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1. Introduction and definitions. We denote by F the field R of real numbers,
the field C of complex numbers, or the skew field H of real quaternions, by M (n, F)
the set of all #xn matrices with elements in F and by F* the n-dimensional left vector
space over F. If Ae M (n, F), we define Z, (A)={Xe M (n, F): XAX*=0}, rank Z, (A4)
=max {rank X:XeZ;(A)} and z,(A)={ue F": uAu*=0}. Here and in what follows
we regard # as a 1 X7 matrix and identify a 1x1 matrix with its single element. For
any Ae M (n, F), we denote by A* its conjugate transpose (if F=R, then the term
“conjugate transpose’”’ merely means “transpose”, and A is said to be hermitian if
A=A*, skew—-hermitian f A=—A* and unitary if AA*=1I,, where I, is the nxn
identity matrix (if F=R, then the terms ‘“hermitian”, “skew-hermitian” and “unitary”

mean ‘“symmetric”’, “skew-symmetric”’ and “orthogonal” respectively).

Given A, Xe M (n, F), let S=A—A* so that S is skew-hermitian. Then XA X*

is hermitian if and only if Xe Z;(S). Therefore, the problem of finding condition on
X such that XAX* is hermitian is equivalent to that of finding conditions on X such
that Xe Z5 (S).

The purpose of this note is: (i) to prove certain properties of 2z (B) (Theorem 1)
and use them to determine the rank Z(S) (Theorem 2), and (ii) to derive a simple
method by means of which we can obtain a short proof of a result of Tihomirov
Theorem 3) and a correct and more detailed answer (I hope) of Tihomirov’s another
problem [2] (Theorem 4) for all cases of F. (In and [2], only the case F=C has
been considered.)

2. The rank Z; (S).

Theorem 1. Let Be M (n, F) be skew—hermitian (or hermitian) and {u, -+, m}
a maximal independent set in z; (B) such that u; Bu;=0 for all i,j=1,---m. Then

(i) the integer m is independent of the choice of the maximal independent
set, and

(ii) m=rank Z.(B).

1> The author wishes to thank Professor Y. C. Wong for his advice during the preparation of this
note.
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Proof. Let {vy, ---, vs} be an independent set of zz(B) such that v, By;=0 for
all p,q=1, .-, k. Suppose k > m, and suppose vy, -, veL=L {9y, -+, um} and vi4q,-+,
vefL, where 0 < /< m and L {u;, ---, um} denotes the subspace spanned by uy, -, #m
(over F). If I < m, then we can decompose L into L=L {vy, -+, v;} @ L;. Let wyuyq, -,
wm be a basis of L;. Since k>m, there exists vo=r=§: . 4 v, (# 0) in zz(B) such that
vo Bw;=0 for all s=[+1,---, m. Furthermore, since v, Bv;=0 for all ¢=1,---,! and
B is skew-hermitian (or hermitian), the maxivmality of the independent set{wuy, -+, %m}

requires that voeL. Without loss of generality, we may assume the coefficient 4,4, in v is
not zero. Define

v, if p#EI+1,
- P

l)ob if p=l+ 1,
Then {x;, ---, %} is an independent set of z,(B) such that x, Bx,=0 for all p,g=1,
+--, k, and 1y, -+, %41 €L. By continuing this processes, we can at last find an independent
set {¥1, -, y} of 2;(B) such that y, By;=0 for all p,q=1,---,% and ¥y, -, ymeL.

This contradicts the maximality of the independent set {uy, «--, #n}. Hence k< m
and statement (i) is proved.

Statement (ii) follows immediately from (i).

In order to prove Theorem 2 below we need the following lemma whose proof
is quite simple and hence is ommitted.

Lemma 1. Let AeW(n, F). Then rank Z,(A)=rank Z,(UAU* for all
nonsingular U in M (n, F).

Theorem 2. Let SeM (n, F) be skew-hermitian.
(i) If F=R, then rank Z.(S)=n—}% rank S.

(ii) If F=C, then rank Zr(S)=n—rank S+min {p,q}, where p,q are
respectively the numbers of positive and negative eigenvalues of the
hermitan matrix .S, where ;.= /=1 (eC).

(i) If F=H, then

n—4% rank S, if rank S is even,

rank Z. (S)={ ) .

n—% (1+rank S), if rank S is odd.

Proof. Case 1. F=R.

By a well-known result (for example, see [3, p. 285]) and Lemma 1, we may

assume that

S=diag {0, J1, =, i},
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where 0 is the % X k zero matrix and each ]¢=< 0 1). Then rank S=2/ and n=Fk+2l.

-10
Let
uj=(0, '”’O’ 1"0’"'!0): .7:1, "',k’
) T sl
j—th component
and
uk+,;=((), vee ’0’ 1’ 1, 0, ee 0)’ i=1’ e, l.
(k+2i—1) th component
Then {uy, -+, ur4} is an independent set in 27 (S)(=R") and #; Su;=0 for all s, =1,
o, k+1 Let u=(ry, -+, 72) e R™ be such that #Su;=0 for all s=1, .-, k+/. Then

—Vesi-1F Tes2i =0, 1=1,---, L

Hence u is linearly dependent on. {#,,+:+, #x+:}, and by Theorem 1, rank Zp(S)=
k+l=n—Il=n—% rank S.

