ON CONDITIONS ON X SUCH THAT XAX* IS HERMITIAN

By

YIK-HOI AU-YEUNG ¹⁾

(Received November 29, 1969)

1. Introduction and definitions. We denote by F the field R of real numbers, the field C of complex numbers, or the skew field H of real quaternions, by $\mathfrak{M}(n, F)$ the set of all $n \times n$ matrices with elements in F and by F^n the n-dimensional left vector space over F. If $A \in \mathfrak{M}(n, F)$, we define $Z_F(A) = \{X \in \mathfrak{M}(n, F) : XAX^* = 0\}$, rank $Z_F(A)$ $= \max \{ \operatorname{rank} X : X \in Z_F(A) \}$ and $z_F(A) = \{u \in F^n : uAu^* = 0\}$. Here and in what follows we regard u as a $1 \times n$ matrix and identify a 1×1 matrix with its single element. For any $A \in \mathfrak{M}(n, F)$, we denote by A^* its conjugate transpose (if F = R, then the term "conjugate transpose" merely means "transpose", and A is said to be *hermitian* if $A = A^*$, skew-hermitian if $A = -A^*$ and unitary if $AA^* = I_n$, where I_n is the $n \times n$ identity matrix (if F = R, then the terms "hermitian", "skew-hermitian" and "unitary" mean "symmetric", "skew-symmetric" and "orthogonal" respectively).

Given $A, X \in \mathfrak{M}(n, F)$, let $S = A - A^*$ so that S is skew-hermitian. Then XAX^* is hermitian if and only if $X \in Z_F(S)$. Therefore, the problem of finding condition on X such that XAX^* is hermitian is equivalent to that of finding conditions on X such that $X \in Z_F(S)$.

The purpose of this note is: (i) to prove certain properties of $z_F(B)$ (Theorem 1) and use them to determine the rank $Z_F(S)$ (Theorem 2), and (ii) to derive a simple method by means of which we can obtain a short proof of a result of *Tihomirov* [1] (Theorem 3) and a correct and more detailed answer (I hope) of Tihomirov's another problem [2] (Theorem 4) for all cases of F. (In [1] and [2], only the case F=C has been considered.)

2. The rank $\mathbf{Z}_{F}(\mathbf{S})$.

Theorem 1. Let $B \in \mathfrak{M}(n, F)$ be skew-hermitian (or hermitian) and $\{u_1, \dots, u_m\}$ a maximal independent set in $z_F(B)$ such that $u_i B u_j^* = 0$ for all $i, j = 1, \dots, m$. Then

- (i) the integer m is independent of the choice of the maximal independent set, and
- (ii) $m = \operatorname{rank} Z_F(B)$.

¹⁾ The author wishes to thank Professor Y. C. Wong for his advice during the preparation of this note.

YIK-HOI AU-YEUNG

Proof. Let $\{v_1, \dots, v_k\}$ be an independent set of $z_F(B)$ such that $v_p Bv_q^*=0$ for all $p, q=1, \dots, k$. Suppose k > m, and suppose $v_1, \dots, v_l \in L = L$ $\{u_1, \dots, u_m\}$ and $v_{l+1}, \dots, v_k \notin L$, where $0 \leq l \leq m$ and L $\{u_1, \dots, u_m\}$ denotes the subspace spanned by u_1, \dots, u_m (over F). If l < m, then we can decompose L into L = L $\{v_1, \dots, v_l\} \oplus L_1$. Let w_{l+1}, \dots, w_m be a basis of L_1 . Since k > m, there exists $v_0 = \sum_{r=l+1}^k \lambda_r v_r (\neq 0)$ in $z_F(B)$ such that $v_0 Bw_s^*=0$ for all $s=l+1, \dots, m$. Furthermore, since $v_0 Bv_t^*=0$ for all $t=1, \dots, l$ and B is skew-hermitian (or hermitian), the maximality of the independent set $\{u_1, \dots, u_m\}$ requires that $v_0 \in L$. Without loss of generality, we may assume the coefficient λ_{l+1} in v_0 is not zero. Define

$$x_{p} = \begin{cases} v_{p} & \text{if } p \neq l+1, \\ v_{0} & \text{if } p = l+1, \end{cases} \qquad p = 1, \dots, k.$$

