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The Purpose of this note is to present in detail an important aPplication
(concerning the pointwise convergence of Fourier series) of the interpolation
theorem found in [3] that was communicated to the author by Professor E. $M$.
Stein who also provided an outline of the $pr\ovalbox{\tt\small REJECT} f$ given here. The definitions and
notation used in this note are the same as those used in [3].

Let $S_{n}(x,f)$ denote the $n^{th}$ partial sum of the Fourier series for $f\epsilon L^{1}(-\pi, \pi)$ .
Let $S_{n}^{*}(x,f)=P$ . V. $\int_{-4\pi}^{4\pi}\frac{\epsilon^{-in\ell}f^{0}(t)}{x-t}dt$ where $x\epsilon(-\pi, \pi)$ and $f^{0}$ denotes the $ 2\pi$

periodic extension of $f$ to $(-4\pi, 4\pi)$ .
Let $Mf(x)=\sup_{n\geq 0}|S_{n}(x,f)|$ $x\epsilon(-\pi, \pi)$ .
Let $M^{*}f(x)=\sup_{|n|\geq 0}|S_{n}^{*}(x,f)|$ $x\epsilon(-\pi, \pi)$ .
Theorem 1. (Carleson-Hunt). $M^{*}$ is of restricted weak type $(p, p)$ for

$ 1<p<\infty$ .
Proof. This is established in [1].

Theorem 2. For $1<p<\infty||Mf||_{p}\leq A_{p}(||f||_{p}(2\pi)^{1/p}+\Vert M^{*}f||_{p})$ for $f$ in $L^{p}(-\pi,$ $\pi\rangle$

where $A_{p}>0$ is a constant independent of $f$.
Proof. This is an immediate consequence of the easily established fact:

$Mf(x)\leq A_{p}(||f\Vert_{p}+M^{*}f(x))$ for almost every $x\epsilon(-\pi, \pi),$ $f$ in $L^{p}(-\pi, \pi)$ where
$A_{p}>0$ is a constant independent of $f$ for $ 1<p<\infty$ .

Theorem 3. For $ 1<p<\infty$ for each measurable set $E\subset(-\dot{\pi}, \pi)$ we have
$||M\chi_{E}||_{p}\leq B_{p}||\chi_{E}\Vert_{p}$ where $B_{p}>0$ is a constant indePendent of $E$ .

Proof. This is an immediate consequence of Theorem 1, Theorem 2, and
Lemma 2 on Page 266 in [3] with $p_{0}=q_{0}=((p+1)/2),$ $p_{1}=q_{1}=(p+1)$ and $t=(1-1/p)$ ;
since the hypothesis of linearity is not used in the $pr\ovalbox{\tt\small REJECT} f$ of Lemma 2.
Fix integer $N>0$ .
Let $M_{N}f(x)=\max_{0\leq n\leq N}|S_{n}(x;f)|$

Let $\alpha$ denote any simple function with domain $(-\pi, \pi)$ and range $i\ddot{n}^{Y}[0,1, \ldots, N]$ .
We say $a$ is an $N^{th}$ order simple function.
Let $T_{a}f(x)=S_{\dot{\alpha}\{b}(x\rangle;f)$ $x\epsilon(-\pi, \pi)$ .
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Clearly, $T_{\alpha}$ is linear for every $N^{th}$ order simple function.
Theorem 4. For $1<p<\infty\Vert T_{a}x_{E}\Vert_{p}\leq B_{p}\Vert x_{E}\Vert_{p}$ for each measurable set $E\subset(-\pi, \pi)$

and for each $N^{th}$ order simple function a where $B_{p}$ is that of Theorem 3.
Proof. This is immediate by Theorem 3 and the fact that $\Vert T_{a}f\Vert_{p}\leq\Vert Mf\Vert_{p}$

for each $ 1<P<\infty$ , for each $feL_{p}(-\pi, \pi)$ and for each $N^{th}$ order simple function
$\alpha$ .

Theorem 5. For $1<p<\infty\lambda(y)\leq B_{p}^{p}y^{-p}\Vert\chi_{E}\Vert_{p}^{p}$ for each measurable set
$r_{\alpha}x_{E}$

$E\subset(-\pi, \pi)$ and for each $N^{1h}$ order simple function a where $B_{p}$ is that of Theo-
rem 4.

Proof. This is an immediate consequence of Theorem 4 and (c) on page
284 in [3].

