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1. Introduetion

The idea of c-continuous functions was conceived by the authors in an
entirely unrelated setting. These functions have a rather nice relationship to
the classical theorem “ Every one.to-one onto continuous function from a $comPact$

sPace onto a Hausdorff space is a homeomorphism” and have many basic Properties
of their own similar to Properties poesessed by continuous functions.

In Section 2, we study basic Properties of c-continuos functions and give
equivalent definitions of c-continuous functions.

In Sections 3 and 4, our main theorems are proved.
Throughout this paper compactness is taken to mean every oPen cover has a

finite subcover and subsets of a space are compact provided they are comPact
considered as sukpaces. The reader is referred to [11 and [2] for definitions not
defined in this Paper.

2. Basic properties of c-continuous functions

Delnltion 1. Let $X$ and $Y$ be topological sPaces, let $f:X\rightarrow Y$ be a function,

and let $p_{\epsilon X}$. Then $f$ is said to be c-continuous at $p$ provided if $U$ is an oPen
subset of $Y$ containing $f(p)$ such that $Y-U$ is compact, then there is an oPen
suket $V$ of $X$ containing $p$ such that $f(V)\subset U$. The function $f$ is said to be
$c$-continuous (on $X$) $prov\ddagger dedf$ is c.continuous at each $\infty int$ of $X$.

Theorem 1. Let $X$ and $Y$ be toPological spaces and let $f:X\rightarrow Y$ be a function.
Then the fol’owing statements are equivalent:

(1) $f$ is c-continuous, and
(2) if $U$ is an open subset of $Y$ with compact complement, then $f^{\neg 1}(U)$ is an

oPen subset of $X$.
These $sta\ell ements$ are implied by
(3) if $C$ is a compact subset of $Y$, then $f^{-1}(C)$ is a closed subset of $X$.
and: moreover, if $Y$ is Hausdorff all the stalements are equivalen $f$.
Proof: (1) $\rightarrow(2)Suppoee(1)$ . Let $U$ be an oPen subset of $Y$ with comPact
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complement. Let $p\epsilon f^{-1}(U)$ . Then $f(p)\epsilon U$ and there is an open set $V_{p}$ containing
$p$ such that $f(V_{p})\subset U$. Thus $V_{p}\subset f^{-1}(U)$ and hence $f^{-1}(U)=\cup\{V_{p}|p\epsilon f^{-1}(U)\}$ is open.

(2) $\rightarrow(1)$ $Suppoee(2)$ . Let $p\epsilon X$ and $U$ be an oPen subset of $Y$ containing
$f(p)$ such that $Y-U$ is compact. Then $f^{-1}(U)$ is oPen, $P\epsilon f^{-}(U)$ , and $f(f^{-1}(U))\subset U$.

(3) $\rightarrow(2)$ $Suppoee(3)$ . Let $U$ be an open subset of $Y$ with compact comple-
ment. Then $f^{-1}(Y-U)$ is closed. Thus $f^{-1}(U)=X-f^{-1}(Y-U)$ is open. Now
$suppoeeY$ is Hausdorff.

(2) $\rightarrow(3)$ $Suppoee(2)$ . Let $C$ be a compact subset of Y. Since $Y$ is Hausdorff,
$C$ is closed and $Y-C$ is open. Then $f^{-1}(Y-C)$ is open. Thus $f^{-1}(C)=X-f^{-1}(Y-C)$

is closed.
The following example shows that Hausdorff is necessary when showing

(2) $\rightarrow(3)$ in the previous theorem.
Example 1. Let $X=\{1,2,3\},$ $Y=Reals,$ $S=\{\phi, \{3\}, \{3,2\}, \{3,2,1\}\}$ , and $T$ be

the topology for $Y$ generated by $\{(-\infty, -r)\cup(r, \infty)|r\epsilon Y\}$ . Define $f:X\rightarrow Y$ by
$f(x)=x$ for all $x\epsilon X$. Then $f$ is c.continuous but does not satisfy statement (3).

