Let X and Y be topological spaces, let f: X—Y be a function,
and let peX. Then f is said to be c-continuous at p provided if U is an open
subset of Y containing f(p) such that Y—U is compact, then there is an open
subset V of X containing p such that f(V)cU. The function f is said to be
c-continuoys (on X) provided f is c-continuous at each point of X.

Theorem 1. Let X and Y be topological spaces and let f : X—Y be a function.
Then the following statements are equivalent:

(1) f is c-continuous, and

(2) #f U is an open subset of Y with compact complement, then f~Y(U) is an
open subset of X.

These stalements are implied by ‘

(8) if C is @ compact subset of Y, then f~XC) is a closed subset of X.

and: moreover, if Y is Hausdorff all the stalements are equivalent.

Proof: (1)—>(2) Suppose (1). Let U be an open subset of Y with compact
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complement. Let pef~(U). Then f(p)eU and there is an open set V, containing
b such that f(V,)c U. Thus V,Cf~YU) and hence f~4(U)= U {V,|pef~4(U)} is open.

(2)>(1) Suppose (2). Let peX and U be an open subset of Y containing
J(p) such that Y—U is compact. Then f~*(U) is open, pef~(U), and AfYU))cU.

(3)—(2) Suppose (3). Let U be an open subset of Y with compact comple-
ment. Then f~(Y—U) is closed. Thus f~Y(U)=X—f"Y(Y—U) is open. Now
suppose Y is Hausdorff.

(2)—(3) Suppose (2). Let C be a compact subset of Y. Since Y is Hausdorff,

~Cis closed and Y—C is open. Then f~Y(Y—C) is open. Thus f~4C)=X—f"4Y—C)
is closed.

The following example shows that Hausdorff is necessary when showing
(2)>(3) in the previous theorem.

Example 1. Let X={1, 2, 3}, Y=Reals, S={¢, {3}, {3, 2}, {3, 2, 1}}, and T be
the topology for Y generated by {(—oo, —7)U(r, 0)|7eY}. Define f: X—Y by
S(x)=x for all xeX. Then f is c-continuous but does not satisfy statement (3).

Proof: Clearly f is continuous and by the definition it is easily seen that
every continuous function is c-continuous. However, [2, 3] is a compact subset
of Y and f~4[2, 3])={2, 3} is not closed.

The following example shows that not every c-continuous function is con-
tinuous.

Example 2. Let R be the reals with the usual topology and difine f: R—R

1/x if x#0
by 1 (")={1/z if x=0"

Proof: Clearly f is not continuous at 0 and is continuous everywhere else,
so it remains only to show that f is c-continuous at 0. Let U be an open subset
of R containing f(0) such that R—U is compact. Thus R—U is bounded and
there is a number @>0 such that (—o, —a@)U(a, «©)cU. Then (—1/a, 1/a) is an
open set containing 0 and f((—1/a, 1/a))=(—o, —a)U(a, ) U{f(0)}cU. Hence f
is c-continuous at 0.

Theorem. 2. If f: X>Y is c-continuous and ACX, then fla: A—Y isa
c-continuous function.

Proof: Let U be an open subset of Y with compact complement. Then

Sf~YU) is open and hence (fla)~Y(U)=f"4U)N A is an open subset of A.

3. If f: XY is continuous and g: Y—>Z is c-conlinuous, then
gf: Y>Z is c-continuous.

Proof: Let U be an open subset of Z with compact complement. Then
&~YU) is open and since f is continuous, (gf)"Y(U)=f"*(g"Y(U)) is open.

Then f is c-continuous but not continuous.
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The following example shows -that if f is c-continuous and g is continuous,
then gf need not be c-continuous.

- Example 3. Let R be the reals with the usual topology. Define f: R——>R by
1/x if x+0 3 .

J(®) ={ 12 if £=0" Define g : R—?R by &(x) is the distance Srom x to the nearest

“integer. Then f is c-continuous, g is continuous and yet gf is not c-continuous.

