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Every mathematician working in the field of the so-called “ special functions
of analysis” knows what a vast literature exists on the subiect and so all the
more surprising is the fact that one does not find therein a general method for
deriving the differential equation of the function from its generating function
$i[20]$ . We know that a large class of special functions satisfy a second order
differential equation which is rather easy to get from a number of easily deriv-
able second order recurrence relations satisfied by them. In recent years,
however, generalized potential problems associated with extended Laplace’s
equation and satisfying recurrence relations of an order higher than the second
have been studied by various workers in the field. In two such Papers by
Gould ([91, [101) the differential equation is conspicuous by its absence. It was
in an effort to find these missing differential equations that the following problem

was solved for a very large class of special functions ([21, [61, [17]): Given the
generating function of a polynomial or special function how should one proceed
to be able to get its differential equation.

The author wishes to express his grateful thanks to Prof. H. W. Gould for
drawing his attention to the gaP in these two Papers of his and for many
$\vee stimtating$ discussions throughout the Preparation of this paPer.

1. Let us first derive the differential equation satisfied by the generalized
Humbert Polynomials $P_{n}(m, x, y, p, C)\equiv P_{n}$ studied by Gould [9] in great detail.
He defines them by

(1.1) $(C-mxt+yt^{m})^{p}=\sum_{n=0}^{\infty}t^{n}P_{n}(m, x,y, p, C)$ ,

where $m\geq 1$ is an integer and the other parameters are in general unrestricted.
Differentiating (1.1) partially with respect to $x$ and then with respect to $t$ we
easily get relations (2.5) and (2.7) of Gould [9], viz.

$*$ Read on Aug. 31, 1967; Abstract No. 648-57 in Notices, Amer. Math. Soc., 14 (1967)646.
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(1.2) $(xD-n)P_{n}=yP_{n-m+1}^{\prime}(D\equiv\frac{\partial}{\partial x},$ $P^{\prime}\equiv DP_{n})$

and

(1.3) $[(m-1)xD+(n-mP)]P_{n}=CP_{n+1}^{\prime}$ , $(n\geq 0;m-1\leq n)$ .
Now iteratively aPplying the linear differential operator in (1.3) $(m-1)$ times om
(1.2) and using at each steP the simple

Lemma: $(axD+b)D^{n}\equiv D^{n}(axD+b-na)$

we easily get the required differential equation in the following form:

(1.4) $\{(m-1)xD+n-mp+m(m-2)\}\{(m-1)xD+n-mp+m(m-3)\}$
$\{(m-1)xD+n-mp\}(xD-n)P_{n}=yC^{m-1}P_{n}^{(m)}$

Particular cases: (i) Legendre Polynomials: Putting $m=2,$ $y=1,$ $C=1,$ $p=-*$

in (1.4) we get the well-known differential equation for Legendre polynomials.

[18], viz.

(1.5) $(xD+n+1)(xD-n)P_{n}=P_{n}^{\prime\prime}$ ,

i.e., $(1-x^{2})P_{n}^{\prime\prime}-2xP_{n}^{\prime}+n(n+1)P_{n}=0$ .
(ii) Humbert Polynomials: Put $m=3,$ $y=1,,$ $C=1,$ $ p=-\nu$ in (1.4) to get the
differential equation satisfied by Humbert polynomials ([121, [131):

(1.6) $(1-4x^{3})y^{\prime\prime\prime}-6(3+2v)x^{2}y^{\prime\prime}-[(n+3v+5)(2-3n+3v)+10n]xy^{\prime}$

$+n(n+3\nu)(n+3\nu+3)y=0$ ,

where $y=P_{n}(3, x, 1, -\nu, 1)$ .
(iii) As particular cases of (1.4) we can get the differential equations for the

well-known polynomials of Louville [161, Tchebycheff [191, Gegenbauer ([71, [81),

Pincherle [11] and Kinney [141.

2. Gould [10] has given the following two generalizations of Hermite poly-

nomials.

(2.1) $x^{-a}(x-t)^{a}e^{p[x^{\prime}-(x-\ell.)^{f}]}=\sum_{n=0}^{\infty}\frac{t^{n}}{n!}H_{n}^{r}(x, a, p)$ ,

(2.2) $e^{tx+ht^{r}}=\sum_{n=0}^{\infty}\frac{t^{n}}{n!}g_{n}^{r}(x, h)$ .