Proof: Clearly $f$ is continuous and by the definition it is easily seen that
every continuous function is c-continuous. However, $[2, 3]$ is a compact subset
of $Y$ and $f^{-1}([2,3])=\{2,3\}$ is not closed.

The following example shows that not every c-continuous function is $con$.
tinuous.

Example 2. Let $R$ be the reals with the usual topology and difine $f:R\rightarrow R$

by $f(x)=\left\{\begin{array}{l}1/x if x\neq 0\\Then f is c- continuous but not continuous.\\1/2 if x=0\end{array}\right.$

Proof: Clearly $f$ is not continuous at $0$ and is continuous everywhere else,

so it remains only to show that $f$ is c-continuous at $0$ . Let $U$ be an open subset
of $R$ containing $f(O)$ such that $R-U$ is compact. Thus $R-U$ is bounded and
there is a number $a>0$ such that $(-\infty, -a)\cup(a, \infty)\subset U$. Then $(-1/a, l/a)$ is an
open set containing $0$ and $f((-1/a, 1/a))=(-\infty, -a)\cup(a, \infty)\cup\{f(0)\}\subset U$. Hence $f$

is c-continuous at $0$ .
Theorem. 2. If $f:X\rightarrow Y$ is c.continuous and $A\subset X$, then $f|_{4}$ : $A\rightarrow Y$ is a

$c\cdot continuous$ function.
Proof: Let $U$ be an oPen subset of $Y$ with compact complement. Then

$f^{-1}(U)$ is oPen and hence $(f|_{A})^{-1}(U)=f^{-1}(U)\cap A$ is an oPen subset of $A$.
Theorem. 3. If $f:X\rightarrow Y$ is continuous and $g:Y\rightarrow Z$ is $c\cdot continuous$, then

$gf$: $Y\rightarrow Z$ i$ c-continuous.
Proof: Let $U$ be an open subset of $Z$ with compact complement. Then

$g^{-1}(U)$ is open and since $f$ is continuous, $(gf)^{-1}(U)=f^{-1}(g^{-1}(U))$ is open.
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The following example shows that if $f$ is c-continuous and $g$ is continuous,

then $gf$ need not be c-continuous.
Example 3. Let $R$ be the reals with the usual topology. Define $f$: $R\rightarrow R$ by

$Jtx)=\left\{\begin{array}{l}1/x if x\neq 0\\Define g:R\rightarrow R by g(x) is the distance from x to the nearest\\1/2 if x=0\end{array}\right.$

integer. Then $f$ is c-continuous, $g$ is continuous and yet $gf$ is not c-continuous.
Proof: Since $f$ has already been shown to be $c\cdot continuous$ and $g$ is clearly

continuous we need only show $gf$ is not c.continuous at $0$ . Let
$U=(-\infty, 0)U(1/4, \infty)$ . Then $U$ is an open set with compact complement con-
taining $(gf)(0)=1/2$ . We will show $0$ is not an interior point of $(gf)^{-1}(U)$ . Now
$ g^{-1}(U)=\cup$ { $(i+(1/4),$ $i+(3/4))|i$ an integer} and thus, if $n$ is an integer, $n\overline{\epsilon}g^{-1}(U)$ .
Hence, if $n$ is an integer $1/n\overline{\epsilon}f^{-1}(g^{-1}(U))=(gf)^{-1}(U)$ . Therefore, $0$ is not an
interior point of $(gf)^{-1}(U)$ .

Theorem 4. If $X$ and $Y$ are topological $sPaces$ and $X=A\cup B$ where $A$ and
$B$ are open (closed) subsets of $X$ and $f:X\rightarrow Y$ is a function such that $f|A$ and $f|B$

.are c-continuous, then $f$ is c-continuous.
Proof: First assume $A$ and $B$ are open. Let $U$ be an open subset of $Y$

such that $Y-U$ is compact. Then $f^{-1}(U)=(f|_{A})^{-1}(U)\cup(f|B)^{-1}(U)$ each of which
is an oPen subset of $X$ and hence $f^{-1}(U)$ is open.

