
TRIANGULATION OF A TOPOLOGICAL MANIFOLD WITH

TRANSVERSE K-PLANE FIELD

By

KAZUAKI KOBAYASHI

(Received Sep. 10, 1969)

1. Introduction.

Let $M$ be a topological $n$-manifold imbedded in euclidean $(n+k)$-space $R^{n+k}$ . Let
$Q$ be a $k$-plane through the origin in $R^{n+k}(i.e., Q\epsilon G_{k,n})$ .

Let $x$ be a point of $M$ and $U$ a neighborhood of $x$ in $M$ ; suppose that no line
joining two points of $\overline{U}$ is parallel to $Q$ . Then $Q$ is said to be transverse to $M$ at $x$.
And $U$ is called an admissible neighborhood of $x$ for $Q$ . A transverse $k$-plane field on
$M$ is a continuous map $\varphi$ of $M$ into $G_{k,n}$ such that $\varphi(x)$ is transverse to $M$ at $x$, for
all x\’eM.

If a topological $n$-manifold $M^{n}$ in an euclidean $(n+k)$-space $R^{n+k}$ admits a
transverse $k$-plane field then $M^{n}$ has a differentiable structure [2]. And a differentiable
manifold $M^{n}$ has a $C^{r}$-triangulation [1], [3].

Hence the topological $n$-manifold $M^{n}$ with the transverse $k$-plane field in $R^{n+k}$

is triangulable. In this paper we immediately triangulate the compact topological $n-$

manifold $M^{n}$ with the transverse $k$-plane field in $R^{n+k}$ but not using the differentiable
structure induced by the $k$-plane field. The method is analogous to Whitney’s method
[3] which is used the triangulation of a differentiable manifold.

$c$

Let $K$ be a (locally finite) simplicial $mplex$ and $\pi^{*}:$ $|K|\rightarrow M$ be a homeom-
orphism. Then we call $K$ a triangulation of $M$. If for any vertex $v$ of K $St(v, K)$ is
piecewise linearly homeomorphic to the $n$-simplex, then we call $K$ a combinatorial
triangulation of $M$.

Let $K$ and $L$ be two complexes. If $K$ and $L$ have simplicial subdivisions $K^{\prime}$ and
$L^{\prime}$ resp. such that $K^{\prime}$ is isomorphic to $L^{\prime}$ , then we say that $K$ is combinatorially

equivalent to $L$ . If any triangulation of $M$ are combinatorially equivalent, then we
say that $M$ has a unique triangulation. By a closed $n$-manifold we mean a compact

topological $n$-manifold without boundary.

Theorem. If the closed n-manifold $M^{n}$ in $R^{n+k}$ satisfies the following two
conditions, then $M^{n}$ has a combinatorial triangulation.

Furthermore if $(n+k)\geqq 4,$ $M^{n}$ has a unique triangulation.
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Conditions 1) $M^{n}$ admits a transverse k-plane field $\varphi:M^{n_{-*c_{k,n}}}$ .
2) The angle between $\varphi(x)$ and the line $yz$ is greater than $ cot^{-1}\neq$

$i.e.$ , cot a $(yz, \varphi(x))>Z\tau$ where $y,$ $z$ are any points contained in some admissible
neighborhood of $x$ for $\varphi(x)$ .

2. Definitions and Notations.

$R^{n*}$ will mean an $m$-dimensional euclidean space.

We use $G_{k,n}$ to denote the Grassmannian manifold consisting of $k$-planes
through the origin in $R^{n+k}$ . Let $x$ and $y$ are vectors in $R^{n+k}$ , then $\alpha(x,y)$ will denote
the angle between them, on the understanding that $ 0\leqq\alpha(x,y)\leqq\pi$ .

If $Q\epsilon G_{k,n\prime}$ , then $\alpha(x, Q)$ will denote the angle between $x$ and its orthogonal
projection in $Q$ , with $\alpha(x, Q)=\frac{\pi}{2}$ if $x$ is orthogonal to $Q$ .

Thus $0\leqq\alpha(x, Q)\leqq\frac{\pi}{2}$ . If $P\epsilon G_{i,j},$ $Q\epsilon G_{tm}$ where $i+j=l+m,$ $0<i\leqq l,$ $m>0$ ,

then $\alpha(P, Q)$ will denote

$\alpha(P, Q)=\max\{\alpha(x, Q) ; 0\neq x\epsilon P\}$ .
If $x\epsilon R^{n+k},$ $P\epsilon G_{k,n}$ , then $x+P$ will denote the flat $k$-space consisting of the vectors

$x+y\epsilon R^{n+k}$ for every $y\epsilon P$. Let $M^{n}$ be an $n$-dimensional topological manifold in $R^{n+k}$ .
A $k$-plane $P_{p}\epsilon G_{k,n}$ will be described as transverse to $M^{n}$ at a point $p\epsilon M^{n}$ if and
only if there is a neighborhood $W\subset M$ of $p$ and a number $\delta$ such that $0<\delta<\pi/2$

and $\alpha(xy, P_{p})>\delta$ if $x,y\epsilon W,$ $x\neq y$ . Let $W,$ $P_{p}$ satisfy the above condition and let $Q_{p}\epsilon G_{n.k}$

be the $n$-plane through $p$ and orthogonal to $P_{p}$ . Then the orthogonal projection $\pi_{p}$ :
$R^{n+k}\rightarrow Q_{p}$ maps a neighborhood $W$ of $p$ in $M$ in 1-1 fashion and hence $homm\alpha$

$rphicall\oint$, on an open subset $U\subset Q_{p}$ . We call the neighborhood $W$ an admissible
neighborhood of $p$ for a transverse $k$-plane $P_{p}$ .

A transverse k-plane field to $M^{n}$ in $R^{n+\mathfrak{t}}$ will mean a continuous map $\varphi:M^{n}$

$\rightarrow G_{k,n}$ such that $\varphi(x)$ is transverse to $M^{n}$ at $x$ for every $x\epsilon M$. In this paper $M^{n}$

always means a closed topological $n$-manifold with a transverse $k$-plane field in $R^{n+k}$ .
From Proposition $0$ every transverse $k$-plane field $\varphi$ : $M\rightarrow G_{k,n}$ can be $\epsilon-$

approximated by a transverse $k$-plane field $\varphi$ which is a Lipschitz map and transversally
$homotopic\backslash $ to $\varphi$ [see 2. $p159$].

Hence we always consider that every transverse $k$-plane field $\varphi$ is a Lipschitz
map.

And as a matter of convenience we shall often denote $M^{n},$ $R^{n+k}$ by $M,$ $R$

respectively.
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Let $P$ and $P^{\prime}$ be planes of dimensions $n$ and $k$ respectively in $R^{n+k}$ with just
one point in common. Then independence of $P$ and $P^{\prime}$ we define to be

ind $(P, P^{\prime})=\inf\{|v-\pi_{P}v|; v_{\overline{c}}P^{\prime}, |v|=1\}$

where $\pi_{P}$ be the orthogonal projection into $P$.
By a complex $K$ we shall mean a locally finite simplicial complex.

And $|K|$ will denote the underlying space of $K$.
For any oriented complex $K$ we call the continuous mapping $f$ of $|K|$ into

oriented $R^{n}$ simplexwise positive if for each $n$-simplex $\sigma_{t}^{n}$ of $K,f$ is linear and $one\triangleleft$)$ne$

in $\sigma_{i}^{n}$ , and orientation preserving there.

