ON FIXED AND PERIODIC POINTS IN METRIC SPACES

By
Hiroshi Fukushima

(Received March 30, 1970)

1. Introduction and notations. Let (X, d) be a metric space. A mapping f of X into itself is said to be non-expansive if

$$
d(f(x), f(y)) \leqq d(x, y) \text { for every } x, y \epsilon X .
$$

A point $x \in X$ is called a periodic point for f if there exists a positive integer p such that $f^{p}(x)=x$. If $p=1$, then x is called a fixed point for f.

According to [1], we describe the following definition and notations. For each $x \in X, L(x)$ denotes the set of points of X which are limits of all convergent subsequences of the sequence $\left\{f^{n}(x)\right\}$, and $O\left(f^{p}(x)\right)$ denotes the sequence of iterates of $f^{p}(x)$, that is, $O\left(f^{p}(x)\right)=\left\{f^{p}(x), f^{p+1}(x), \cdots\right\}, p=0,1,2, \cdots$, where it is understood that $f^{0}(x)=x$. For a subset Y of $X, d(Y)$ denotes the diameter of Y. If $d(O(x))<\infty$, then the sequence $\left\{d\left(O\left(f^{n}(x)\right)\right) ; n=0,1,2, \cdots\right\}$ has limit $r(x) \geqq 0$ which is called the limiting orbital diameter of f at $x . f$ is said to have diminishing orbital diameters if for each $x \in X, d(O$ $(x))<\infty$ and the limiting orbital diameter of f at x is less than $d(O(x))$ when $d(O(x))$ >0.

In [1] Belluce and Kirk proved that if f is a non-expansive mapping which has diminishing orbital diameters, and if for some $x \in X$, a subsequence of the sequence $\left\{f^{n}(x)\right\}$ has limit z, then $f(z)=z$ and $\lim _{n \rightarrow \infty} f^{n}(x)=z$.

Further in [2] Kirk obtained the very same results by exchanging a non-expansive mapping f for a mapping g which satisfies the condition that there exists a constant C such that for each positive integer p and for each $x, y \in X, d\left(g^{p}(x), g^{p}(y)\right) \leqq C d(x, y)$. If $C=1$, then g is non-expansive.

Our purposes are to generalize the above Kirk's theorem, and to give some examples.

Let $I(x)$ denote the number of all isolated points of $O(x)$, then $I(x)=0$ implies that $O(x)$ is dense in itself.

2. Periodic points and isolated points.

Theorem 1. Let f be a mapping of a metric space X into itself which satisfies

the following conditions;

(i) $I(x) \geqq 1$ for each point $x \in X$
(ii) for every positive number ε and for each point $x \in X$, there exist a positive number $\delta(x, \epsilon)$ and a positive integer $M(x)$ such that $d(x, y)<\delta(x, \epsilon)$ implies $d\left(f^{p}(x)\right.$, $\left.f^{p}(y)\right)<\varepsilon$ for every positive integer $p \geqq M(x)$
(iii) $z \in L(x)$ for some point $x \in X$.

Then z is a periodic point for f and so $I(z)$ is the number of all periodic points in $O(z)$.

