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1. Introduction and notations. Let (X, d) be a metric space. A mapping f
of X into itself is said to be non—expansive if

d(f(x),f(y)) = d(x3) for every x,yeX.

A point xX is called a periodic point for f if there exists a positive integer
p such that f?(x)=x. If p=1, then x is called a fixed point for f.

According to [T], we describe the following definition and notations. For each
xeX, L (x) denotes the set of points of X which are limits of all convergent subsequences
of the sequence {f™(x)}, and O (f? (x)) denotes the sequence of iterates of f? (x), that is,
O(f?(x))={/? (x),f?* (1), ---},$»=0,1,2, ---, where it is understood that f°(x)=x. For
a subset Y of X,d(Y) denotes the diameter of Y. If d(O (x)) < oo, then the sequence
{d(O(f*(x))); n=0,1,2,---} has limit »(x) = 0 which is called the limiting orbital
diameter of f at x. f is said to have diminishing orbital diameters if for each x¢X, d (O
(x)) <oo and the limiting orbital diameter of f at x is less than d (0O (x)) when d(O (x))
> 0.

In Belluce and Kirk proved that if f is a non-expansive mapping which
has diminishing orbital diameters, and if for some xeX, a subsequence of the sequence
{f*(x)} has limit 2, then f(z)=z and lim f*(x)=z.

Further in Kirk obtained the very same results by exchanging a non-expansive
mapping f for a mapping g which satisfies the condition that there exists a constant C
such that for each positive integer p and for each x,yeX, d(g?(x),g?{y)) < Cd(x,y).
If C=1, then g is non—expansive.

Our purposes are to generalize the above Kirk’s theorem, and to give some

examples.

Let I(x) denote the number of all isolated points of O (x), then I(x)=0 implies
that O (x) is dense in itself.

2. Periodic points and isolated points.

Theorem 1. Let f be a mapping of a metric space X into itself which satisfies
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the following conditions ;

(i) I(x)=1 for each point xeX

(ii) for every positive number ¢ and for each point xeX, there exist a positive
number & (x,€) and a positive integer M (x) such that d(x,y) <0 (x,€) implies d(f? (x),
f?(y)) < e for every positive integer p = M (x)

(iii) zeL (x) for some point xeX.
Then z is a periodic point for f and so I(z) is the number of all periodic points in

O (2).

Proof. Let z=lim f™:(x) and ¢( > 0) given. Then there exists a positive integer

{—o0

N (z, %) such that N, (z, %) <1t implies d(f"(x),2z) < —5—, and also exist two positive
integers N, (z, %) and M (z) such that N;(z, %) <i and M(2) < p imply d (f? (f* (x)),
f7(2)) < % Here anew we put N(z,¢)=max {N,(z, %), N; (z, %)}, i1=N(z,¢)+1and
Ji=ny+M(z2). Then d(f™ ™y (2), 2) < d(fr57 " (2), fra ™y (4 (1)) + d(fr (%), 2)
€, & _

<-2—+7—s.

Thus it is easily seen that there exists a subsequence {f™: (2); my < my < -+ <M<}
of the sequence {f™(2)} such that z=ltim J™i(2). Hence f?(2)=lim f?*"(z) for every
positive integer p = M (2). If a set {fP+™ (2); 1=1,2,3,---} is infinite for each positive
integer p=M (z), then I(f*®(z))=0. It is in contradiction to the hypothesis. Therefore
for some g = M (2), the set {f<*™i(z); i=1,2,3,-:} is finite. Since f?(zg)=lim fm: (z),

{e=c0

there exists a positive integer ¢ such that f«tmi(z)=fe(z) for every i = ¢ Hence
f¢(z) is a periodic point. Then O (z), consequently the set {f™:(2); i=1,2,3, .-}, is

finite. Thus z is periodic and /(2) is the minimal of g such that fe(z)=z.

Corollary 1. Let f be a mapping of a metric space X into itself.
(

i)
(ii) for every positive number ¢ and for each point xcX, there exist a positive
number 0 (x,¢) and a positive integer M (x) such that d(x,y)<o(x,e) implies d(f (x),

fP(y)) < e for every p = M (x)
(iii) zeL (x) for some poini xeX.

Then f(z2)=z and lim " (x)=z.

n—co

f has diminishing orbital diameters

Proof. From the proof of Theorem 1, (ii) and (iii) imply that f?(z) is a limit



ON FIXED AND PERIODIC POINTS IN METRIC SPACES 51

point of O (f¥® (z)) for every p=M (z). Then 7 (f*% (2))=d (O (f**(2))) and so d(0
(f2® (g)))=0 by (i). Hence f¥®+(z)=f%® (z) and further f(z)=2. Let z=1}f§ ™ (x)
and (> 0) given. Then there exists a positive integer N (z, ¢) such that N(z, ¢)<¢
implies d(f? (fm¢(%)),f?(2))< ¢ for every p = M (z). Hence lim f"(x)=2. '

Remark. I(x)=0 implies that 7 (x)=d (O (x) ).