The star $St(\sigma)$ of $\sigma$ in $K$ is the point set consisting of all int $(\sigma^{\prime})$ such that $\sigma$

is a face of $\sigma^{\prime}$ . The closed star $\overline{St}(\sigma)$ is the closure in $|K|$ of $St(\sigma)$ . The star boundary
$\partial St(\sigma)$ is $\overline{St}(\sigma)-St(\sigma)$ .

For any complex $K$, let $K^{k}$ or $(K)^{c}$ denote the subcomplex containing all simplexes
of $K$ of dimension $\leqq k$ . With a mapping $f:K\rightarrow R^{n}$ , any point $q$ of $f(K)-f(K^{n-I})$

is in the image of a certain number $h$ of $n$-simplexes of $K$ ; we say $q$ is covered $h$-times.

Proposition $0$ . (J. H. C. Whitehead) Every transverse $k$-plane field $\varphi;M\rightarrow$

$G_{k,n}$ on $M$ can be $\epsilon$-approximated by a transverse $k$-plane field $\varphi$ which is a Lipschitz
map and transversally homotopic to $\varphi$ [$2$ . Th 1.10].

3. Local properties of $M^{n}$ in $R^{n+k}$ .
Let $\pi_{p}$ ; $R^{n+k}\rightarrow Q_{p}$ be an orthogonal projection. Then $\pi_{p}|W:W\rightarrow U$ is one

to one where $W$ is an admissible neighborhood for $P_{p}$ .

We define to be $h=(\pi_{p}|W)^{-1}$ and

(1) $\left\{\begin{array}{l}U_{\eta}(p)=\{x\epsilon R^{n+t} ; |p-x|<\eta\}.\\Q_{p.\eta}=Q_{p}\cap U_{\eta}(p).\\M_{p.\eta}=h_{p}(Q_{p,\eta}).\end{array}\right.$

Lemma 1. Let $M^{n}$ in $R^{n+k}$ be compact. Then there is a $\eta_{0}>0$ such that
$M_{p,\eta_{0}}$ is defined for all $p\epsilon M^{n}$ .

Moreover

(2) $ d(p, M-M_{p,r_{0}})\geqq\eta$ , $\eta\leqq\eta_{0}$ .

Proof. Since at any point $p$ of $M^{n}$ there is a transversal $k$-plane $P_{p}$ , there
exist an admissible neighborhood $W$ and orthogonal projection $\pi_{p}$ : $R^{n+k}\rightarrow Q_{p}$ such
that $\pi_{p}|W$ maps homeomorphically on an open subset $U\subset Q_{p}$ . Then there exists a
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positive number $\eta$ such that $Q_{p,\eta^{\prime}}$ is contained in $U$, Then $M_{p,\eta^{\prime}}$ is defined by
$h_{p}=(\pi_{p}|W)^{-1}$ .

Since $M^{n}$ is compact, for some $\eta_{0}^{\prime}<\eta^{\prime},$ $M_{p.\eta_{0}}$ is defined for all $p\epsilon M$.
From the definition of $\pi_{P}(2)$ is clear.

Lemma 2. Let $M^{n}$ in $R^{n+k}$ be compact. Then for any $\omega>0$ there is a
positive number $\eta_{1}\leqq\eta_{0}$ with the following property.

For any Point $p_{\epsilon M}$ and vector $v=q^{\prime}-q$ in $Q_{q}$ where $q$ is a pojnt in $M_{p.\eta_{1}}$

and $q^{\prime}$ is a point in $Q_{q}$ ,

(3) $|v-\pi_{p}v|\leqq\omega|\pi_{p}v|\leqq\omega|v|$ .
Proof. Let $sup\alpha(Q_{x}, Q_{p})=\kappa_{1}$ for $x\epsilon M_{p,\eta}$ . Since $M^{n}$ admits a transverse $k$-plane

fields, we may choose $\eta 1$ so that tan $\kappa_{1}\leqq\omega$ for any point $x$ in $M_{p,\eta_{1}}$ . Let $\alpha(Q_{q}, Q_{p})=\theta$ ,

then

$|v-\pi_{p}v|=|\pi_{p}v|\tan\alpha(v, \pi_{1?}v)\leqq|\pi_{p}v|\tan\theta\leqq|\pi_{p}v|$ tan $\kappa_{1}\leqq\omega|\pi_{p}v|\leqq\omega|v|$ .
Lemma 3. Let $M^{n}$ and $\eta_{1}$ be as in Lemma 2 and let $v=x-y$ for any point

$x,y$ in $M_{p,\eta_{1}}$ .
Let $\kappa_{2}$ be a positive number satisfying inf $\alpha(\delta z, P_{p})=\kappa_{2}$ for any $z,$ $z+\hat{o}z\epsilon M_{p,\eta_{1}}$ .

(The existence of $\kappa_{2}$ follows from $\eta_{1}\leqq\eta_{0}.$ )

Then $v$ satisfies (3) for $\omega\geqq cot\kappa_{2}$ . Moreover

(4) $|p^{\prime}-\pi_{p}(p^{\prime})|>\omega\eta$ , $ p^{\prime}\epsilon M_{p},\eta$ , $\eta\leqq\eta_{1}$ .
(5) $M_{p.r}\subset U_{\omega\eta}(Q_{p,\eta})$ , $Q_{p,\eta}\subset U_{\omega\eta}(M_{p,\eta})$ , $\eta\leqq\eta_{1}$ .

Proof. $|\pi_{p}v-v|=|\pi_{p}v|$ cot $\alpha(v, P_{p})\leqq|\pi_{p}v|$ cot $\kappa_{2}\leqq\omega|\pi_{p}v|\leqq\omega|v|$ proving
(3). $|p^{\prime}-\pi_{p}(p^{\prime})|=|v-\pi_{p}v|<\omega|\pi_{p}v|<\omega\eta$ where $v=p^{\prime}-p$ proving (4).

Relation (5) follows from (4).

Let $P$ and $P^{\prime}$ be planes of dimensions $n$ and $k$ respectively in $R^{n+k}$ with just
one point in common. Then to each point $p_{\epsilon R^{n+k}}$ corresponds a unique point $q=\pi^{\prime}(p)\epsilon P$

such that $q-p$ is a vector in $P^{\prime}$ where $\pi^{\prime}$ ; $R^{n+k}\rightarrow P$ is the projection along $P^{\prime}$ .
Lemma 4. Given $M^{n}$ in $R^{n+k}$ , let $\omega$ and $\eta_{1}$ be as in Lemma 3. Take $p_{\epsilon M}$,

and let $P$ be an k-plane such that

(6) ind $(Q_{p}, P^{\prime})\geqq\omega^{\prime}>\omega$ .
Then $\pi^{\prime}$ considered in $M_{p,\eta_{1}}$ , is an imbedding in $Q_{p}$ . We have

(7) $|\pi^{\prime}(q)-q|<\omega\eta/\omega^{\prime}$ if $q\epsilon M_{p,\eta_{1}}$ , $\eta\leqq\eta_{1}$ .
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(8) $Q_{p,g}\subset\pi^{\prime}(M_{p.\eta})$ , $ c=(1-\omega/\omega^{\prime})\eta$ , $\eta\leqq\eta_{1}$ .

Proof. Suppose $\pi^{\prime}(x)=\pi^{\prime}(y)$ for some points $x,y$ in $M_{p,\eta_{1}}$ and let $v=x-y$

be a secant vector, then $v$ is in $P^{\prime}$ . On the other hand, (3) holds and since $\omega<\omega^{\prime},$ $v$

is not in $P^{\prime}$ from (6). This is contradiction.