Proof: Since f has already been shown to be c-continuous and g is clearly
«<ontinuous we need only show gf is not c-continuous at 0. Let
U=(—o0, 0)U(1/4, ©). Then U is an open set with compact complement con-
“taining (gf) (0)=1/2. We will show 0 is not an interior point of (gf)~%U). Now
&N U)=U{G+(1/4), i+(3/4))|¢ an integer} and thus, if # is an integer, neg=%(U).
‘Hence, if z is an integer 1/nef~Yg Y(U))=(gf)"(U). Therefore, 0 is not an
interior point of (gf)~Y(U).

Theorem 4. If X and Y are topblogz'cal spaces and X=AU B where A and
B are open (closed) subsets of X and f: X—>Y is a function such that fla and f|s
.are c-continuous, then f is c-continuous.

Proof: First assume A and B are open. Let U be an open subset of Y
'such that Y—U is compact. Then f~(U)=(f14)"%(U)U(f]8)~*(U) each of which
is an open subset of X and hence f~(U) is open.

‘ Now assume A and B are closed. Let xeX and let W be any open subset
-of Y with compact complement containing f(x). Now either (1) xeANB, (2) xcA
-and xeB, or (3) xeB and xeA.

Case 1: Suppose xeANB. Since | fla is c-continuous at x, there exists a
:subset U open in A such that xeU and f|4a(U)cW. Since U is open in A4, there
-exists an open subset U’ of X such that U=U"NA. Since f|p is c-continuous
-at x, there exists a subset V open in B such that xeV and f|s(V)CW. Since
V is open in B, there exists an open subset V’ of X such that V=V"NB. Let
Q=U'NV’. Then Q is open in X, x¢Q, and f(Q)C W.

Case 2: Suppose x€A and xeéB. Since f|a is c-continuous, there is a set U
-open in A such that xeU and fla(U)c W. Since U is open in A, there is an
-open subset U’ of X such that U=U'NA. Let V=U'—B. Then V is open in

X, x¢V and f(V)CW.
Case 3: Suppose xeB and xeA. This case follows exactly like case 2.

3. Main results

‘Theorem 5. Let X be a space, Y a Hausdorff space, and f a c-continuous
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Sfunction from X into Y. If f(X) is a subset of some compact subset of Y, then
f is continuous. '

Proof: Let D be a compact subset of Y containing f(X) and let U be any
open subset of Y. Since D is compact, D is closed and hence Y—D is open.
Thus UU(Y—D) is open. But the complement of UU(Y—D) is a closed subset of
D and thus a compact subset of D. It can easily be shown that the complement
of UU(Y—D) is a compact subset of Y. Now f~}(U)=f"YUU(Y~—D)) and since
f is c-continuous f~U) is an open subset of X. Hence f is continuous.

Theorem 6. Let X be a Baire space and Y be a Hausdorff space which is
the countable union of compact sets. Then every c-continuous function from X
‘into Y is continuous on a dense subset of X.

Proof: Let Y= _GIC,- where each Cj is compact. Let f: X—Y be c-continuous
J=

and let U be a nbnempty open subset of X. By [1, Prop. 3, p. 193], U with the
subspace topology is a Baire space. Suppose f is not continuous at any point of

U. For each positive integer », let Fa={x|xeU and f(x)eY— ijJl Ci}. Let n be a

n
positive integer. Then -U1 C; is a compact subset of a Hausdorff space and hence

closed. Thus Y— UICj is open and since f is c-continuous, f~YY— _U1 Cy is
= ’ =
open. Hence Fn=f"YY— .UICj)ﬂ U is an open subset of U. Suppose F. is not
,S

a dense subset of U. Then there exists some nonempty open subset V of U
containing no points of Fa. Let xef(V). Then there is a yeV such that x=f(y).

Since yeV, yeéF.. But since VcU, yeU and hence f(3)eY— -61 C;i. Therefore,
J=

x=f(y)e _61 C;. Thus f(V)C -61 Ci. By Theorem 2, flv: V=Y is c-continuous.
i= i=

But by Theorem 5, f|v is continuous. Therefore, since V¢, f is continuous at
a point of U which is a contradiction. Thus F. is dense in U. Hence each Fa

is open and dense in U. Since U is a Baire space, N F; is dense in U. But
: jo1

clearly ﬂl Fj=¢. Thus f is continuous at a point of U and the theorem is
i= -

proved.

