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Let $X$ be a metric space. A mapping $T:X\rightarrow X$ is called a contraction maPping if

$d(Tx, Ty)\leq kd(x,y)$ (A)

for all $x,y\epsilon X$ and $0<k<1$ .
The well-known Banach contraction principle states that a contraction mapping

on a complete metric space $X$ has a unique fixed point. A mapping $T:X\rightarrow X$ such
that

$d(Tx, Ty)<d(x,y)$ , $(x\neq y)$ (B)

$x,y\epsilon X$, is called a contractive mapping. A contractive mapping on a complete metric
space need not have a fixed point. For example, let $X$ be the set of real numhers with
the usual metric. Let

$T:X\rightarrow X$

defined by $Tx=x+\frac{\pi}{2}$ -arc tan $x$ . Then 7’ is a contractive mapping but it has no
fixed point because arc tan $x<\frac{\pi}{2}$ for every $x$. However, if the space $X$ is compact, a
contractive mapping has a unique fixed point [1].

Recently Kannan [3] proved the following theorem:

If $T$ is a mapping of a complete metric space $X$ into itself such that

$d(Tx, Ty)\leq\alpha\{d(x, Tx)+d(y, Ty)\}$ (C)

$f_{oJ}$ all $x,y\epsilon X$ and $0<\alpha<\perp 2$
’ then $T$ has a unique fixed point.

The aim of this paper is to give extensions of the above theorem by taking $\alpha=\neq$ .
Theorem 1. Let $X$ be a metric space and let $T:X\rightarrow X$ be a continuous

mapping such that

$d(Tx, Ty)<*\{d(x, Tx)+d(y, Ty)\}$

for $x\neq y$ . If for some $x_{0}\epsilon X$, the sequence $\{T^{n}x_{0}\}$ has a subsequence $\{T^{n_{\ell}}x_{0}\}$

converging to $x$, then $T^{n}x_{0}$ converges to $x$ and $x$ is a unique fixed point of $T$.

*This work was done while the author was a fellow of the Summer Research Institute, McGill
University, Montreal, Quebec, 1969.
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Proof. The sequence $d(T^{n}x_{0}, T^{n+1}x_{0})$ is non-increasing. Sinoe $T$ is continuous

we get

$\lim_{i\rightarrow\infty}T^{n\ell+1}x_{0}=Tx$

and
$\lim_{i\rightarrow\infty}T^{n_{t}+2}x_{0}=T^{2}x$

Therefore,

$d(x, Tx)=\lim_{\ell\rightarrow\infty}d(T^{n_{l}}x_{0}, T^{n_{l}+1}x_{0})$

$=\lim_{i\rightarrow\infty}d(T^{n_{l}+1}x_{0}, T^{n_{i}+2}x_{0})$

$=$ $d(Tx, T^{2}x)$ .
If $x\neq Tx$, then $d(Tx, T^{2}x)<d(x, Tx)$ . This implies $d(x, Tx)<d(x, Tx)$ , impossible,

therefore $d(x, Tx)=0i.e$ . $x$ is a fixed point of $T$.

Uniqueness follows immediately. Let $x$ and $y$ be two fixed points $x\neq y$ . Then

$x=Tx$ and $y=Ty$ imply

$d(Tx, Ty)<\perp 2\{d(x, Tx)+d(y, Ty)\}=0$

a contradiction to the fact that $d(Tx, Ty)\geq 0$ . Thus the proof.

Theorem 2. Let $T$ be a continuous map of a metric space $X$ into itself such
that

(1) $d(Tx, Ty)\leq*\{d(x, Tx)+d(y, Ty)\}$

(2) if $x\neq Tx$, then $d(Tx, T^{2}x)<d(x, Tx)$ ,

(3) for. some $x_{0}\epsilon X$, the sequence $\{T^{n}x_{0}\}$ has a subsequence $\{T^{n_{i}}x_{0}\}$

converging to $x$. Then the sequence $T^{n}x_{0}$ converges to $x$ and $x$ is a unique fixed
point

Proof. By (1) the sequence $d(T^{n}x_{0}, T^{n+1}x_{0})$ is non-increasing. Since $T$ is

continuous we have

$d(x, Tx)=\lim_{i\rightarrow\infty}d(T^{n_{i}}x_{0}, T^{n_{i}+1}x_{0})$

$=\lim_{i\rightarrow\infty}d(T^{ni+1}x_{0}, T^{n_{i}+2}x_{0})$

$=$ $d(Tx, T^{2}x)$

contradiction to (2) unless $x=Tx$. Also, from (1) it follows that for all $n,$ $d(T^{N+n}x_{0}, x)$

$\leq d(T^{N}x_{0}, x)$ , whence $T^{n}x_{0}\rightarrow x$.

Theorem 3. Let $T$ be a mapping of a metric space $X$ into itself such that



SOME THEOREMS ON FIXED POINTS 25

(a) $d(Tx, Ty)\leq d(x,y)$ for all $x,y\epsilon X$,

(b) $d(Tx, Ty)<4\{d(x, Tx)+d(y, Ty)\}$ for all $x,y\epsilon X$,

(c) iffor some $x_{0}\epsilon X$, the sequence $T^{n}x_{0}$ has a subsequence $T^{n_{\ell}}x_{0}$ converging
to $x$ then $T^{n}x_{0}\rightarrow x$ and $x$ is a unique fixed point.

Proof. Since $T$ satisfies (a), by a Theorem of Edelstein [2], $x$ generates an
isometric sequence, $i.e$ . for any integers $m>0,$ $n>0$ ,

$d(T^{m}x, T^{n}x)=d(T^{m+k}x, T^{n+k}x),$ $k=1,2,3,$ $\cdots$ .
Letting $m=1$ , and $n=2$ , we have

$d(Tx, T^{2}x)=d(T^{k+1}x, T^{k+2}x)$ ; $k=1,2,3,$ $\cdots$ .

We conclude that $d(Tx, T^{2}x)=0$ , sinoe $T$ satisfies (b).

Since $T$ is continuous, we get

$Limi\rightarrow\infty d(T^{n_{\ell}}x, T^{n_{\ell}+1}x)=d(x, Tx)$

and $Limt\rightarrow\infty d(T^{n_{\ell}+1}x, T^{n_{\ell}+2}x)=d(Tx, T^{2}x)$ .

Thus $d(x, Tx)=d(Tx, T^{2}x)=0$.
This implies that $x=Tx=Limn\rightarrow\infty T^{n}x_{0}$ .

The author wishes to express his sincere thanks to professor M. Orihara for his
valuable suggestions.
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