Then $\{x_1, \dots, x_k\}$ is an independent set of $z_F(B)$ such that $x_p B x_q^* = 0$ for all p, q = 1, \dots, k , and $x_1, \dots, x_{l+1} \in L$. By continuing this processes, we can at last find an independent set $\{y_1, \dots, y_k\}$ of $z_F(B)$ such that $y_p B y_q^* = 0$ for all $p, q = 1, \dots, k$ and $y_1, \dots, y_m \in L$. This contradicts the maximality of the independent set $\{u_1, \dots, u_m\}$. Hence $k \leq m$ and statement (i) is proved.

Statement (ii) follows immediately from (i).

In order to prove Theorem 2 below we need the following lemma whose proof is quite simple and hence is ommitted.

Lemma 1. Let $A \in \mathfrak{M}(n, F)$. Then rank $Z_F(A) = \operatorname{rank} Z_F(UAU^*)$ for all nonsingular U in $\mathfrak{M}(n, F)$.

Theorem 2. Let $S \in \mathfrak{M}(n, F)$ be skew-hermitian.

(i) If F=R, then rank $Z_F(S)=n-\frac{1}{2}$ rank S.

- (ii) If F=C, then rank $Z_F(S)=n-rank S+min \{p,q\}$, where p,q are respectively the numbers of positive and negative eigenvalues of the hermitan matrix $\varepsilon_1 S$, where $\varepsilon_1 = \sqrt{-1}$ (ϵC).
- (iii) If F=H, then

rank
$$Z_F(S) = \begin{cases} n - \frac{1}{2} \text{ rank } S, & \text{if rank } S \text{ is even,} \\ n - \frac{1}{2} (1 + \text{rank } S), & \text{if rank } S \text{ is odd.} \end{cases}$$

Proof. Case 1. F=R.

By a well-known result (for example, see [3, p. 285]) and Lemma 1, we may assume that

$$S = \text{diag} \{\mathbf{0}_k, J_1, \cdots, J_l\},\$$

10

where 0_k is the $k \times k$ zero matrix and each $J_i = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Then rank S = 2l and n = k + 2l. Let

$$u_j = (0, \dots, 0, 1, [0, \dots, 0), \qquad j = 1, \dots, k,$$

$$j - \text{th component}$$

and

$$u_{k+i} = (0, \dots, 0, 1, 1, 0, \dots, 0), i = 1, \dots, l.$$

(k+2i-1) th component

Then $\{u_1, \dots, u_{k+l}\}$ is an independent set in $z_F(S)(=R^n)$ and $u_s Su_t^*=0$ for all s, t=1, $\dots, k+l$. Let $u=(r_1, \dots, r_n) \in R^n$ be such that $uSu_s^*=0$ for all $s=1, \dots, k+l$. Then $-r_{k+2i-1}+r_{k+2i}=0, i=1, \dots, l$.

Hence u is linearly dependent on $\{u_1, \dots, u_{k+l}\}$, and by Theorem 1, rank $Z_F(S) = k+l=n-l=n-\frac{1}{2}$ rank S.

Case 2. F=C.