Theorem 6. For $1<p<\infty\Vert T_{a}f\Vert_{p}\leq C_{p}\Vert f\Vert_{p}$ for every simple function $f$ in
$L_{p}(-\pi, \pi)$ and for each $N^{1h}$ order simple function a where $C_{p}>0$ depends only

on $p$ .
Proof. This is an immediate consequence of Theorem 5, Theorem II in [3]

and the remark in the $f\ovalbox{\tt\small REJECT} tnote$ on the bottom of pape 264 in [3] with
$p_{0}=q_{0}=((p+1)/2),$ $p_{1}=q_{1}=(p+1)$ and $t=(1-1/p)$ .

Theorem 7. Let $f\epsilon L^{p}(-\pi, \pi)$ $ 1<p<\infty$ . Let $a$ be any $N^{th}$ order simple

function. There exists a sequence of simple functions $\{f_{n}\}\subset L^{p}(-\pi. \pi)$ such that
$||f_{n}\Vert_{p}\rightarrow||f\Vert_{p}$ and $T_{\alpha}(f-f_{n})(x)\rightarrow 0$ for $x\epsilon(-\pi, \pi)$ .

Proof. This is an immediate consequence of the Lebesgue dominated con-
vergence theorem and the fact that there exists a sequence of simple functions
$\{f_{\hslash}\}\subset L^{p}(-\pi, \pi)$ such that $\Vert f_{n}\Vert_{p}\rightarrow\Vert f\Vert_{p},$ $f_{n}(x)\rightarrow f(x)$ for $x\epsilon(-\pi, \pi)$ and $|f_{n}(x)|\leq|f(x)|$

for $x\epsilon(-\pi, \pi)$ and $n\geq 0$.
Theorem 8. For $1<p<\infty\Vert T_{a}f\Vert_{p}\leq C_{p}\Vert f\Vert_{p}$ for every $f$ in $L^{p}(-\pi, \pi)$ and for

each $N^{Ih}$ order simple function a where $C_{p}$ is that of Theorem 6.
Proof. Fix $f\epsilon L^{p}(-\pi, \pi)$ . Let $\{f_{n}\}$ be the sequence of Theorem 7. Then

$|T_{\alpha}f_{n}(x)|\rightarrow|T_{\alpha}f(x)|$ for $x\epsilon(-\pi, \pi)$ ; so that by Fatou’s theorem and Theorem 6 we
have

$\Vert T_{\alpha}f\Vert_{p}\leq\frac{\lim it}{n\rightarrow\infty}\Vert T_{a}f_{n}\Vert_{p}\leq C_{p}\frac{\lim it}{\rightarrow\infty}\Vert f_{n}\Vert_{p}=C_{p}\Vert f\Vert_{p}$ .

Theorem 9. For $1<p<\infty\Vert Mf||_{p}\leq C_{p}\Vert f\Vert_{p}$ for every $f\epsilon L^{p}(-\pi, \pi)$ where $C_{p}$ is
that of Theorem 8.

Proof. Fix $f_{0}$ in $L(-\pi, \pi)$ . It is easily shown that there exists an $N^{th}$

order simple function $\alpha_{0}$ such that $|T_{a_{0}}f_{0}(x)[=M_{N}f_{0}(x)$ for all $x\epsilon(-\pi. \pi)$ . Hence
by Theorem 8 $\Vert M_{N}f_{0}\Vert_{p}\leq C_{p}\Vert f_{0}\Vert_{p}$ . But MN $f_{0}(x)$ increases monotonicaly to $Mf_{0}(x)$
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-for each $x$ in $(-\pi, \pi)$ . Hence $\Vert Mf_{0}\Vert_{p}\leq C_{p}\Vert f_{0}\Vert_{p}$ .
Theorem 10. (Carleson-Hunt). If $f$ in $ L^{p}(-\pi, \pi)1<P<\infty$ then $S_{n}(x;f)$

.converges to $f(x)$ for almost every $x$ in $(-\pi, \pi)$ .
Proof. This is a straightfoward consequence of Theorem 9. For details

’cf. [1] or [2].

Remark. The technique used in the $pr\ovalbox{\tt\small REJECT} f$ of Theorem 9 is similar to that
used in Chapter XIII in [4], and I would like to thank Professor E. M. Stein for

.calling my attention to it. I would also like to acknowledge my indebtedness to
Professor R. A. Hunt for his help in reading [1] and writing [2].
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