Theorem 7. Let X be a saturated space and let Y be a locally compact
regular space. If f: X—Y is c-continuous, then f is continuous.

Proof: Let peX and let M be an open subset of Y containing S(p). Since
Y is regular, there is an open set U such that f(peUC UcM. Let yeY—U.
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Since Y is regular, U is closed and thus there is an open set V, containing y
such that VyNn U=¢. Since Y is locally compact, there exists a compact set Cy
containing y such that C;NU=¢. Then Y—C; is an open set containing f(p)
such that Y—C, has compact complement. Since f is c-continuous there is an
open set Ny of p such that fIV,)CY—Cy. Let N=nN{N,|yeY—U}. Now N con-
tains p and since X is a saturated space, N is open. Clearly f(N)cUc M. Hence
F is continuous.

Theorem 8. Let X be a locally connected space and let (Y, d) be a metric
space in which every closed and bounded set is compact. If f:X-Y is a
.c-continuous, connected function, then f is continuous.

Proof: Let xeX and let N.(f(x)) be a basic open set in Y containing f(x).
Let V=Y—N:.(f(x)). Then N.(f(x))UV is an open subset of ¥ whose complement
is closed and bounded and hence compact. Since f is c-continuous, there is an
-open set W containing x such that f(W)CN.(f(x))UV. Since X is locally con-
nected, there exists an open connected set W’ such that xeW’CW. Since W’
is connected and f is a connected function, f(W’) is connected. Now N.(f(x))
and V are mutually separated and f(x)ef(W’)NN.(f(x)). Hence fIW’)CN.(f(x))
and f is continuous.

The following example shows that c-continuous connected functions need not
be continuous and that locally connected is necessary in the previous theorem.

Example 4. Let Q be the rationals and let Q'=[0, 11N Q where Q and Q! both
1/x if x#0
1 if x=0"
Then f is a c-continuous, connected function which is not continuous, and moreover,
since Q is a meltric space in which every closed and bounded set is compact, locally
connected is necessary in the previous theorvem.

.have the induced topology from the reals. Define [ : Q'>Q by f(x)= {

Proof: The proof is clear.

Theorem 9. Let X be a space and Y be a Hausdorff space. If f: X-Y is
.a one-to-one, continuous, onto function, then f—': Y—>X is c-continuous.

Proof: Let C be a compact subset of X. Since f is continuous, f(C) is
compact and since Y is Hausdorff, f(C) is closed. By [Theorem 1, f™ is
«-continuous.

Corollary 9.1. Let X be a compact space and Y a Hausdorff space. If
S : XY is a one-to-one onto continuous function, then f is a homeomorphism.

Proof: By Sf~!is c-continuous. By Theorem 5, f~! is continuous.

Theorem 10. Let X be a topological space and let (Y, d) be a metric space
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such that every closed and bounded subset is compact. If {fu}n=1 is a sequence of
c-continuous functions from X into Y which converges uniformly to f, then f is:
c-continuous.

Proof: Let peX and let U be an open subset of ¥ with compact complement
containing f(p). There is a positive number € such that N(f(p))cU. There
exists a positive number a such that Y—N.(f(p))cU for if no such number &
exists, the complement of U would be unbounded and hence not compact. Let
V=N..2(f($)) U(Y—Nar(f(p)). Now the complement of V is closed and bounded
and hence compact. Since {fa}3-1 converges uniformly to f, there is a positive:
integer 7 such that if xeX, then d(fa(x), f(x))<e/2. Thus d(fa(p), f($))<e€/2 and.
J+(p)eV. Since fa is c-continuous, there exists an open subset W of p such that.
fo(W)CV. Let yeW. Then either fu(3)eN2(f(9) or fu(3)eY—Nar(f(D)).

If fa(3)eN.2(f(p) then d(f(y), (PN<A(Sf(), fx(3))+d(fa(y), (D) <el2+e€[2=€
and hence f(y)eU.

If fu(»)eY—Neor(f(p)), then since d(fa(3), f(¥))<e/2, f(y)eY—Na(f(p)) and once-
again f(y)eU. Hence fIW)cCU and f is c-continuous. )
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