Let p, q and ε_1 be defined as in statement (ii). Then by a well-known result (for example, see [3, p. 274]) and Lemma 1, we may assume that

 $S = \text{diag} \{0_k, -\varepsilon_1 I_p, \varepsilon_1 I_q\},\$

where 0_k is the $k \times k$ zero matrix and I_p and I_q are respectively the $p \times p$ and $q \times q$ identity matrices. Then rank S=p+q and n=k+p+q. Suppose $p \leq q$. Let

$$u_j = (0, \dots, 0, 1, 0, \dots, 0), j = 1, \dots, k,$$

$$\uparrow$$
j-th component

and

$$u_{k+i} = (0, \dots, 0, 1, 0, \dots, 0, 1, 0, \dots, 0), i = 1, \dots, p.$$

$$(k+i) \text{ th component} \quad (k+p+i) \text{ th component}$$

Then $\{u_1, \dots, u_{k+p}\}$ is an independent set in $z_F(S)$ and $u_s Su_t^*=0$ for all $s, t=1, \dots, k+p$. Let $u=(c_1, \dots, c_n) \in C^n$ such that

(1) $uSu_s^*=0$, for all $s=1, \dots, k+p$,

and

 $(2) uSu^*=0.$

From (1) it follows that

 $(3) \qquad -c_{k+i} \varepsilon_1 + c_{k+p+i} \varepsilon_1 = 0, \qquad i=1, \cdots, p,$

and from (2) and (3) it follows that

YIK-HOI AU-YEUNG

$$\sum_{l=1}^{q-p} c_{k+2p+l} \varepsilon_1 c_{k+2p+l}^* = 0.$$

Hence we have $c_{k+i} = c_{k+p+i}$ for all $i=1, \dots, p$ and $c_{k+2p+i} = 0$ for all $l=1, \dots, q-p$, and consequently u is linearly dependent on $\{u_1, \dots, u_{k+p}\}$. By Theorem 1 we see that rank $Z_F(S) = k+p = n$ -rank $S+\min\{p,q\}$.

Case 3. F=H,

Let rank S=m and k=n-m. Then by a known result (for example, see [4] or [5]) and Lemma 1, we may assume that

$$S = \begin{cases} \text{diag } \{0_{\star}, -\varepsilon_1 I_{m/2}, \varepsilon_1 I_{m/2}\}, & \text{if } m \text{ is even,} \\ \text{diag } \{0_k, -\varepsilon_1 I_{(m-1)/2}, \varepsilon_1 I_{(m-1)/2}, \varepsilon_1\}, & \text{if } m \text{ is odd,} \end{cases}$$

and by proceeding as in Case 2, we can easily prove statement (iii).

3. Some results of V. R. Tihomirov.

Let $A = (a_{ij}) \in \mathfrak{M}(n, F)$. As in Tihomirov's papers [1,2], we define $h(A) = \sum_{i=1}^{n} \sum_{j=1}^{n} [a_{ij} - a_{ji}^*] [a_{ij}^* - a_{ji}]$. Obviously, we have $h(A) = Tr[(A - A^*)(A^* - A)]$, where Tr means "trace". In order to prove Theorems 3 and 4 we need the following lemma.

Lemma 2. Let $X, Y \in \mathfrak{M}(n, F)$. Then

- (i) $Tr(XX^*) \ge 0$ and = 0 if and only if X=0;
- (ii) Re Tr(XY) = Re Tr(YX), where Re means "the real part", and
- (iii) $XYX^*=0$ if and only if $Tr(X^*XYX^*XY^*)=0$.

Proof. (i) and (ii) follow immediately from definition. We now prove (iii). If $XYX^*=0$, then $X^*XYX^*XY^*=0$, so that $Tr(X^*XYX^*XY^*)=0$. Conversely, if $Tr(X^*XYX^*XY^*)=0$, then, by (ii), Re $Tr(XYX^*XY^*X^*)=Re Tr(X^*XYX^*XY^*)=0$, and consequently by (i) $XYX^*=0$.

Theorem 3. Let $A \in \mathfrak{M}(n, F)$. Then

$$h(A) = h(UAU^*),$$

for any unitary matrix U in $\mathfrak{M}(n, F)$.