Differentiating (2.1) first with respect to $x$ and then with respect to $t$ we $\cdot$

easily get the following two recurrence relations satisfied by $H_{n}\equiv H_{n}^{r}(x, a, p)$ :
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(2.3) $(D-prx^{r-1}+\frac{a}{x})H_{n}=-H_{n+I}$ , (Compare (3.4) of Gould [10])

(2.4) $(xD+n)H_{n}=-pr\sum_{s=l}^{r}(-1)\left(\begin{array}{l}r\\s\end{array}\right)x^{r-}\frac{n!}{(n-s)!}H_{n-}$. .

Utilizing these two we immediately get an $(r+1)^{\ell h}$ order differential equation
satisfied by $H_{n}^{r}(x, a, p)$ , viz.

(2.5) $(xD+n+r)(D-prx^{r-1}+\frac{a}{x})^{r}H_{n}$

$=-p_{\gamma\sum_{=1}^{r}}\left(\begin{array}{l}r\\s\end{array}\right)x^{r-\epsilon}\frac{(n+r)!}{(n+r-s)!}(D-prx^{r-1}+\frac{a}{x})^{r-}H_{n}$ .

For $a=0$ this reduces to an $r^{th}$ order differential equation of the form [1]

(2.6) $D(D-prx^{r-1})^{r-1}H_{n}$

$=-p_{\gamma\sum_{s=1}^{r-1}}\left(\begin{array}{l}r-1\\s\end{array}\right)X^{r-1-\cdot\frac{(n+r-1)!}{(n+r-1-s)!}(D-prx^{r-1})^{r-1-}\cdot H_{n}}$

which in tum gives for $p=1$ and $r=2$ the following well-known differential
equation satisfied by Hermite polynomials [18]

(2.7) $D(D-2x)H_{n}=-2(n+1)H_{n}$ i.e. $H_{n}^{\prime\prime}-2xH_{n}^{\prime}+2nH_{n}=0$ .
Using the same technique on (2.2) we easily get the differential equation

satisfied by $g_{n}\equiv g_{n}^{r}(x, h)$ in the form

(2.8) $(xD-n)g_{n}=-rhD^{r}g_{n}$ ,

which in tum will give the standard differential equation of Hermite polynomials
as a particular case, i.e. for $r=2,$ $h=-1$ .

3. We can apply the same method to get differential equations satisfied by
Laguerre polynomials, Bessel functions and hypergeometric functions by utilizing
the following well-known pairs of recurrence relations of the respective functions
([5], [18]):

(3.1) $(D-1)L_{n}=\frac{1}{n+1}L_{n+1}^{\prime}$ and $(n-xD)L_{n}=n^{2}L_{n-1}$ ;

(3.2) $(D+\frac{n}{x})J_{n}=J_{n-1}$ and $(D-\frac{n}{x})J_{n}=-J_{n+1}$ ;

(3.3) $(a+xD)F_{a}=aF_{a+1}$ and $\{(c-a-bx)+x(1-x)D\}F_{a}=(c-a)F_{a-1}$ .
The respective differential equations have the following form but can easily be
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reduced to the standard differential equations:

(3.4) $(n-xD)(D-1)L_{n}=(n+1)L_{n}^{\prime}$ ;

\langle 3.5) $(D-\frac{n-1}{x})(D+\frac{n}{x})J_{n}=-J_{n}$ ;

(3.6) $\{(c-a-1-bx)+x(1-x)D\}(a+xD)F_{a}=a(c-a-1)F_{a}$ .
4. We will now give this method of finding the differential equation of a

special function a somewhat more explicit formulation.
Let $F(x, t)$ be a generating function for the set $\{f_{n}(x)\}$ of special functions,

i.e. let

\langle 4.1) $F(x, t)=\Sigma f_{n}(x)t^{n}$

where
(i) the formal power series expansion of $F(x, t)$ in powers of $t$ may or may

not converge;
(ii) $n=0,1,2,$ . . . or $n=0,$ $\pm 1,$ $\pm 2,$

$\ldots$ ;
(iii) both $F(x, t)$ and $f_{n}(x)$ may dePend on a number of parameters.

Then

\langle 4.2) $\frac{\partial F}{\partial x}=\sum\frac{\partial f_{n}}{\partial x}t^{n}$

(4.3) $\frac{\partial F}{..\partial t}=\Sigma nf_{n}t^{n-1}$ .