The conditions of Kirk’s theorem imply those of Corollary 1. The following
example shows that Coroilary 1 is more general than Kirk’s theorem.

Example 1. Let X=[0,1] with the usual distance and s=s(f)=2¢t"1+1 where
t=1,2,3,.-. Let f be a mapping of X into itself defined by;

(1) f(x)=sx—1 if x is a rational number in [ 23?_1 , 454—3] for 22471 < ¢

< 224, or if x is an irrational number in[ 23?_1 , 454_3] for 22« < t < 22*!, where
u is a positive integer

(2) f(x)=0 f{for others.

Then for every point xe 2 , 4 , fP-t+l(x)=0 where 271t 2°
v 2s—1 ’ 4s—3 »
and v is a positive integer.

Thus the conditions of Corollary 1 are all satisfied, but there exists no constant C
such that d(f?(x),f?(y)) < Cd(x,y) for each x,yeX and for every positive integer p.

The next theorem is easily obtained from the proof of Theorem II [2].

Theorem 2. Let (X,d) be compact and f a continuous mapping of X into
itself. Then f has at least one periodic point in X if I(x) = 1 for each xeX.

Proof. Let x be an arbitrary point of X. From the proof of Theorem II [2],
there exists a minimal subset K of L (x) with respect to being non-empty, compact and
mapped into itself by f. Let d(K) >0 and zeK. Then the closure O (2) of O (2) coincides
with K by the minimality of K. Suppose that O (z) is infinite. Then by the hypothesis,
there exists a positive integer p for which f?(2) is an isolated point of O(2). Thus
O (f**1(2)) is a proper subset of K which is mapped into itself by f. This contradicts
the minimality of K. Hence O (2) is finite. Again the minimality of K implies that f(K)
=K and z=f1® (z). When d(K)=0, it is clear that K={z} and f(2)==z.

The following example shows that if the condition (ii) is exchanged for the
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continuity of f in Corollary 1, then it no longer assures the existence of a fixed point
for f, and shows too that it does not guarantee the existence of a periodic point to
change the condition (ii) of Theorem 1 for the global continuity of f on X, or to
substitute the locally compactness and the totally boundedness for the compactness of X
in Theorem 2.

Example 2. Let X be a subset of the plane, with the Euclidean distance, defined

as follows ;

X=XiUXUXe Xi={($+1,1); 5=2,3,4,--],

Xe={(3. F)sst=2345551), X={(

¢ |-

,o); s=1,2,3,---}.

" Define a mapping f of X into itself hy;

SRR NER
@A)} s
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Then we see easily the following in this example;

X is locally compact and totally bounded, but not compact .

)
i) f is continuous on X

) f has diminishing orbital diameters

) the condition (ii) of Theorem 1 and Corollary 1 is not satisfied
v) L (x)=X3=0((1,0)) for each point xeX; U X, and I(x) = 1 for each xeX.
But clearly f has no periodic point.

The following example shows that if f is discontinuous, then the other conditions

of Theorem II[2] don’t assure the existence of a fixed point for £,

Example 3. Let X={=(1+(3)); £=0, 1, 2,~~}U (1} with the usual
distance and f a mapping of X into itself defined by ;
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fl—x)=x if x>0, f(1+<-21—»)")=-—(1+(»21~)’““) and f(1)=—2.

Then X is compact and f has diminishing orbital diameters, but there exists no fixed
point.
3. Mappings each of whose iterative sequences converges to some mapping.

Theorem 3. Let f be a mapping of a metric space X into itself and the sequeuce
{f"} of iterates of f pointwise converge to a mapping g which is commutative with
f? for some positive integer p. Then f has a fixed point.

Proof. For an arbitrary point xeX, lim f*(x)=g(x) and lim f**? (x)=g(f?(x))
=f*(g(x)). Thus f7(g(x))=g(x). Since fim f~(g(x))=g*()and S (g(x))=g(x) for
every positive integer m,d (g(2), f(g(x)))=lim d (/™ (g(x)),f"7+ (g(x)))=0.

It is known that if lim f”(x)=7neX for some point %X and if f is continuous
at 5, then f(y)=7. Then¥gllowing example shows that Theorem 3 is independent of

the above statement.

Example 4. Let X=[0,1] with the usual distance and f a mapping of X into
itself defined by ;

(1) fO=F=1 £(§)=3

Then it is easily seen that;

(1) for each xe [O, %)U(—%, 1:|, lim f7(x)=1

n—ro0

(ii) f is discontinuous at % and 1 which are fixed points

(iii) the limit mapping g is commutative with f2, but not with f.

Finally we are very much grateful to Professor Masae Orihara.
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