Now assume $A$ and $B$ are closed. Let $x\epsilon X$ and let $W$ be any open subset
of $Y$ with compact complement containing $f(x)$ . Now either (1) $x\epsilon A\cap B,$ (2) $x\epsilon A$

and $x\overline{\epsilon}B$, or (3) $x\epsilon B$ and $x\overline{\epsilon}A$ .
Case 1: $Suppoeex\epsilon A\cap B$. Since $f|_{\mathcal{A}}$ is c-continuous at $x$ , there exists a

-suket $U$ open in $A$ such that $x\epsilon U$ and $f|_{A}(U)cW$. Since $U$ is open in $A$ , there
.exists an oPen subset $U^{\prime}$ of $X$ such that $U=U^{\prime}\cap A$ . Since $f|_{B}$ is c-continuous
at $x$ , there exists a subset $V$ open in $B$ such that $x\epsilon V$ and $f|_{B}(V)\subset W$. Since
$V$ is oPen in $B$, there exists an open subset $V^{\prime}$ of $X$ such that $V=V^{\prime}\cap B$. Let

$Q=U^{\prime}\cap V^{\prime}$ . Then $Q$ is open in $X,$ $x\epsilon Q$ , and $f(Q)\subset W$.
Case 2: $Suppoeex\epsilon A$ and $x\overline{\epsilon}B$. Since $f|_{A}$ is c-continuous, there is a set $U$

open in $A$ such that $x\epsilon U$ and $f|_{A}(U)\subset W$. Since $U$ is open in $A$ , there is an
$\triangleleft pen$ subset $U^{\prime}$ of $X$ such that $U=U^{\prime}\cap A$ . Let $V=U^{\prime}-B$. Then $V$ is open in
$X,$ $x\epsilon V$ and $f(V)\subset W$.

Case 3: $Suppoeex\epsilon B$ and $x\overline{\epsilon}A$ . This case follows exactly like case 2.

3. Main results

Ihmrem 5. Let $X$ be a space, $Y$ a Hausdorff space, $and^{}f$ a c-continuous
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function from $X$ into Y. If $f(X)$ is a subset of some $comPact$ subset of $Y$, then
$f$ is continuous.

Proof: Let $D$ be a compact subset of $Y$ containing $f(X)$ and let $U$ be any
open subset of Y. Since $D$ is compact, $D$ is closed and hence $Y-D$ is open.

Thus $U\cup(Y-D)$ is open. But the complement of $U\cup(Y-D)$ is a closed subset of
$D$ and thus a compact subset of $D$. It can easily be shown that the complement

of $U\cup(Y-D)$ is a compact subset of Y. Now $f^{-1}(U)=f^{-1}(U\cup(Y-D))$ and since
$f$ is c-continuous $f^{-1}(U)$ is an oPen subset of $X$. Hence $f$ is continuous.

Theorem 6. Let $X$ be a Baire $sPace$ and $Y$ be a Hausdorff sPace which is
the countable union of compact sets. Then every c-continuous function from $X$

into $Y$ is continuous on a dense subset of $X$.
Proof: Let $Y=\bigcup_{\dot{g}=1}^{\infty}C_{j}$ where each $C_{j}$ is compact. Let $f:X\rightarrow Y$ be c-continuous

and let $U$ be a nonempty open subset of $X$. By [1, Prop. 3, p. 193], $U$ with the
sukpace topology is a Baire space. $Suppoeef$ is not continuous at any point of

