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1. Introduction and notations. Let (X, d) be a metric space. A mapping $f$

of $X$ into itself is said to be non-expansive if

$d(f(x),f(y))\leqq d(x,y)$ for every $x,y\epsilon X$.
A point $x\epsilon X$ is called a periodic point for $f$ if there exists a positive integer

$p$ such that $f^{p}(x)=x$. If $p=1$ , then $x$ is called a $M$ pojnt for $f$

According to [1], we describe the following definition and notations. For each
$x\epsilon X,$ $L(x)$ denotes the set of points of $X$ which are limits of all convergent subsequences
of the sequence $\{f^{n}(x)\}$ , and $O(f^{p}(x))$ denotes the sequence of iterates of $f^{p}(x)$ , that is,

$O(f^{p}(x))=\{f^{p}(x),f^{p+1}(x), \cdots\},p=0,1,2,$ $\cdots$ , where it is $underst\infty d$ that $f^{0}(x)=x$. For

a subset $Y$ of $X,$ $d(Y)$ denotes the diameter of Y. If $ d(O(x))<\infty$ , then the sequence
$\{d(O(f^{n}(x)));n=0,1,2, \cdots\}$ has limit $r(x)\geqq 0$ which is called the limiting orbital
diameter of $f$ at $x$. $f$ is said to have diminishing orbital diameters if for each $x\epsilon X,$ $d(O$

$(x))<\infty$ and the limiting orbital diameter of $f$ at $x$ is less than $d(O(x))$ when $d(O(x))$

$>0$ .
In [1] Belluce and Kirk proved that if $f$ is a non-expansive mapping which

has diminishing orbital diameters, and if for some $x\epsilon X$, a subsequence of the sequence
$\{f^{n}(x)\}$ has limit $z$ , then $f(z)=z$ and $\lim_{\rightarrow\infty}f^{n}(x)=z$.

Further in [2] Kirk obtained the very same results by exchanging a non-expansive

mapping $f$ for a mapping $g$ which satisfies the condition that there exists a constant $C$

such that for each positive integer $p$ and for each $x,y\epsilon X,$ $d(g^{p}(x),g^{p}(y))\leqq Cd(x,y)$ .
If $C=1$ , then $g$ is non-expansive.

Our purposes are to generalize the above Kirk’s theorem, and to give some
examples.

Let $I(x)$ denote the number of all isolated points of $O(x)$ , then $I(x)=0$ implies
that $O(x)$ is dense in itself.

2. Periodic points and isolated points.

Theorem 1. Let $f$ be a mapping of a metric space $X$ into itself which satisfies
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the following conditions;

(i) $I(x)\geqq 1$ for each point $x\epsilon X$

(ii) for every positive number $\epsilon$ and for each pOjnt $x\epsilon X$, there exist a p0sitive
number $\delta(x,\epsilon)$ and a positive integer $M(x)$ such that $d(x,y)<\delta(x, \epsilon)$ implies $d(f^{p}(x)$ ,
$ f^{p}(y))<\epsilon$ for every positjve integer $p\geqq M(x)$

(iii) $z\epsilon L(x)$ for some Point $x\epsilon X$.
Then $z$ is a periodic pojnt for $f$ and so $I(z)$ is the number of all periodic points in
$O(z)$ .

Proof. Let $z=\lim_{\ell\rightarrow\infty}f^{n_{\ell}}(x)$ and $\epsilon(>0)$ given. Then there exists a positive integer

$N_{1}(z, \frac{\epsilon}{2})$ such that $N_{1}(z, \frac{\epsilon}{2})<i$ implies $d(f^{n_{i}}(x), z)<\frac{\epsilon}{2}$ , and also exist two positive

integers $N_{2}(z, \frac{\epsilon}{2})$ and $M(z)$ such that $N_{2}(z, \frac{\epsilon}{2})<i$ and $M(z)\leqq p$ imply $d(f^{p}(f^{n_{i}}(x))$ ,

$f^{p}(z))<\frac{\epsilon}{2}$ . Here anew we put $N(z, \epsilon)=\max\{N_{1}(z, \frac{\epsilon}{2}), N_{2}(z, \frac{\epsilon}{2})\},$ $i_{1}=N(z, \epsilon)+1$ and

$j_{1}=n_{i_{1}}+M(z)$ . Then $d(f^{n_{j_{1}}-n_{i_{1}}}(z), z)\leqq d(f^{n_{J_{1}}-n_{i_{1}}}(z), f^{n_{j_{1}}-n_{i_{1}}}(f^{n_{i_{1}}}(x)))+d(f^{n_{J_{1}}}(x), z)$