From these three equations (4.1), (4.2) and (4.3) we can easily get the two
linear differential-difference relations satisfied by the set of functions $\{f_{n}(x)\}$

which will be used to obtain the required differential equation.

If the special function is defined not by means of its generating function
but in some other way we can still easily obtain the two differential recurrence
relations we need. From the cases discussed in this PaPer we notice that only
two linear differential-difference relations and no more are required to obtain
the desired differential equation. The technique in all cases is to aPply the 2
linear differential operators iteratively on $f_{n}(x)$ so that the index $n$ is restored
back. In all cases solved above (except one) the index of the function $f_{n}(x)$ was
lowered in one relation and raised in the other and our technique was ideally
suited to meet the situation (notice that a lemma was needed for the case of
the generalized Humbert polynomials); in the exceptional case of (2.2) the matter



A METHOD FOR DERIVING DIFFERENTIAL EQUATIONS 68

was simpler still.
To illustrate further let us take up a generalization of Bessel functions*

given by the following generating function:

$e^{ex(t^{\ell}-y/\ell^{m})}=\sum_{n=-\infty}^{+\infty}J_{n}(x, l, m, c, y)t^{n}$ ,

where $m,$
$l$ are positive integers and the other parameters are in general

unrestricted. Differentiating the above generating function with respect to $x$

and $t$ respectively and eliminating we get the following two differential recur-
rence relations:

$(mD+\frac{n}{x})J_{n}=c(l+m)J_{n-i}$ ,

$(lD-\frac{n}{x})J_{\pi}=-cy(l+m)J_{n+m}$ .

If $l=sP$ and $m=sr$ where $p$ and $r$ are positive integers prime to each other we
see that the index $n$ of $J_{n}$ will be restored back if we aPPly on $J_{n}$ the first
operator $r$ times and the second operator $p$ times. The required $(r+p)^{\ell h}$ order
differential equation is of the form

$(lD-\frac{n-rl+m(p-1)}{x})(lD-\frac{n-rl+m(p-2)}{x})$ . . $(lD-\frac{n-rl}{x})$

. $(mD+\frac{n-(r-1)l}{x})$ . . $(mD+\frac{n-l}{x})(mD+\frac{n}{x})J_{n}$

$=(-y)^{p}c^{r+p}(l+m)^{r+p}J_{n}$ .
If, however, the special function depends on two sets of indices $b$ and $c$

then we require 3 differential-difference relations but the technique of deriving

the differential equation satisfied by $f_{b.0}(x)\equiv f_{b.a}$ is the same, that is, we restore

back the 2 indices $b$ and $c$ by aPplying the 3 operators iteratively. For examPle**
the 3 recurrence relations

$(\frac{m}{c-1}xD+1)f_{b.\epsilon}=f_{b.c-1}$ ,

$(\frac{x}{b}D+1)f_{b.0}=f_{b+1.e}$ ,

$\ovalbox{\tt\small REJECT}$
$*$ This generalization of Bessel function will be studied later in a separate paper.

$**$ The author came across a more general example of such a function in one of his
papers, ” Some generalizations of Laguerre Polynomials-I ” in press.
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$Df_{b.0}=\frac{b}{(c)_{m}}f_{b+1.0+m}$ ,

give the following differential equation of the $m^{\ell h}$-order

$D(\frac{m}{c-m}xD+1)(\frac{m}{c-m+1}xD+1)$ . . $(\frac{m}{c-1}xD+1)y=\frac{b}{(c-m)_{m}}(\frac{x}{b}D+1)y$

where $(c)_{m}=\frac{\Gamma(c+m)}{\Gamma(c)}$ and $y\equiv f_{b.0}(x, m)=\sum_{=0}^{\infty}\frac{(b)_{l}}{(c)_{m\iota}}\frac{x}{s!}$ .

This seems to be a very simple, elegant and a general method of finding
differential equations of a large class of special functions. The technique however
is best illustrated by specific examples; as there are so many variations in the
form of the differential-difference relations it does not seem to be possible to
give a general method of how to restore back the indices. It may be poInted
out here that this technique of finding differential equations from differential-
difference relations is not entirely new and has been aPplied earlier in stray
complicated cases with great success. The author first came across such a
method in the work by Delerue in 1951 [41 and then he himself used it in 1954
[3] but he has not seen it being used systematically as a general method to
derive differential equations of wide classes of functions satisfying a higher
order differential equation than the second.
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