Therefore $\pi^{\prime}$ is $one\rightarrow$)$ne$ in $M_{p,\eta_{1}}$ , and hence is an imbedding.

Let $v=q-\pi^{\prime}(q)$ and $\alpha(v, Q_{p})=\theta$ , then sin $\theta\geqq\omega^{\prime}$ . And by Lemma 3 $|\pi_{p}(q)-q|$

$<\omega\eta$ , hence $|\pi^{\prime}(q)-q|=|\pi_{p}(q)-q|$ coses $\theta<\frac{\omega\eta}{\omega’}$ , (7) holds.

Furthermore $|\pi^{\prime}(q)-q|$ cos $\theta<\frac{\omega\eta}{\omega}\sqrt{1-\omega^{\prime_{2}}}<\frac{\omega\eta}{\omega}$ .
Relation (8) follows from this.

Lemma 5. There is a positive function $\delta(p)$ defined on $M$ with the following
properties. For each p-M if $P_{p}^{*}=P_{p}\cap U_{\delta(p)}(p)$ , then $P_{p}^{*}$ fill out a neighborhood $U^{\cdot}$

of $M$ in an one-one way.

Set $\pi^{*}(q)=p$ if $q\epsilon p_{p}^{*}\cap U^{*}$ . Then $\pi_{p}|P_{p}=\pi^{*}$ and

(9) $|\pi^{*}(q)-q|=|\pi_{p}(q)-q|=2d(M, q)$ for $q\epsilon U^{\cdot}$ and $for\neq>\cot\kappa_{2}$ where $\kappa_{2}$

is similar to Lemma 3.

Proof. Since the transverse $k$-plane field $\varphi:M\rightarrow G_{k,n}$ is a Lipschitz map by
Lemma $0$ , first part of the statement follows from [2. Th 1.5].

Let $\omega>0,$
$\eta_{1}$ be as in Lemma 3. Let $\delta(p)\leqq\frac{\eta_{1}}{2}$ and take $\omega\leqq\neq$ (such $\omega$ exist

from the assumption $\pm>\cot\kappa_{2}$ ). Set $u=q-p,$ $|u|=a$ , then $d(q, Q_{p})=|\pi_{p}(q)-q|=|$

$p-q|=|u|=a$ . Since $2a\leqq\eta_{1}$ , by Lemma 3, $M_{p,2a}\subset U_{2a\omega}(Q_{p})$ .
Let $d(q, M_{p.2a})=d(q, s),$ $d(s, Q_{p})=d(s, t)$ , then $d(q, s)\geqq d(q, t)-d(s, t)\geqq d(q,p)$

$-d(s, t)\geqq\frac{a}{2}$ . $d(q, M-M_{p,2^{\rho}})\geqq d(p, M-M_{p,2a})-a\geqq a$ and hence hold (9).

Lemma 6. Take $\omega,$
$\delta$ and $\eta_{1}\leqq\eta_{0}$ as in Lemma 3, Take any $p,p_{\epsilon M}^{\prime}$ such

that $|p-p^{\prime}|<\eta_{1}$ . Then $P_{p}$ intersects $Q_{p}$ in a unique point and

(10) $|\pi_{p}v|\leqq\omega|v|$ if $v$ is in $P_{1)}$ , and $|v|>cot\delta$

Proof. Since $|p-p^{\prime}|<\eta_{1},$ $p^{\prime}\epsilon M_{p,\eta_{1}}$ .
Take any unit vector $u$ in $Q_{p}$ . Since $v$ is orthogonal to $Q_{p},$ $\pi_{p\prime}u\cdot v=0$ . Hence

(3) gives $|\pi_{p}v|\leqq|u\cdot v|=|(u-\pi_{p}, u)v|\leqq\omega|v|$ .
If the statement about intersection were false, then there would be a unit vector

$u$ in both $P_{1)^{\prime}}$ and $Q_{p}$ .

But then (10) would give $|u|=|\pi_{p}u|<|u|$ , a contradiction.
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4. Fullness.

Given the $\gamma$-simplex $a(r>0)$ in Euclidean space $R^{m}$ (a could be any set to which
are attached a dimension $r$, a volume $|\sigma|$ , and a diameter diam $(\sigma))$ , and a defining
aet of vectors $v_{1},$ $\cdots$ , $v_{r}$ for $\sigma$ , then by $[3. p125]$ its fullness $F(a)$ and volume $|\sigma|$

are
(1) $F(\sigma)=|\sigma|/\delta_{a}^{r}$ , $\delta_{\sigma}=diam(a)$ .

(2) $|a|=|v_{1}\vee\cdots\vee v_{r}|/r!\leqq|v_{1}|\cdots|v_{r}|/r!=\delta_{\sigma}^{r}/r$ !; hence

(3) $F(\sigma)=1/r$ ! , dim $a=r$.
(4) $r$ ! $F(a^{r})\leqq k$ ! $F(a^{k})$ , $a^{k}$ a face of $a^{r}$ .

and the following propositions is due to [3. pp 125-127].

Proposition 1. For any $r$-simPlex $a=p_{0}\cdots p_{r}$ and point $P=\mu_{0}P_{0}+\cdots+\mu_{r}P_{r}$

in a

(5) $d(p, \partial\sigma)\geqq r$ ! $F(\sigma)\delta_{\sigma}$ $inf\{\mu_{0}, \cdots , \mu_{r}\}$ .

Proposition 2. Given $r,$ $F_{0}>0$ , and $\epsilon>0$ , there is a $\rho_{0}>0$ with the following

property. Take any simplex $a=p_{0}\cdots p_{r}$ with $F(\sigma)\geqq F_{0}$ , and take any points $q_{0},$ $\cdots,q_{r}$ ,

with $|q_{i}-p_{i}|\leqq\rho_{0}\delta_{\sigma}$ (all $i$).

Then $\sigma^{\prime}=q_{0}\cdots q_{r}$ is a simplex and $ F(\sigma^{\prime})\geqq F_{0}-\epsilon$ .

Proposition 3. Given vectors $u_{1},$ $\cdots$ , $u_{r}$ and numbers $a_{1},$ $\cdots$ , $a_{r}$ ,

(6) $|\Sigma a_{i}u_{i}|\geqq\sup\{|a_{1}| , \cdot.. , |a_{r}|\}|u_{1}\vee\cdots\vee u_{r}|$ if each $|u_{i}|=1$ .
Proposition 4. Let $u_{1},$ $\cdots$ , $u_{r}$ be independent unit vectors parallel to edges of

the r-simplex $\sigma$ . Then

(7) $|\Sigma a_{i}u_{i}|\geqq\gamma$ ! $sup\{|a_{1} , \cdot.. , |a_{r}|\}F(\sigma)$ .
(8) $|a_{i}|\leqq|\Sigma a_{f}u_{j}|/\gamma$ ! $F(a)$ , $i=1,$ $\cdots$ , $r$.

Proposition 5. Let $\pi$ denote an orthogonal projection into a plane P. Let
$\sigma=p_{0}\cdots p_{r}$ be a simplex and suppose

(9) $\sigma\subset U_{\zeta}(P),$ $|p_{i}-p_{0}|\geqq\delta>0$ $(i=1, \cdots, r)$

Then for any unit vector $u$ in $a$ ,

(10) $|u-\pi u|\leqq 2\zeta/(r-1)$ ! $ F(\sigma)\delta$ .
Proposition 6. Let $a$ be an s-cell and let $P$ be an n-plane in $R^{m}$ , such that

(11) $s+n\geqq m$ , $d(P, \sigma)<d(P, \partial a)$ .