$U$. For each positive integer $n$ , let $F_{n}=$ {$x|x\epsilon U$ and $f(x)\epsilon Y-\bigcup_{j=1}^{n}$ Cj}. Let $n$ be a

positive integer. Then $\bigcup_{\dot{g}\approx 1}^{n}C_{\dot{f}}$ is a compact subset of a Hausdorff space and hence

closed. Thus $Y-\bigcup_{j=1}C_{j}$ is open and since $f$ is c-continuous, $f^{-1}(Y-\bigcup_{j=1}^{n}C_{j})$ is

oPen. Hence $F_{n}=f^{-1}(Y-\bigcup_{j\approx 1}^{\sim}C_{\dot{J}})\cap U$ is an open subset of U. SuPpose $F_{n}$ is not

a dense subset of $U$. Then there exists some nonempty oPen subset $V$ of $U$

containing no points of $F_{n}$ . Let $x\epsilon f(V)$ . Then there is a $y\epsilon V$ such that $x=f(y)$ .
Since $y\epsilon V,$ $y\overline{\epsilon}F_{n}$ . But since $V\subset U,$ $y\epsilon U$ and hence $f(y)\overline{\epsilon}Y-\bigcup_{j=1}^{n}C_{j}$ . Therefore.

$x=f(y)\epsilon\bigcup_{j\Rightarrow 1}^{\prime*}C_{j}$ . Thus $f(V)\subset\bigcup_{j=1}C_{j}$ . By Theorem 2, $f|v$ \ddagger $V\rightarrow Y$ is c.continuous.

But by Theorem 5, $f|v$ is continuous. Therefore, since $V\neq\phi,$ $f$ is $ntinuous$ at
a point of $U$ which is a contradiction. Thus $F_{n}$ is dense in $U$. Hence each $F_{\pi}$

is open and dense in $U$. Since $U$ is a Baire sPace, $\bigcap_{j=1}^{\infty}F_{j}$ is dense in $U$. But

clearly $\bigcap_{g=1}^{\infty}F_{j}=\phi$ . Thus $f$ is continuous at a point of $U$ and the theorem $is$

proved.
Theorem 7. Let $X$ be a saturated $sPace$ and let $Y$ be a locally compact

regular $sPace$ . If $f:X\rightarrow Y$ is c-continuous, then $f$ is continuous.
Proof: Let $p\epsilon X$ and let $M$ be an open subset of $Y$ containing $f(p)$ . Since

$Y$ is regular, there is an open set $U$ such that $f(p)\epsilon U\subset\overline{U}\subset M$. Let $y\epsilon Y-\overline{U}$.
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Since $Y$ is regular, $\overline{U}$ is closed and thus there is an open set $V_{l}$ containing $y$

such that $ V_{y}\cap\overline{U}=\phi$ . Since $Y$ is locally compact, there exists a compact set $C$,
containing $y$ such that $ C_{y}\cap U=\phi$ . Then $Y-C_{y}$ is an oPen set containing $f(p)$

such that $Y-C_{y}$ has compact complement. Since $f$ is c-continuous there is an
ropen set $N_{y}$ of $P$ such that $f(N_{y})\subset Y-C_{y}$ . Let $N=\cap\{N_{\nu}|y\epsilon Y-\overline{U}\}$ . Now $N$ con-
tains $p$ and since $X$ is a saturated space, $N$ is open. Clearly $f(N)\subset\overline{U}\subset M$. Hence
$I$ is continuous.

Theorem 8. Let $X$ be a locally connected $sPace$ and let $(Y, d)$ be a metric
sPace in which every closed and bounded set is compact. If $f:X\rightarrow Y$ is a
c-continuous, connected function, then $f$ is continuous.

Proof: Let $x\epsilon X$ and let $N_{\epsilon}(f(x))$ be a basic open set in $Y$ containing $f(x)$ .
Let $V=Y-\overline{N_{2_{\epsilon}}(f(x))}$ . Then $N_{\epsilon}(f(x))\cup V$ is an oPen subset of $Y$ whose complement
is closed and bounded and hence compact. Since $f$ is c-continuous, there is an
.open set $W$ containing $x$ such that $f(W)\subset N_{\epsilon}(f(x))\cup V$. Since $X$ is locally con-
nected, there exists an oPen connected set $W$ such that $x\epsilon W\subset W$. Since $W$

is connected and $f$ is a connected function, $f(W)$ is connected. Now $N_{\epsilon}(f(x))$

and $V$ are mutually separated and $f(x)\epsilon f(W)\cap N_{\epsilon}(f(x))$ . Hence $f(W)\subset N_{e}(f(x))$

and $f$ is continuous.
The following example shows that c-continuous connected functions need not

be continuous and that locally connected is necessary in the previous theorem.
Example 4. Let $Q$ be the rationals and let $Q^{1}=[0,1]\cap Q$ where $Q$ and $Q^{1}$ both

have the induced topology from the reals. Define $f:Q^{1}\rightarrow Q$ by $f(x)=\left\{\begin{array}{ll}1/x & if x\neq 0\\1 & if x=0\end{array}\right.$