Proof. Let $z=\lim _{i \rightarrow \infty} f^{n_{i}}(x)$ and $\varepsilon(>0)$ given. Then there exists a positive integer $N_{1}\left(z, \frac{\varepsilon}{2}\right)$ such that $N_{1}\left(z, \frac{\varepsilon}{2}\right)<i$ implies $d\left(f^{n_{i}}(x), z\right)<\frac{\varepsilon}{2}$, and also exist two positive integers $N_{2}\left(z, \frac{\varepsilon}{2}\right)$ and $M(z)$ such that $N_{2}\left(z, \frac{\varepsilon}{2}\right)<i$ and $M(z) \leqq p$ imply $d\left(f^{p}\left(f^{n i}(x)\right)\right.$, $\left.f^{p}(z)\right)<\frac{\varepsilon}{2}$. Here anew we put $N(z, \varepsilon)=\max \left\{N_{1}\left(z, \frac{\varepsilon}{2}\right), N_{2}\left(z, \frac{\varepsilon}{2}\right)\right\}, i_{1}=N(z, \varepsilon)+1$ and $j_{1}=n_{i_{1}}+M(z)$. Then $\quad d\left(f^{n f_{1}-n_{i_{1}}}(z), z\right) \leqq d\left(f^{n_{j_{1}}-n_{i_{1}}}(z), f^{n_{j_{1}}-n_{i_{1}}}\left(f^{n_{i_{1}}}(x)\right)\right)+d\left(f^{n_{j_{1}}}(x), z\right)$ $<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$.
Thus it is easily seen that there exists a subsequence $\left\{f^{m_{i}}(z) ; m_{1}<m_{2}<\cdots<m_{i}<\cdots\right\}$ of the sequence $\left\{f^{n}(z)\right\}$ such that $z=\lim _{i \rightarrow \infty} f^{m_{i}}(z)$. Hence $f^{p}(z)=\lim _{i \rightarrow \infty} f^{p+n_{i}}(z)$ for every positive integer $p \geqq M i z)$. If a set $\left\{f^{\substack{p+m_{i}}}(z) ; i=1,2,3, \cdots\right\}$ is infinite for each positive integer $p \geqq M(z)$, then $I\left(f^{M(z)}(z)\right)=0$. It is in contradiction to the hypothesis. Therefore for some $q \geqq M(z)$, the set $\left\{f^{\natural+m_{i}}(z) ; i=1,2,3, \cdots\right\}$ is finite. Since $f^{q}(z)=\lim _{i \rightarrow \infty} f^{〔+m_{i}}(z)$, there exists a positive integer t such that $f^{n+m_{i}}(z)=f^{q}(z)$ for every $i \geqq t$. Hence $f^{q}(z)$ is a periodic point. Then $O(z)$, consequently the set $\left\{f^{m_{i}}(z) ; i=1,2,3, \cdots\right\}$, is finite. Thus z is periodic and $I(z)$ is the minimal of q such that $f^{q}(z)=z$.

Corollary 1. Let f be a mapping of a metric space X into itself.
(i) f has diminishing orbital diameters
(ii) for every positive number ε and for each point $x \in X$, there exist a positive number $\delta(x, s)$ and a positive integer $M(x)$ such that $d(x, y)<\delta(x, \varepsilon)$ implies $d\left(f^{p}(x)\right.$, $\left.f^{p}(y)\right)<\varepsilon$ for every $p \geqq M(x)$
(iii) $z \in L(x)$ for some point $x \in X$.

Then $f(z)=z$ and $\lim _{n \rightarrow \infty} f^{n}(x)=z$.
Proof. From the proof of Theorem 1, (ii) and (iii) imply that $f^{p}(z)$ is a limit
point of $O\left(f^{M(z)}(z)\right)$ for every $p \geqq M(z)$. Then $r\left(f^{M(z)}(z)\right)=d\left(O\left(f^{M(z)}(z)\right)\right)$ and so $d(O$ $\left.\left(f^{M(z)}(z)\right)\right)=0$ by (i). Hence $f^{M(z)+1}(z)=f^{M(z)}(z)$ and further $f(z)=z$. Let $z=\lim _{i \rightarrow \infty} f^{n_{i}}(x)$ and $\varepsilon(>0)$ given. Then there exists a positive integer $N(z, \varepsilon)$ such that $N(z, \varepsilon)<i$ implies $d\left(f^{p}\left(f^{n_{i}}(x)\right), f^{p}(z)\right)<\varepsilon$ for every $p \geqq M(z)$. Hence $\lim _{n \rightarrow \infty} f^{n}(x)=z$.

Remark. $I(x)=0$ implies that $r(x)=d(O(x))$.
The conditions of Kirk's theorem imply those of Corollary 1. The following example shows that Corollary 1 is more general than Kirk's theorem.