Then if $s+n=m,$ $P$ intersects $a$ in a single pojnt, and
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(12) ind $(P, P(a))>d(P, \partial\sigma)/diam(a)$ .

Proposition 7. Let $P$ be a plane in $R^{m}$ , let $Q$ be a plane in $P$, let $E$ be a
closed set in $P$, let $p$ be a point of $R^{m}$ not in $E$, and let $Q^{*}$ be the join $P^{*}E$.
Then

$(d(Q^{*}, Q)=d(E, Q)d(p, P)/diam(Q^{*})$ .

5. The complex L.

If we take a cubical subdivision of $R^{m}$ and the barycentric subdivision $L$ of this,

all simplexes of $L$ have the same fullness. Let $N$ be the largest number of simplexes in
any star of a vertex of $L$ .

Choose $\rho_{0}<1/4m^{1/2}$ by proposition 2 so that for any $n$-simplex $\sigma=p_{0}\cdots p_{n}$ , if
$F(a)\geqq 2F_{0}$ , and $|q_{t}-p_{l}|\leqq\rho_{0}\delta_{\sigma}$ , then $\tau=q_{0}\cdots q_{n}$ is a simplex, with $F(\tau)\geqq F_{0}$ .

There is a number $\rho_{1}>0$ with the following property. Let $Q$ be any ball in
$R^{m}$ , of any radius $a$ , and let $Q^{\prime}$ be the part of $Q$ between any two parallel $(m-1)$-planes
whose distance apart is $\leqq 2\rho_{1}a$ . Then we have the inequality on volumes

(1) $|Q^{\prime}|<|Q|/N$.
Set

(2) $\rho=\rho_{0}\rho_{1}/4$ , $\alpha_{r}=\rho^{r}\rho_{0}\rho_{1}/2$ , $\alpha=\alpha_{t-1}/4$ . $s=m-n$ .
(3) $\beta=F_{0}\alpha/m^{1/2}NF_{1}=\beta^{n}/2^{n}$ , $\gamma=(n-1)!F_{1}\beta/2$ .

Choose $\rho_{0}^{\prime}\leqq 1/4$ by proposition 2, using $n,$ $F_{1}$ and $F_{1}/2$ in place of $r,$ $F_{0}$ and $\epsilon$ .
Set

(4) $\omega=\inf\{\alpha\gamma/128, \rho_{0}^{\prime}\alpha\beta/8\}$ .
Say the projection $\pi^{*}$ of Lemma 5 is defined in the neighborhood $U^{*}=U_{\delta_{0}}(M)$ .

We take $\omega\leqq\tau 1$ in Lemma 5.

Choose $\eta_{0}$ by Lemma 1, Choose $\eta_{1}\leqq\eta_{0}$ by Lemma 2 and set

(5) $\eta=\inf\{\eta_{1}, \alpha\delta_{0}/4\omega\}$ , $\delta=\eta/8$ , $h=2\delta/m^{1/2}$ ,

(6) $ a=2\alpha\delta$ , $ b=\beta\delta$ , $ c=\gamma\delta$ .

Let $L$ be a cubical subdivision of $R^{m}$ , the cubes being of side length $h$ , and let
$L$ be the barycentric subdivision of $L_{0}$ . Then each l-simplex of $L$ is of $length\geqq h/2$ ,

and the $m$-simplexes have diamenter $\delta$ .

6. The complex $L^{*}$ .
Let the vertices of $L$ be $p_{1},$ $p_{2},$ $\cdots$ , we shall new points $pi,$ $p_{2},$ $\cdots$ , with
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(1) $|p;-p_{l}|<\rho_{0}\delta$ , all $i$ .
By the choice of $\rho_{0}$ , this will define a new triangulation of $R^{m}$ , and using $\rho_{0}\delta$

$<h/8$ and (5.5) gives, for all simlexes $\tau$ of $L^{*}$ of dimension $\geqq 1$

(2) $ h/4<diam(\tau)<2\delta$ , $F(\tau)\geqq F_{0}$ .
We shall obtain also

(3) $ d(M^{n}, \tau^{r})>a_{r}\delta$ , all $\tau^{r}$ in $L^{*}$ , $r\leqq s-1$ , $s=m-n$

and henoe if $L^{*s-1}$ denote the $(s-1)$-skeleton of $L^{*}$ ,

(4) $d(M, L^{*s-1})>2a$ .
Proof of (3). Suppose $p_{i}^{*},$ $\cdots$ , $p_{i-1}^{r}$ have been found, so that the complex $L_{\ell-1}$

with these vertices satisfies (3); We shall find $p_{i}^{*}$ , so that $L_{\ell}^{*}$ satisfies (3).

Case I, $ d(p_{i}, M)\geqq 3\delta$ , Then we set $p_{i}^{*}=p_{i}$ . Because of (2), (3) will hold for $L:$ .

Case II, there is a point $p\epsilon M,$ $|p-p_{i}|<3\delta$ . Let $\tau_{1}^{\prime},$ $\cdots$ , $\tau_{\nu}^{\prime}(\nu\leqq N-1)$ be the

simplexes of $L_{t-1}^{*}$ of dimension $\leq s-2$ such that $\tau_{f}=p_{i}^{s}\tau_{f}^{\prime}$ will be a simplexes of $L_{i}^{*}$ .
Let $Q_{j}$ be the plane spanned by $\tau_{\acute{j}}$ and $Q_{p}(j\geqq 1)$ ; its dimension is at most $(s-2)+n+$

$1<m$ .
Set

(5) $P_{f}=U_{\rho_{0^{\delta}}}(p_{i})\cap U_{\rho_{1}\rho_{0^{\delta}}}(Q_{j})$ , $j=0,1,$ $\cdots,$
$\nu$ .

By the choice of $\rho_{1},$
$|P_{j}|<|U_{\rho_{0}\delta}(p_{l})|/N$ ; hence there is a point $p_{i}$

. satisfying

(1), such that

(6) $ d(p_{l}^{s}, Q_{j})>\rho_{1}\rho_{0}\delta$ , $j=0,1,$ $\cdots,$
$\nu$ .

We show now that

(7) $d(\tau_{j}^{\prime}, Q_{p})>2a_{r-1}\delta/3$ if dim $(\tau_{j}^{\prime})=r-1$ .

Since $\tau_{\acute{f}}$ is in $L_{\ell-1}^{*},$ $ d(\tau_{j}^{\prime}, M)>a_{r-1}\delta$ .
By (3.5) $Q_{p,\eta}\subset U_{\omega\eta}(M^{n})$ ; Since $\omega<\alpha_{s-1}/24,$ $\omega\eta<\alpha_{r-1}\delta/3$ , and (7) holds with

$Q_{p,\eta}$ in place of $Q_{p}$ . Since $|p-p_{i}|<3\delta$ and $d(p_{i}, \tau_{j}^{\prime})<2\delta,$ $ d(\tau_{j}, Q_{q}-Q_{p,\eta})>3\delta$ , which

gives (7).

Applying proposition 7 gives

$ d(\tau_{j}, Q_{p})=d(\tau_{j}^{\prime}, Q_{p})d(p_{i}^{l}, Q_{j})/diam(\tau_{f})>(2\alpha_{r-1}\delta/3)\rho_{1}\rho_{0}\delta/2\delta$

$=4\alpha_{r-1}\rho\delta/3=4\alpha_{r}\delta/3$ .