Proof. By Lemma 2 and the fact that U is unitary, we have

$$\begin{split} h \left(UAU^* \right) &= Re \; Tr \left[\left(UAU^* - UA^*U^* \right) \left(UA^*U^* - UAU^* \right) \right] \\ &= Re \; Tr \left[U(A - A^*) \left(A^* - A \right) U^* \right] \\ &= Re \; Tr \left[U^*U \left(A - A^* \right) \left(A^* - A \right) \right] \\ &= Re \; Tr \left[(A - A^*) \left(A^* - A \right) \right] \\ &= h \left(A \right). \end{split}$$

Theorem 4. Let $A, X \in \mathfrak{M}(n, F), X^*X = I_n + E$ and $S = A - A^*$.

(i) If
$$XAX^*$$
 is hermitian, then

$$h(A) = Tr(ESS) + Tr(SES) + Tr(ESES).$$

(ii) If

(

$$(5) h(A)=2 Re Tr(ESS)+Re Tr(ESES),$$

then XAX* is hermitian.

Proof. If XAX^* is hermitian, then $XSX^*=0$ and by Lemma 2 and the fact that S is skewhermitian, we have $Tr(X^*XSX^*XS)=0$. Hence

$$-h(A) + Tr(ESS) + Tr(SES) + Tr(ESES) = 0.$$

If (5) holds, then by Lemma 2 we have

$$Re Tr(SS) + Re Tr(ESS) + Re Tr(SES) + Re Tr(ESES) = 0.$$

Hence

ì

$$Re Tr(X*XSX*XS) = 0,$$

and by Lemma 2 we have $XSX^*=0$ and hence XAX^* is hermitian.

Remarks.

1. Since for F=R or C, we have Tr(XY) = Tr(YX) for any $X, Y \in \mathfrak{M}(n, F)$ and Tr(XY) is real if X and Y are hermitian, and since E and SS are, by definition, hermitian, so in these cases we see that Tr(ESS)(=Tr(SES)) and Tr(ESES) are real in expression (4). But this is not the case for F=H. For example, take $A = \begin{pmatrix} 0 & \varepsilon_1 + \varepsilon_2 \\ 0 & -\varepsilon_3 \end{pmatrix}$ and $X = \begin{pmatrix} \varepsilon_1 & 1 \\ 0 & 0 \end{pmatrix}$, where $\{1, \varepsilon_1, \varepsilon_2, \varepsilon_3\}$ is the basis of H, then $S = A - A^* = \begin{pmatrix} 0 & \varepsilon_1 + \varepsilon_2 \\ \varepsilon_1 + \varepsilon_2 - 2\varepsilon_3 \end{pmatrix}$, $E = X^*X - I_2 = \begin{pmatrix} 0 - \varepsilon_1 \\ \varepsilon_1 & 0 \end{pmatrix}$, $XAX^* = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix}$ (hermitian), h(A) = 8, $Tr(ESS) = 4\varepsilon_3 + 4$, $Tr(SES) = 4\varepsilon_3 + 4$, $Tr(SES) = 4\varepsilon_3 + 4$.

2. The mistake in *Tihomirov's* paper[2] is that, besides that there are misprints in indices, the term Tr(ESS) + Tr(SES) has been omitted in expressions (4) and (5).

YIK-HOI AU-YEUNG

REFERENCES

- [1] V. R. Tihomirov, An invariant of a unitary transformation (Russian), Kabardino-Balkarsk.
 Gos. Univ. Ucen. Zap. 24 (1965), 275-277.
- [2] V. R. Tihomirov, A necessary and sufficient condition for the conversion of an arbitrary matrix into a Hermitian matrix as a result of a similar transformation (Russian), Kabardino-Balkarsk. Gos. Univ. Ucen. Zap. 30 (1966), 263-264.
- [3] F. R. Gantmacher, The Theory of Matrices, vol. 1, Chelsea, 1959.
- [4] J. Radon, Lineare Scharen orthogonaler Matrizen, Abh. Math. Sem. Univ. Hamburg. 1 (1922), 1-14.
- [5] H. C. Lee, Eigenvalues and canonical forms of matrices with quaternion coefficients, Proc. Roy. Irish Acad. Sect. A 52 (1949), 253-260.

UNIVERSITY OF HONG KONG, HONG KONG.

1