$<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$ .
Thus it is easily seen that there exists a subsequence $\{f^{m_{i}}(z);m_{1}<m_{2}<\ldots<m_{\ell}<\cdots\}$

of the sequence $\{f^{n}(z)\}$ such that $z=\lim_{\ell\rightarrow\infty}f^{m_{\ell}}(z)$ . Hence $f^{p}(z)=\lim_{t\rightarrow\infty}f^{p+\prime}\iota(z)$ for every
positive integer $p\geqq M(z)$ . If a set $\{f^{p+m_{l}}(z);i=1,2,3, \cdots\}$ is infinite for each positive
integer $p\geqq M(z)$ , then $I(f^{M(z)}(z))=0$ . It is in contradiction to the hypothesis. Therefore
for some $q\geqq M(z)$ , the set $\{f^{q}+m_{\ell}(z);i=1,2,3, \cdots\}$ is finite. Since $f^{Q}(z)=\lim_{t\leftarrow\infty}f^{c+m_{i}}(z)$ ,

there exists a positive integer $t$ such that $f^{_{1}+m_{i}}(z)=f^{q}(z)$ for every $i\geqq t$. Hence
$f^{q}(z)$ is a periodic point. Then $O(z)$ , consequently the set $\{f^{m_{\ell}}(z);i=1,2,3, \cdots\}$ , is
finite. Thus $z$ is periodic and $I(z)$ is the minimal of $q$ such that $f^{q}(z)=z$ .

Corollary 1. Let $f$ be a mapping of a metric space $X$ into itself.
(i) $f$ has diminishing orbital diameters

(ii) for every positive number $\epsilon$ and for each pojnt $x\epsilon X$, there exist a positive
number $\delta$

$(x$, . $)$ and a positive integer $M(x)$ such that $d(x,y)<\delta(x, \epsilon)$ implies $d(f^{p}(x)$ ,

$ f^{p}(y))<\epsilon$ for every $p\geqq M(x)$

(iii) $z\epsilon L(x)$ for some pojnt $x\epsilon X$.
Then $f(z)=z$ and $\lim_{n\rightarrow\infty}f^{n}(x)=z$.

Proof. From the proof of Theorem 1, (ii) and (iii) imply that $f^{p}(z)$ is a limit
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point of $o(f^{M(Z)}(z))$ for every $p\geqq M(z)$ . Then $r(f^{M(z)}(z))=d(O(f^{M(z)}(z)))$ and so $d(O$

$(f^{K(f)}(z)))=0$ by (i). Hence $f^{M(z)+1}(z)=f^{M(z)}(z)$ and further $f(z)=z$. Let $z=\lim_{\ell\rightarrow\infty}f^{n\ell}(x)$

and $\epsilon(>0)$ given. Then there exists a positive integer $N(z, \epsilon)$ such that $N(z, \epsilon)<i$

implies $ d(f^{p}(f^{n_{\ell}}(x)),f^{p}(z))<\epsilon$ for every $p\geqq M(z)$ . Hence $\lim_{n\rightarrow\infty}f^{n}(x)=z$ .

Remark. $I(x)=0$ implies that $r(x)=d(O(x))$ .

The conditions of Kirk’s theorem imply those of Corollary 1. The following

example shows that Corollary 1 is more general than Kirk’s theorem.

Example 1. Let $X=[0,1]$ with the usual distance and $s=s(t)=2^{t-1}+1$ where

$t=1,2,3,$ $\cdots$ . Let $f$ be a mapping of $X$ into itself defined by;

(1) $f(x)=sx-1$ if $x$ is a rational number in $[\frac{2}{2s-1}$ , $\frac{4}{4s-3}]$ for $2^{2u-1}\leqq t$

$<2^{2u}$ , or if $x$ is an irrational number in $[\frac{2}{2s-1}$ , $\frac{4}{4s-3}]$ for $2^{2u}\leqq t<2^{2u+1}$ , where

$u$ is a positive integer

(2) $f(x)=0$ for others.

Then for every point $x\epsilon[\frac{2}{2s-1}$ , $\frac{4}{4s-3}],$ $f^{2^{\emptyset}-t+1}(x)=0$ where $2^{v-1}\leqq t<2^{v}$

and $v$ is a positive integer.

Thus the conditions of Corollary 1 are all satisfied, but there exists no constant $C$

such that $d(f^{p}(x),f^{p}(y))\leqq Cd(x,y)$ for each $x,y\epsilon X$ and for every positive integer $p$ .

The next $th\infty rem$ is easily obtained from the proof of $Th\infty rem\Pi[2]$ .

Theorem 2. Let (X, d) be compact and $f$ a continuous mapping of $X$ into

itself. Then $f$ has at least one periodic point in $X$ if $I(x)\geqq 1$ for each $x\epsilon X$.

Proof. Let $x$ be an arbitrary point of $X$. From the proof of $Th\infty rem$ II [2],

there exists a minimal subset $K$ of $L(x)$ with respect to being non-empty, compact and

mapped into itself by $f$ Let $d(K)>0$ and $z\epsilon K$. Then the closure $\overline{O(z)}$ of $O(z)$ coincides

with $K$ by the minimality of $K$. Suppose that $O(z)$ is infinite. Then by the hypothesis,

there exists a positive integer $p$ for which $f^{p}(z)$ is an isolated point of $O(z)$ . Thus

$\overline{O(f^{p+1}(}z))$ is a proper subset of $K$ which is mapped into itself by $f$ This contradicts

the minimality of $K$. Hence $O(z)$ is finite. Again the minimality of $K$ implies that $f(K)$