Since $\omega\eta<\alpha_{r}\delta/3$ , using (3.5) and (3.2) and the same argument as above gives

(3), for $\tau^{r}=\tau_{j},j\geqq 1$ .
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Using $j=0$ in (6) and the same argument again gives (3) for $\tau^{r}=p_{i}^{*};$ hence (3)

and (4) are provOd.

7. The intersection of $M$ with $L^{*}$ . Let $M^{n}$ be a topological $n$-manifold
imbedded in $R^{m}$ and $s=m-n$ .

(a) For any point $p\epsilon M^{n}$ and $r$-simplex $\sigma^{r}$ of $L^{*}$ ,

(1) $d(Q_{p}, \sigma^{r})>a$ if $\sigma^{r}\subset U_{7\delta}(p),$ $r\leqq s-1$ .
For $d(Q_{p}-Q_{p,\eta}, \sigma^{r})>\eta-7\delta>a$ and $Q_{p.\eta}\subset U_{\omega\eta}(M),$ $\omega\eta<a$ ; using (6.4) gives

(1).

(b) If $M^{n}$ intersects $a^{r},p\epsilon M^{n}$ , and $\sigma^{r}\subset U_{7\delta}(p)$ , then $Q_{p}$ intersects $\sigma^{r}$ . For if
$p_{\epsilon M^{n}}^{\prime}\cap\sigma^{r}$ , then by (3.2), $p^{\prime}\epsilon M_{p,\eta}^{n}$ .

By (3.5), $d(p^{\prime}, Q_{p})<\omega\eta<a$ . Let $\sigma^{t}$ be a face of smallest dimension of $a^{r}$ with
$d(a^{t}, Q_{p})\leqq a$ .

By (1), $t\geqq s$ , and by Proposition 6, $Q_{p}$ intersect $\sigma^{t}$ .
(c) If $r=s$ in (b), and $P(a^{\$})$ is the plane of $a^{s}$ , then

(2) ind $(Q_{p}, P(\sigma^{\$}))>\alpha$ .
This follows from Proposition 6, (1) and (6.2)

(d) If $p\epsilon M,$ $a^{r}\subset U_{7\delta}(p)$ , and $Q_{p}$ intersect $a^{r}$ , then $r\geqq s$ , and $M_{p}$ , , intersects $\sigma^{r}$ .
Let $\sigma^{t}$ be a smallest face of $\sigma^{r}$ such that $d(Q_{p}, \sigma^{t})\leqq a$ . By (1) and Proposition

6, $t=s$ (hence $r\geqq s$), $Q_{p}$ has a point $p^{\prime}$ in $a^{S}$ , and (2) holds. Let $\pi^{\prime}$ be the projection

into $Q_{p}$ along planes parallel to $\sigma$ “. By Lemma 4, $\pi^{\prime}(M_{p.\eta})$ covers $Q_{p.\zeta}$ with $\zeta=(1-\omega$

$/\alpha)\eta>7\delta$ .
Since $|l^{\prime}-p|<7\delta$ , there is a $p^{*}\epsilon M_{p,\eta}$ with $\pi^{\prime}(p*)=p^{\prime}$ ; hence $p^{*}\epsilon P(\sigma^{s})$ .
By (3.7) $|p^{\prime}-p*|<\omega\eta/\alpha\leqq\rho_{0}^{\prime}\beta\delta<\beta\delta<a$ .
Since $ p^{\prime}\epsilon\sigma$“, (6.4) shows that $p^{*}\epsilon a^{S}$ .

(e) $M^{n}$ intersects any $\sigma^{S}$ in at most one point. For suppose $M^{n}$ had the distinct
points $p,p^{\prime}$ in $\sigma^{s}$ . Then by (6.2), $p_{\epsilon M_{p}}^{\prime}$ , , and $M_{p.\eta}$ has a secant vector
$v=p^{\prime}-p$ in $\sigma^{*}$ . By Lemma 3, $|v-\pi_{p}v|\leqq\omega|v|$ .

But (2) gives $|v-\pi_{p}v|>\alpha|v|>\omega|v|$ , a contradiction.

(f) If $M$ intersect $\sigma^{r}=q_{0}\cdots q_{r}$ , then for each $k,$ $M$ intersects some $s$-face of $\sigma^{r}$

containing $q_{k}$ . For take $p_{\epsilon M^{n}}\cap\sigma^{r}$ . Let $a^{t}$ be a face of smallest dimension of $\sigma^{r}$ containing
$q_{k}$ . For take $p_{\epsilon M^{n}}\cap\sigma^{r}$ . Let $\sigma^{t}$ be a face of smallest dimension of $\sigma^{r}$ containing $q_{k}$

which $Q_{p}$ intersects. Suppose $t>s$ . Then if $\sigma^{t-1}$ is the face of $\sigma^{t}$ opposite $q_{k},$ $Q_{p}$
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intersects some $s$-face of $\sigma^{t-1}$ . Because of (c) $- Q_{p}$ contains interior points of $\sigma^{t}$ , and

hence intersects $\partial\sigma^{t}-\sigma^{t-1}$ , a contradiction.

Hence $t=s$ . By $(d),$ $M^{n}$ also intersects $a^{R}$ .

8. The complex K.

In each simplex $\sigma$ of $L^{*}$ intersecting $M^{n}$ we shall choose a point $\varphi(\sigma)$ ; these
are the vertices of $K$. For each sequence $\sigma_{0}\subset\sigma_{1}\subset\cdots\subset a_{r}$ of distinct simplexes of $L^{*}$ such
that $M^{n}$ intersects $\sigma_{0}$ (and hence all the $\sigma_{i}$ ),

(1) $a^{*r}=\varphi(a_{0})\cdots\varphi(a_{r})$

will be a simplex of $K$.
First, for each $a^{\epsilon}$ which $M^{n}$ intersects, there is just one point of intersection by

$(7 (e))$ ; let $\varphi(\sigma^{\$})$ be this point.

Next for any $a^{r}(r>s)$ which $M^{n}$ intersects let $\sigma_{1}^{s},$ $\cdots$ , $\sigma_{k}^{*}$ be the $s$-faces of $\sigma^{r}$

intersecting $M^{n}$ (see 7 $(f)$ );

set

(2) $\varphi(\sigma^{r})=(1/k)\varphi(a_{1}^{*})+\cdots+(1/k)\varphi(a_{k}^{*})$ .
We show that for any $\sigma^{\ell}=q_{0}\cdots q_{\epsilon}$ of $L^{*}$ intersecting $M^{n}$ ,

(3) $\mu_{t}>2\alpha$ ($i=0,$ $\cdots$ , s) if $\varphi(\sigma^{\theta})=\sum_{\ell}\mu_{i}q_{i}$ .

For let $\sigma_{i}$ be the ($s-1\vdash face$ opposite $q_{i}$ . Let $A_{i}$ and $A_{i}^{\prime}$ be the height from $q_{i}$

and $\varphi(a^{s})$ respectively to $P(\sigma_{i})$ . By (6.4) and (6.2)

$\mu_{i}\equiv A_{\ell}^{\prime}/A_{\ell}>2a/2\delta=2a$

Next, if $M^{n}$ intersects $\sigma^{r}=q_{0}\cdots q_{r}$ , then

(4) $\mu_{i}>2\alpha/N$ ( $i=0$ , – , r) if $\varphi(a^{r})=\sum_{i}\mu_{i}q_{i}$ .
Given $K$, let $\sigma$

“ be an $s$-face of $\sigma^{r}$ containg $q_{i}$ , which intersects $M^{n}(7(f))$ .