Case 2. F=C.

Let p,q and &; be defined as in statement (ii). Then by a well-known result
(for example, see [3, p. 274]) and Lemma 1, we may assume that

S=diag {0c,—¢; Ip, &1 I},

where 0 is the kx k zero matrix and I, and I, are respectively the pxp and gxgq
identity matrices. Then rank S=p+¢q and n=~k+p+q. Suppose p<gq. Let

uj=(0, cee O,%, 0,---,0), ]= 1, -, R

j—th component

and
uk+i=(0, ttty 0’ 1’ 0, et O’ 19 01 ctty O)’ i=12 s ’p'
(k+1)th component (k+p-+17)th component

Then {#y, -+, #14p} is an independent set in 2(S) and wu, Su;=0 for all s,¢=1,...,
k+p. Let u=(cy, -+, cn) € C® such that

(1) uSu;=0, for all s=1, .-+, k+p,
and

(2) uSu'=0.

"From (1) it follows that
(3) —Ci+i €17 Cispti £1=0, i=1,-,p,

and from (2) and (3) it follows that
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a-p
*
l§10k+2p+l €1 Cry2p+1=0.

Hence we have Ceyi=Cespss for all i=1,---,p and Cgsepr:=0 for all I=1,...,g—p, and
consequently # is linearly dependent on {u, -, #x4p}. By we see that
rank Z;(S)=k+p=n—rank S+min {p, q}.

Case 3. F=H,

Let rank S=m and k=n—m. Then by a known result (for example, see [4] or
[5]) and Lemma 1, we may assume that

diag {0., —¢1 Im/2, &1 Im/2}, if m is even,

7 diag {Oc, —¢1 Iom-15/2, €1 Lim-1y /2, &1}, if m is odd,
and by proceeding as in Case 2, we can easily prove statement (iii).

3. Some results of V. R. Tihomirov.

Let A=(ai;) e M(n, F). As in Tihomirov’s papers [1,2], we define k(A)= ' 3
i=1 4=

1
Lai;—a;] [a;,—a,]. Obviously, we have h(A)=Tr [(A—A*)(A*—A)], where Tr means
“trace”. In order to prove Theorems 3 and 4 we need the following lemma.

Lemma 2. Let X,YeM(n,F). Then

(i) Tr(XX*) = 0 and=0 if and only if X=0;

(i) Re Tr(XY)=Re Tr(YX), where Re means “the real part’, and

(ii) XYX*=0 if and only if Tr(X*XYX*XY*)=0.

Proof. (i) and (ii) follow immediately from definition. We now prove (iii). If
XYX*=0, then X*XYX*XY*=0, so that Tr(X*XYX*XY*)=0. Conversely, if Tr
(X*XYX*XY*)=0, then, by (i), Re Tr(XYX*XY*X*)=Re Tr(X*XYX*XY*)=0,
and consequently by (i) XYX*=0.

Theorem 3. Let Ae WM (n, F). Then

h(A)=h(UAU¥),
for any unitary matrix U in M (n, F).
Proof. By and the fact that U is unitary, we have
h(UAU*=Re Tr (UAU*—UA*U*) (UA*U*—UAU*)]
=Re Tr[U(A—A*)(A*—A) U]
=Re Tr [U*U(A—A¥*) (A*—A)]
=Re Tr[(A—A*(A*—A)]
=h(A).
Theorem 4. Let A, XeM(n, F), X*X=I,+E and S=A—A*.
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(1) If XAX* is hermitian, then
(4) h(A)=Tr(ESS)+ Tr(SES)+ Tr (ESES).

(5) h(A)=2 Re Tr(ESS)+Re Tr(ESES),
then XAX* is hermitian.

Proof. If XAX* is hermitian, then XSX*=0 and by and the fact
that S is skewhermitian, we have T7(X*XSX*XS)=0. Hence

—h (A)+ Tr(ESS)+ Tr (SES)+ Tr (ESES)=0.
If (5) holds, then by we have
Re Tr(SS)+Re Tr(ESS)+ Re Tr(SES)+Re Tr(ESES)=0.

Hence
Re Tr(X*XSX*XS)=0,
and by we have XSX*=0 and hence XA X* is hermitian.

\ Remarks.

1. Since for F=R or C, we have Tr(XY)=Tr(YX) for any X, Ye(n, F)
and Tr(XY) is real if X and Y are hermitian, and since E and SS are, by definition,
hermitian, so in these cases we see that T7(ESS)(=T7r(SES)) and Tr(ESES) are real

in expression (4). But this is not the case for F=H. For example, take A =(8 61+£2)

and X= (5‘ (1)>, where {1, ¢, 3, €3} is the basis of H, then S=A—A*=(g+s:1_+zi:),

E=X*X—I= (g‘gl), XAX*= (*(1) 8)(hermitian), h(A)=8, Tr (ESS)=4ey+4, Tr (SES)
—4 and Tr(ESES)=—4s,.

2. The mistake in Tihomirov’s paper[2] is that, besides that there are misprints
in indices, the term 77 (ESS)+ T7(SES) has been omitted in expressions (4) and (5).
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