Example 1. Let $X=[0,1]$ with the usual distance and $s=s(t)=2^{t-1}+1$ where $t=1,2,3, \cdots$. Let f be a mapping of X into itself defined by;
(1) $f(x)=s x-1$ if x is a rational number in $\left[\frac{2}{2 s-1}, \frac{4}{4 s-3}\right]$ for $2^{2 u-1} \leqq t$ $<2^{2 u}$, or if x is an irrational number in $\left[\frac{2}{2 s-1}, \frac{4}{4 \mathrm{~s}-3}\right]$ for $2^{2 u} \leqq t<2^{2 u+1}$, where u is a positive integer
(2) $f(x)=0$ for others.

Then for every point $x \in\left[\frac{2}{2 s-1}, \frac{4}{4 s-3}\right], f^{2 v-t+1}(x)=0 \quad$ where $\quad 2^{v-1} \leqq t<2^{0}$ and v is a positive integer.

Thus the conditions of Corollary 1 are all satisfied, but there exists no constant C such that $d\left(f^{p}(x), f^{p}(y)\right) \leqq C d(x, y)$ for each $x, y \in X$ and for every positive integer p.

The next theorem is easily obtained from the proof of Theorem II [2].
Theorem 2. Let (X, d) be compact and f a continuous mapping of X into itself. Then f has at least one periodic point in X if $I(x) \geqq 1$ for each $x \in X$.

Proof. Let x be an arbitrary point of X. From the proof of Theorem II [2], there exists a minimal subset K of $L(x)$ with respect to being non-empty, compact and mapped into itself by f. Let $d(K)>0$ and $z \epsilon K$. Then the closure $\overline{O(z)}$ of $O(z)$ coincides with K by the minimality of K. Suppose that $O(z)$ is infinite. Then by the hypothesis, there exists a positive integer p for which $f^{p}(z)$ is an isolated point of $O(z)$. Thus $\overline{O\left(f^{p+1}(z)\right)}$ is a proper subset of K which is mapped into itself by f. This contradicts the minimality of K. Hence $O(z)$ is finite. Again the minimality of K implies that $f(K)$ $=K$ and $z=f^{I(z)}(z)$. When $d(K)=0$, it is clear that $K=\{z\}$ and $f(z)=z$.

The following example shows that if the condition (ii) is exchanged for the
continuity of f in Corollary 1 , then it no longer assures the existence of a fixed point for f, and shows too that it does not guarantee the existence of a periodic point to change the condition (ii) of Theorem 1 for the global continuity of f on X, or to substitute the locally compactness and the totally boundedness for the compactness of X in Theorem 2.

Example 2. Let X be a subset of the plane, with the Euclidean distance, defined as follows;

$$
\begin{aligned}
& X=X_{1} \cup X_{2} \cup X_{3}, X_{1}=\left\{\left(\frac{1}{s}+1, \frac{1}{s}\right) ; s=2,3,4, \cdots\right\}, \\
& X_{2}=\left\{\left(\frac{1}{s}, \frac{1}{t}\right) ; s, t=2,3,4, \cdots ; s \leqq t\right\}, X_{3}=\left\{\left(\frac{1}{s}, 0\right) ; s=1,2,3, \cdots\right\} .
\end{aligned}
$$

Define a mapping f of X into itself by;

$$
\begin{align*}
& f\left(\left(\frac{1}{s}+1, \frac{1}{s}\right)\right)=\left(\frac{1}{2}, \frac{1}{s}\right) \tag{1}\\
& f\left(\left(\frac{1}{s}, \frac{1}{t}\right)\right)=\left(\frac{1}{s+1}, \frac{1}{t}\right) \text { if } s<t \\
& f\left(\left(\frac{1}{s}, \frac{1}{t}\right)\right)=\left(\frac{1}{s+1}+1, \frac{1}{t+1}\right) \text { if } s=t \\
& f\left(\left(\frac{1}{s}, 0\right)\right)=\left(\frac{1}{s+1}, 0\right) .
\end{align*}
$$

Then we see easily the following in this example;
(i) X is locally compact and totally bounded, but not compact
(ii) f is continuous on X
(iii) f has diminishing orbital diameters
(iv) the condition (ii) of Theorem 1 and Corollary 1 is not satisfied
(v) $\quad L(x)=X_{3}=O((1,0))$ for each point $x \in X_{1} \cup X_{2}$, and $I(x) \geqq 1$ for each $x \in X$.