By (3), the barycentric coordinate $\mu^{\prime}$ of $\varphi(a^{s})$ correspoding to $q_{i}$ is at least $ 2\alpha$ .
By (2), $\mu_{i}$ is the average of at most $N$ barycentric coordinates, one of which is $\mu^{\prime}$ ;
hence (4) holds.

The vertices of each simplex $\sigma^{*}$ of $K$ have a natural order; let $h(a^{*})$ be the
height from the last vertex (vertex in the simplex of highest dimension of $L^{*}$ ). We
prove

(5) $h(\sigma^{*})\geqq rb$ .

For if $\sigma^{*r}$ is as in (1), the $(r-1)$-face $\sigma^{*r-1}$ opposite ($\beta(\sigma_{r})$ lies in $a_{r-1}$ . If dim
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$(a_{r})=t\geqq r,$ $(4.5),$ (4) and (6.2) give

$h(a^{*r})\geqq d(\varphi(\sigma_{r}), \sigma_{r})\geqq t]F(a_{\gamma})\delta_{\sigma_{r}}(2\alpha/N)\geqq rF_{0}(\delta/2m)(2\alpha/N)=rb$ .

Since $|a^{*r}|=h(\sigma^{*r})|\sigma^{*r-1}|/r$, we see at once, by induction, that $|a^{*r}|=b^{r}$ , and

hence

(6) $F(\sigma^{*r})\geqq b^{r}/(2\delta)^{r}=\beta^{r}/2^{r}\geqq F_{1}$ .

9. Imbedding of simplexes in M.

We show that $K$ is near $M$, and that any $n$-simplex near an $n$-simplex of $K$

is imbedded in $M$ by $\pi^{*}$ . ( $\pi^{*}$ is defined by Lemma 5). We prove first, for any simplex
$a^{*}$ of $K$,

(1) if $a^{*}\subset U_{6\delta}(p)$ , $p\epsilon M$, then $a^{\star}\subset U_{\omega\eta}(Q_{p,\eta})$ .
Say $\sigma^{*}$ is in the simplex $a$ of $L^{*};$ then $a\subset U_{8\delta}(p)$ .

Each vertex $p_{i}$ of $a^{*}$ is an average of points $\varphi(\sigma_{j}^{*})$ , which are in $M_{p.\eta}$ and hence

in $U_{2\eta}(Q_{p,\eta})$ by (3.5); therefore (1) holds for the $p_{i}$ and hence for $\sigma^{*}$ . As a consequence
of this and $(3,9)$ ,

(2) $K\subset U_{2\omega\eta}(M)$ , $|\pi^{*}(q)-q|<4\omega\eta$ $(q\epsilon K)$ .
Lemma 7. Let $a=p_{0}\cdots p_{n}$ be an n-simplex of $K$ (vertices in increasing order),

and let $p_{0}^{\prime},$ $\cdots$ , $p_{n}^{\prime}$ be any points such that

(3) $|p_{\ell}^{\prime}-p_{i}|\leqq\omega\eta/\alpha$ , $i=0,$ $\cdots,$ $n$ .

Then $\sigma^{\prime}=p_{0}^{\prime}\cdots p_{n}^{\prime}$ is a simplex in $U^{*}=U_{\delta_{0}}(M)$ , and $\pi^{*}$ imbeds $\sigma^{\prime}$ in $M$.

Proof. First, sinoe $\omega\eta/\alpha\leqq\rho_{0}^{\prime}\beta\eta/8=\rho_{0}^{\prime}b$ , $F(a)\geqq F_{1}$ and diam $(a)\geqq b$ , by (8.6),

(8.5) the choice of $\rho_{0}^{\prime}$ give $F(a^{\prime})\geqq F_{J}/2$ .

Next, because of (2) and (3), $\sigma^{\prime}\subset U_{\zeta}(M)$ , with

(4) $\zeta=2\omega\eta/\alpha+2\omega\eta<4\omega\eta/\alpha\leqq\delta_{0}$ ;

hence $a^{\prime}\subset U_{\delta_{0}}(M)$ , and $\pi^{*}$ is defined in $\sigma^{\prime}$

Now take any $q\epsilon\sigma^{\prime}$ . Say $q\epsilon P_{p},p\epsilon M$ ; then $\pi^{*}(q)=\pi_{p}(q)=p$ . By (3.9) and part of

(4), $|q-p|\leqq 2(4\omega\eta/a)<\delta$ ;

hence $a\subset U_{4\delta}(p)$ , and (1) gives $a\subset U_{\omega\eta}(Q_{p})$ .
Therefore $\sigma^{\prime}\subset U_{3\omega\eta/a}(Q_{p})$ . Also (8.5), $|p_{i}-p_{0}|\geqq b$ ; hence $|p_{t}^{\prime}-p_{0}^{\prime}|\geqq b-3\omega\eta/\alpha\geqq$

$b-3\rho_{0}^{\prime}b\geqq b/2$ .
Hence, if $u$ is any unit vector in $\sigma^{\prime}$ , Proposition 5 gives $|u|-|\pi_{p}u|\leqq|u-\pi_{p}u|$

$\leqq 2(3\omega\eta/a)/(n-1)$ ! $(F_{1}/2)(b/2)=96\omega/\alpha\gamma\leqq 3/4$ .
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Hence $|\pi_{p}u|\geqq 1/4$ and $u$ is not in $P_{p}^{*}$ by Lemma 6,

Therefore $\pi^{*}$ maps each non zero vector in $\sigma^{\prime}$ at $q$ into a non-zero vector, and
$\pi^{*}$ in non-degenerate at $q$ . Also, if $q^{\prime}$ is another point of $a^{\prime}$ , then using $v=q^{\prime}-q$ shows
that $q^{\prime}$ is not in $P_{p}^{*}$ , and henoe $\pi_{p}(q^{\prime})=\pi_{p}(q)$ .

This complete the proof.

10. The complex $K_{p}$ .
For each $psM$, let $L_{p}^{*}$ be the subcomplex of L* containing all simplexes which

touch $\overline{U}_{4\delta}(p)$ , together with their faces; then

(1) $L_{p}^{*}\subset U_{6\delta}(p)$ .
Let $K_{p}^{\prime\prime}$ be the complex in $Q_{p}$ formed by the intersections of $Q_{p}$ with the

simplexes of $L_{p}^{*}$ , and let $K_{p}^{\prime}$ be the barycentric subdivision of $K_{p}^{\prime\prime}$ . By $(b)$ and $(d)$ of \S 7,
$Q_{p}$ intersects a simplex of $L_{p}^{*}$ if and only if $M$ does. Hence, if $K_{p}$ is the subcomplex
of $K$ containing those simplexes with vertices $\varphi(\sigma),$ $a$ in $L_{p}^{*}$ , there is a $one\prec$)$ne$ corres-
pondence $g_{p}$ of the vertices of $K_{p}$ onto $K_{p}^{\prime}$ , and this defines a simplicial mapping $g_{p}$

which is an isomorphism of $K_{p}$ onto $K_{p}^{\prime}$ .

We prove

(2) $|g_{p}(q)-q|<\omega\eta/\alpha$ , $q\epsilon K_{p}$ .