Then $f$ is a $c\cdot continuous$, connected function which is not continuous, and moreover,
since $Q$ is a metric space in which every closed and bounded set is $comPact$ , locally
connected is necessary in the previous theorem.

Proof: The $prf$ is clear.
Theorem 9. Let $X$ be a $sPace$ and $Y$ be a Hausdorff $sPace$ . If $f:X\rightarrow Y$ is

$a$ one-to-one, continuous, onto function, then $f^{-1}$ : $Y\rightarrow X$ is c-conttnuous.
Proof: Let $C$ be a compact subset of $X$. Since $f$ is continuous, $f(C)$ is

eomPact and since $Y$ is Hausdorff, $f(C)$ is closed. By Theorem 1, $f^{-1}$ is
$c\cdot continuous$ .

Corollary 9.1. Let $X$ be a $comPactsPace$ and $Y$ a Hausdorff $sPace$ . If
$J:X\rightarrow Y$ is $a$ one-to-one onto continuous function, then $f$ is a homeomorphism.

Proof: By Theorem 9, $f^{-1}$ is c-continuous. By Theorem 5, $f^{-1}$ is continuous.
Theorem 10. Let $X$ be a topological space and let $(Y, d)$ be a metric space



76 KARL R. GENTRY and HUGHES B. HOYLE, III

such that every closed and bounded subset is compact. If $\{f_{n}\}_{n=1}^{\infty}$ is a sequence of
$c\cdot continuous$ functions from $X$ into $Y$ which converges uniformly to $f$, then $f$ is
c.continuous.

Proof: Let $p\epsilon X$ and let $U$ be an oPen subset of $Y$ with compact complement

containing $f(p)$ . There is a poeitive number $\epsilon$ such that $N(f(p))\subset U$. There
exists a poeitive number $a$ such that $Y-\overline{N_{a}(f(p)}$) $\subset U$ for if no such number a
exists, the complement of $U$ would be unbounded and hence not compact. Let
$V=N_{\epsilon/2}(f(p))\cup(Y-\overline{N_{a+e}(f(p))}$ . Now the complement of $V$ is closed and bounded
and hence compact. Since $\{f_{n}\}_{n=1}^{\infty}$ converges uniformly to $f$, there is a poeitive $\cdot$

integer $n$ such that if $x\epsilon X$, then $d(f_{n}(x), f(x))<\epsilon/2$ . Thus $d(f_{n}(p), f(p))<\epsilon/2$ and
$f_{n}(p)\epsilon V$. Since $f_{n}$ is c-continuous, there exists an oPen subset $W$ of $P$ such that
$f_{n}(W)\subset V$. Let $y\epsilon W$. Then either $f_{n}(y)\epsilon N_{\epsilon}/2(f(p))$ or $f_{n}(y)\epsilon Y-\overline{N_{a+e}(f(p))}$ .

If $f_{n}(y)\epsilon N_{\epsilon/2}(f(p))$ then $ d(f(y), f(p))\leq d(f(y), f, (y))+d(f_{n}(y), f(p))<\epsilon/2+\epsilon/2=\epsilon$

and hence $f(y)\epsilon U$.
If $f_{n}(y)\epsilon Y-\overline{N_{a+\epsilon}(f(p))}$ , then since $d(f_{n}(y), f(y))<\epsilon/2,$ $f(y)\epsilon Y-\overline{N_{a}(f(p))}$ and once-

again $f(y)\epsilon U$. Hence $f(W)\subset U$ and $f$ is c-continuous.
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