$=K$ and $z=f^{t(z)}(z)$ . When $d(K)=0$ , it is clear that $K=\{z\}$ and $f(z)=z$ .
The following example shows that if the condition (ii) is exchanged for the
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continuity of $f$ in Corollary 1, then it no longer assures the existence of a fixed point

for $f$, and shows too that it does not guarantee the existence of a periodic point to

change the condition (ii) of $Threm1$ for the global continuity of $f$ on $X$, or to

substitute the locally compactness and the totally boundednaes for the compactnaes of $X$

in $Th\infty rem2$ .
Example 2. Let $X$ be a subset of the plane, with the Euclidean distance, defined

as follows;

$X=X_{1}\cup X_{2}\cup X_{3},$ $X_{1}=\{(\frac{1}{s}+1,$ $\frac{1}{s})$ ; $s=2,3,4,$ $\cdots\}$ ,

$X_{2}=\{(\frac{1}{s},$ $\frac{1}{t})$ ; $s,$ $t=2,3,4,$ $\cdots$ ; $s\leqq t\},$ $X_{3}=\{(\frac{1}{s},$ $0)$ ; $s=1,2,3,$ $\cdots\}$ .

Define a mapping $f$ of $X$ into itself by;

(1) $f((\frac{1}{s}+1,$ $\frac{1}{s}))=(\frac{1}{2},$ $\frac{1}{s})$

(2) $f((\frac{1}{s},$ $\frac{1}{t}))=(\frac{1}{s+1},$ $\frac{1}{t})$ if $s<t$

(3) $f((\frac{1}{s},$ $\frac{1}{t}))=(\frac{1}{s+1}+1,$ $\frac{1}{t+1})$ if $s=t$

(4) $f((\frac{1}{s},0))=(\frac{1}{s+1},0)$ .

Then we see easily the following in this example;

(i) $X$ is locally compact and totally bounded, but not compact

(ii) $f$ is continuous on $X$

(iii) $f$ has diminishing orbital diameters

(iv) the condition (ii) of Theorem 1 and Corollary 1 is not satisfied
(v) $L(x)=X_{3}=O((1,0))$ for each point $x\epsilon X_{1}\cup X_{2}$ , and $I(x)\geqq 1$ for each $x\epsilon X$.

But clearly $f$ has no periodic point.

The following example shows that if $f$ is discontinuous, then the other conditions
of Theorem II [2] don’t assure the existence of a fixed point for $f$

Example 3. Let $X=\{\pm(1+(\frac{1}{2})^{k}) ; k=0,1,2, \cdots\}\cup\{\pm 1\}$ with the usual
distance and $f$ a mapping of $X$ into itself defined by;
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$f(-x)=x$ if $x>0,$ $f(1+\left(\begin{array}{l}1\\-- 2\end{array}\right))=-(1+(\frac{1}{2})^{k+1})$ and $f(1)=-2$ .

Then $X$ is compact and $f$ has diminishing orbital diameters, but there exists no fixed
point.

3. Mappings each of who8e iterative sequences converges to some mapping.

Theorem 3. Let $f$ be a mappjng of a metric space $X$ into itself and the sequeuce
$\{f^{n}\}$ of iterates of $f$ pointwise converge to a mapping $g$ which is commutative with

$f^{p}$ for some positive integer $p$ . Then $f$ has a fixed point.

Proof. For an arbitrary point $x\epsilon X,\lim_{n\rightarrow\infty}f^{n}(x)=g(x)$ and $\lim_{n\rightarrow\infty}f^{n\cdot 1p}(x)=g(f^{p}(x))$

$=f^{p}(g(x))$ . Thus $f^{p}(g(x))=g(x)$ . Since $\lim_{\rightarrow\infty}f^{n}(g(x))=g^{2}(x)$ and $f^{mp}(g(x))=g(x)$ for
every positive integer $m,$ $d(g(x),f(g(x)))=\lim_{n\rightarrow\infty}d(f^{np}(g(x)),f^{np+1}(g(x)))=0$.

It is known that if $\lim_{n\rightarrow\infty}f^{n}(x)=\eta\epsilon X$ for some point $x\epsilon X$ and if $f$ is continuous
at $\eta$ , then $ f(\eta)=\eta$ . The following example shows that $Threm3$ is independent of
the above statement.

Example 4. Let $X=[0,1]$ with the usual distance and $f$ a mapping of $X$ into
itself defined by;

(1) $f(0)=f(1)=1,$ $f(\frac{1}{3})=\frac{1}{3}$

(2) $f(x)=0$ if $x\epsilon(0,$ $\frac{1}{3})$

(3) $f(x)=\frac{1}{2}x$ if $x\epsilon(\frac{1}{3},1)$ .

Then it is easily seen that;

(i) for each $x\epsilon[0,$ $\frac{1}{3})\cup(\frac{1}{3}$ , $1],$
$\lim_{n\rightarrow\infty}f^{n}(x)=1$

(ii) $f$ is discontinuous at $\frac{1}{3}$ and 1 which are fixed points

(iii) the limit mapping $g$ is commutative with $f^{2}$ , but not with $f$

Finally we are very much grateful to Professor Masae Orihara.
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