First suppose $q=\varphi(a^{S})$ for some $a^{\epsilon}$ in $L_{p}^{*}$ . Then $v=q-g_{p}^{\prime}q$) is in $a_{l}$ , and using
(3.4) and $(7 (c))$ gives

$\omega\eta>|q-\pi_{p}(q)|=|v-\pi_{p}v|\geqq a|v|$ ,

giving (2).

Next, if $q=\varphi(a^{r}),$ $r>s$ , then the definition (8.2) and linearity of $g_{p}$ show that $q$

and $g_{p}(q)$ are the same average of sets of points, each corresponding pair satisfying (2);

hence (2) holds for $q=\varphi(\sigma^{r})$ . Finally, for any simplex of $K_{p}$ , (2) holds for its vertices
and hence for all its points.

We shall show that

(3) $K\cap U_{2\delta}(p)\subset K_{p}$ .
For take any point $q$ in a simplex $\tau=\varphi(\sigma_{0})\cdots\varphi(\sigma_{r})$ of $K,$ $|q-p|<2\delta$ . Then

$\sigma_{r}\subset U_{4\delta}(p)$ , hence $\sigma_{r}$ is in $L_{p}^{*}$ , and $\tau$ and $q$ are in $K_{p}$ . Choose an orientation of $Q_{p}$ ,

and orient all $n$-simplexes of $K_{p}^{\prime}$ accordingly. Now $K_{p}^{\prime}$ is an oriented $n$-dimensional
pseudo-manifold and (1) and the definition of $L_{p}^{*}$ show that

(4) $K_{p}^{\prime}\subset U_{6\delta}(p),$ $\partial K_{p}^{\prime}\subset Q_{p}-\overline{U}_{4\delta}(p)$ .
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Define the mapping $\pi_{p}^{*}$ of $K_{p}$ into $Q_{p}$ as follows.

Each $q\epsilon K_{p}$ is in a unique $P_{p^{\prime}}^{*}$ ; then $p^{\prime}=\pi_{p^{l}}(q)$ .
By (1), $|q-p|\leqq 6\delta$ , and by (9.2), $|p^{\prime}-q|<4\omega\eta<\delta$ ; henoe $|P^{\prime}-P|<\eta$ .
By Lemma 6, $P_{p}$ , intersect $Q_{p}$ in a unique point, which we call $\pi_{p}^{*}(q)$ . We prove

(5) $|\pi_{p}(q)-q|<6\omega\eta$ , $q\epsilon K_{p}$ .
Because of (9.2), we need merely prove $|v|<2\omega\eta$ , where $v=p^{\prime}-\pi_{p}^{*}(q)$ .

Sinoe $\omega<1/2,$ $(3.10)$ gives $|\pi_{p}v|\leqq|v|/2$ . By (3.4), $|v-\pi_{p}v|<\omega\eta$ .

Therefore $|v|<\omega\eta+|v|/2$ , and the statement follows.

11. Proof of the theorem.

Given $p\vee-- M$, choose an orientation of $Q_{p}$ , and orient the $n$-simplexes of $K_{p}^{\prime}$

and $K_{p}$ correspondingly.

Now $K_{p}$ is an oriented pseudo $n$-manifold with boundary. The proof of $Threm$

results on the following lemmas.

Lemma 8. $\pi_{p}^{*}$ is a simplexwise positive mappjng of $K_{p}$ into $Q_{p}$ .

Proof. Take any $n$-simplex $a$ of $K_{i}$ . Set

(1) $g_{p,t}(q)=(1-t)q+tg_{p}(q)$ in $a,$ $a_{t}=g_{p^{t}},(a)$ .

Sinoe $g_{p}$ is affine in $\sigma$ , so is $g_{p.i}$ , and $a_{t}$ is a simplex.

Say $a=q_{0}\cdots q_{n}$ . For any $t(0\leqq t\leqq 1)$ , set $q_{it}=g_{p,t}(q_{i})$ ; then $\sigma_{t}=q_{0t}\cdots q_{n\ell}$ .

By (10.2), $|q_{it}-q_{i}|<\omega\eta/a$ . By Lemma 7, $\pi^{*}$ imbeds $\sigma_{t}$ in $M$ ; henoe (by the

reasoning of that lemma) $\pi_{p}^{*}$ imbeds $\sigma_{t}$ in $\sigma_{p}$ .

Sinoe $\sigma_{1}$ is in $Q_{p},$ $\pi_{p}^{*}$ is the identity in $\sigma_{1}$ , and henoe orientation preserving in $a_{1}$ .
Sinoe $\pi_{p}^{*}$ is non-degenerate for all $t,$ $\pi_{p}^{*}$ is orientation preserving as required.

Lemma 9. Let $K$ be a pseudo n-manifold and $f:K\rightarrow R^{n}$ be simplexwise

positive in K. Then for any connected open subset $R$ of $f(K)-f(\partial K)$ , any two points

of $R$ not in $f(K^{n-1})$ are covered the same number of times. If this number is 1, then
$f$, considered in the open subset $R^{\prime}=f^{-1}(R)$ of $K$ only, is one-one onto $R$ .

Proof. Sinoe $f$ is simplexwise positive in $K,$ $f(inta_{l}^{n})$ is open for each $\sigma_{i}^{n}$ . We

show first that for any $a^{n-1}$ not in $\partial K,$ $f(St(\sigma^{n-1}))$ is open. Let $a_{1}^{n}$ and $\sigma_{2}^{n}$ be the $n-$

simplexes of $K$ with $a^{n-1}$ as face.

Take any $p_{s}$ int $(\sigma^{n-1})$ ; we need merely show that $f(St(\sigma^{n-1}))$ covers a neighbor-

hood of $f(p)$ . Sinoe $f$ is $one\triangleleft$)$ne$ in each $\sigma_{i}^{n}$ , there is a neighborhood $U$ of $f(p)$ not
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touching $f(\partial St(\sigma^{n-1}))$ . Sinoe $f$ is linear in $\sigma^{n-1}$ , we may choose $U$ so that $f(a^{n-1})$ cuts

it into two connected parts, $U_{1}$ and $U_{2}$ .
Let $\overline{pp}_{i}$ be a segment in $a_{\ell}^{n},$ $ p_{i}\epsilon$ int $(\sigma_{\ell}^{n})$ , mapping into an arc $A_{t}$ in $U(i=1,2)$ .

If we orient $\sigma^{n-1}$ , it is in $\partial\sigma_{l}^{n}i=1,2$ with opposite signs; since $f$ is orientation preserving
each $\sigma_{i}^{n}$ , we may suppose $f(p_{1})\epsilon U_{1},f(p_{2})\epsilon U_{2}$ . Now suppose there were a point $q\epsilon U-f$

$(a^{n-1})$ not in $f(St(\sigma^{n-1}))$ . There is an arc A in $U-f(\sigma^{n-1})$ joining $q$ to either $f(p_{1})$ or
$f(l_{2})$ . There is a first point $q^{*}$ in $A$ which is in $f(St(\sigma^{7\iota-1}))$ ; by the choioe of $U$ and
$A,$ $q^{*}\epsilon U_{j}^{\prime}=f(inta_{j}^{n})$ for $j=1$ or 2. But $U_{j}^{\prime}$ is open, contradicting the definition of $q^{*}$ ,

and the statement is proved.