But clearly f has no periodic point.
The following example shows that if f is discontinuous, then the other conditions of Theorem II [2] don't assure the existence of a fixed point for f.

Example 3. Let $X=\left\{ \pm\left(1+\left(\frac{1}{2}\right)^{k}\right) ; k=0,1,2, \cdots\right\} \cup\{ \pm 1\}$ with the usual distance and f a mapping of X into itself defined by;

$$
f(-x)=x \text { if } x>0, f\left(1+\left(\frac{1}{2}\right)^{k}\right)=-\left(1+\left(\frac{1}{2}\right)^{k+1}\right) \text { and } f(1)=-2
$$

Then X is compact and f has diminishing orbital diameters, but there exists no fixed point.
3. Mappings each of whose iterative sequences converges to some mapping.

Theorem 3. Let f be a mapping of a metric space X into itself and the sequeuce $\left\{f^{n}\right\}$ of iterates of f pointwise converge to a mapping g which is commutative with f^{p} for some positive integer p. Then f has a fixed point.

Proof. For an arbitrary point $x \in X, \lim _{n \rightarrow \infty} f^{n}(x)=g(x)$ and $\lim _{n \rightarrow \infty} f^{n+p}(x)=g\left(f^{p}(x)\right)$ $=f^{p}(g(x))$. Thus $f^{p}(g(x))=g(x)$. Since $\lim _{n \rightarrow \infty} f^{n}(g(x))=g^{2}(x)$ and $f^{m p}(g(x))=g(x)$ for every positive integer $m, d(g(x), f(g(x)))=\lim _{n \rightarrow \infty} d\left(f^{n p}(g(x)), f^{n p+1}(g(x))\right)=0$.

It is known that if $\lim _{n \rightarrow \infty} f^{n}(x)=\eta \epsilon X$ for some point $x \in X$ and if f is continuous at η, then $f(\eta)=\eta$. The following example shows that Theorem 3 is independent of the above statement.

Example 4. Let $X=[0,1]$ with the usual distance and f a mapping of X into itself defined by;

$$
\begin{align*}
& \text { (1) } f(0)=f(1)=1, f\left(\frac{1}{3}\right)=\frac{1}{3} \tag{1}\\
& \text { (2) } f(x)=0 \text { if } x \epsilon\left(0, \frac{1}{3}\right) \\
& \text { (3) } f(x)=\frac{1}{2} x \text { if } x \epsilon\left(\frac{1}{3}, 1\right) . \tag{3}
\end{align*}
$$

Then it is easily seen that;
(i) for each $x \in\left[0, \frac{1}{3}\right) \cup\left(\frac{1}{3}, 1\right], \lim _{n \rightarrow \infty} f^{n}(x)=1$
(ii) f is discontinuous at $\frac{1}{3}$ and 1 which are fixed points
(iii) the limit mapping g is commutative with f^{2}, but not with f.

Finally we are very much grateful to Professor Masae Orihara.

REFERENCES

〔1〕 L．P．Belluce and W．A．Kirk．Fixed－point theorems for certain classes of nonexpansive mappings，Proc．Amer．Math．Soc．， 20 （1969）pp 141－146．
〔2〕 W．A．Kirk．On mappings with diminishing orbital diameters，J．London Math．Soc．， 44 （1969）pp 107－111．

Department of Mathematics
Kanagawa University
Rokkakubashi，Kanagawa－ku
Yokohama 221 Japan