Suppose the first conclusion of the lemma were false. Then we may expraes
$R-f(K^{n-1})$ as the union of two disjoint sets $R_{1}$ and $R_{2}$ , such that for some $h$ each

point of $R_{1}$ is covered $h$ times and each point of $R_{2}$ is covered a different number of

times. We may choose an arc A from a point of $R_{1}$ to a point of $R_{2}$ , lying in $R-f$

$(K^{n-2})$ , which crosses from $R_{1}$ to $R_{2}$ at a point $q$ ; then $q\epsilon f(\sigma^{n-1})$ for some $\sigma^{n-1}$ . Let
$\sigma_{1}^{n-1},$ $\cdots$ , $a_{k}^{n-1}$ be the $(n-1)$-simplexes of $K$ whose images contain $q$ ; say $a^{n-1}$ is the
faoe of the $n$-simplexes $a_{i},$

$a_{\ell}^{\prime}$ .
Sinoe $f$ is $one\prec$)$ne$ in the $n$-simplexes, we see at onoe that these $n$-simplexes are

distinct.

By the proof above, there is a neighborhood $U$ of $q$ such that for each $i$ , each
point of $U-f(K^{n-1})$ is in just one of $f(a_{i}),f(\sigma_{\ell}^{\prime})$ . We may suppose $U$ touches no
$f(a_{j}^{n-1})$ for any other $j$ ; then any other $f(a_{1}^{n})$ containing $q$ contains $U$. Henoe all
points of $U-f(K^{n-1})$ are covered the same number of times, contradicting the choice
of $q$ .

Next we show that for any simplex $a^{k}$ of $K,$ $f(St(a^{k}))$ is open.

Given $ p\epsilon$ int $(\sigma^{k})$ , we must show that $f(St(\sigma^{k}))$ covers a neighborhood $U$ of
$q=f(l)$ . We may suppose $U$ is connected and does not touch $f(\partial St(\sigma^{k}))$ . Now $L=\overline{6^{\backslash }t}(a^{k})$

is an oriented $n$-ball, and the proof above shows that all points of $U$ not in $f(L^{n-1})$ are

covered the same number $N$ of times by $n$-simplexes of $L$ . Sinoe some points near $q$

are covered, $N\geqq 1$ ; henoe all points of $U$ are in $f(L)$ .

We now prove the last part of the lemma. Since the number of times points are
covered is 1, $f$ maps $R^{\prime}$ onto $R$ . Now suppose $f(P_{1})=f(p_{2})=q,$ $P_{1}\neq p_{2}$ .

Say $ p_{i}\epsilon$ int $(a_{i})$ (dimension of $\sigma_{i}$ unspecified).

Sinoe $f$ is $one\prec$)$ne$ in all simplexes, $ St(a_{1})\cap St(a_{2})=\phi$ .

By the proof above, $f(St(a_{i}))$ covers all points of some neighborhood $U_{i}$ of $q$
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not in $f(K^{n-1})$ a number of times $N_{i}>0$ , for $i=1,2$ .

But this shows that $f$, in $K$, covers points of $U=U_{1}\cap U_{2}$ at least twice, a contra-

diction, completing the proof of the lemma.

For each $p\epsilon M$, let $R_{p}$ be the set of those points $q\epsilon K_{p}$ such that $\pi_{p}^{*}(q)eQ_{p.3\delta}$ .
Lemma 10. For each $P^{\epsilon M,\pi_{p}^{*}}$ , considered in $R_{p}$ only, is one-one and onto

$Q_{p,8\delta}$ .
Proof. First, let $\sigma_{1}$ be an $n$-simplex of $K_{p}^{\prime}$ containing $p$ ; say $\sigma_{1}=g_{p}(\sigma_{0})(a_{0}$ in

$K_{p})$ , and let $p_{0}$ be the barycenter of $\sigma_{0}$ .
By (4.4), (8.6), (8.5), (5.3), (5.6),

$d(p_{0},\partial\sigma_{0})\geqq n$ ! $F_{1}b/(n+1)\geqq c$ .
Hence, by (10.2)

(2) $d(g_{p}(p_{0}), \partial\sigma_{1})>c-2\omega\eta/\alpha=c^{\prime}$ .
Now take any $q\epsilon K_{p}-\sigma_{0}$ . Sinoe $g_{p}$ is an isomorphism, (2) shows that $|g_{p}(q)-$

$g_{p}(p_{0})|>c^{\prime}$ . By (5.4), (5.5) and (5.6)

$4\omega\eta/\alpha+12\omega\eta<16\omega\eta/\alpha\leqq\gamma\delta=c$.
Hence, by (10.2) and (10.5)

$|\pi_{p}^{*}(q)-\pi_{p}^{*}(p_{0})|>c^{\prime}-2(\omega\eta/\alpha+6\omega\eta)>0$ ,

proving $\pi_{p}^{*}(q)\neq\pi_{p}^{*}(p_{0})$ . This shows that $p\cdot=\pi_{p}^{*}(p_{0})$ is covered exactly onoe, under $\pi_{\dot{p}}$ .
by simplexes of $K_{p}$ .

Also

$|P^{\cdot}-p|\leqq|\pi_{p}^{*}(p_{0})-g_{p}(p_{0})|+diam(\sigma_{1})<3\delta$ , and henoe $p_{\epsilon Q_{p,8^{\delta}}}^{s}$ .
By (10.4), (10.2) and (10.5), sinoe 2 $(\omega\eta/\alpha+6\omega\eta)<\delta$ ,

(3) $\pi_{p}(\partial K_{p})\subset Q_{p}-\overline{U}_{3\delta}(p)$ .
The lemma now follows from Lemma 8 and Lemma 9.

Proof of the theorem. First, given $p\epsilon M$, the last lemma shows that $\pi_{p}^{*}(q)=p$

for some $qeK_{p}$ ; henoe $\pi^{*}(q)=p$ , and $\pi^{*}$ is onto.

Next suppose that $\pi^{*}(q^{\prime})=p$ also, $q^{\prime}\epsilon K$. By (9.2), $|q^{\prime}-p|<4\omega\eta<\grave{o}$ ; hence, by
(10.3), $q^{\prime}\epsilon K_{p}$ , and sinoe $|\pi_{q}^{*}(q^{\prime})-p|\leqq|\pi_{p}^{*}(q^{\prime})-q^{\prime}|+|q^{\prime}-p|\leqq 6^{r}v\eta+4_{J}^{r}\eta<2\delta$ using
(10.5), henoe $q^{\prime}\epsilon R_{p}$ . By lemma 10, $q^{\prime}=q$ . This proves that $\pi^{*}$ is one-one and henoe
$\pi^{*}:$ $|K|\rightarrow M$ is a homeomorphism.

Sinoe $L_{0}$ is a cubical subdivision of $R^{n+k},$ $L$ is a $mbinatorial$ triangulation of
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$R^{n+k}$ . $L^{*}$ is isomorphic to $L$ by (6.1) and (6.2).

And $K$ is a subcomplex of some subdivision of $L^{*}$ . So $K$ is a combinatorial
triangulation of $M^{n}$ .

Next if $n+k\leqq 4,$ $M^{n}$ has a unique combinatorial triangulation by [5] because
$k\geqq 1$ . If $n+k\geqq 5,$ $R^{n+k}$ has a unique combinatorial triangulation by [4]. Henoe $M^{n}$

has a unique combinatorial triangulation because $K$ is induced by the triangulation of
$R^{n+k}$ .

This completes the proof.

$----\backslash \vee r\approx\infty\rightarrow\backslash \approx-\backslash $
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