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1. Introduction and definitions. We denote by $F$ the field $R$ of real numbers,

the field $C$ of complex numbers, or the skew field $H$ of real quaternions, by $\mathfrak{M}(n, F)$

the set of all $n\times n$ matrices with elements in $F$ and by $F^{n}$ the ndimensional left vector

space over $F$. If $A_{6}M(n, F)$ , we define $Z_{F}(A)=\{X\epsilon \mathfrak{M}(n, F): XAX*=0\}$ , rank $Z_{F}(A)$

$=\max$ {rank $X:X\epsilon Z_{F}(A)$ } and $z_{F}(A)=\{u\epsilon F^{n} : uAu*=0\}$ . Here and in what follows
we regard $u$ as a $1\times n$ matrix and identify a $1\times 1$ matrix with its single element. For
any $A\epsilon \mathfrak{M}(n, F)$ , we denote by $A^{*}$ its conjugate transpose (if $F=R$ , then the term

”conjugate transpose” merely means “transpose“, and $A$ is said to be hermitian if
$A=A^{*}$ , skew-hermitian if $A=-A^{*}$ and unitary if $AA^{*}=I_{n}$ , where $I_{n}$ is the $n\times n$

identity matrix (if $F=R$ , then the terms “hermitian”, “skew-hermitian“ and “unitary”

mean ”symmetric”, “skew-symmetric“ and “orthogonal“ respectively).

Given $A,$ $X\epsilon \mathfrak{M}(n, F)$ , let $S=A-A^{*}$ so that $S$ is skew-hermitian. Then XAX*

is hermitian if and only if $X\epsilon Z_{F}(S)$ . Therefore, the problem of finding condition on
$X$ such that XAX* is hermitian is equivalent to that of finding conditions on $X$ such
that $X\epsilon Z_{F}(S)$ .

The purpose of this note is: (i) to prove certain properties of $z_{F}(B)(Th\infty rem1)$

and use them to determine the rank $Z_{F}(S)$ (Theorem 2), and (ii) to derive a simple

method by means of which we can obtain a short proof of a result of Tihomirov [1]

(Theorem 3) and a correct and more detailed answer (I hope) of Tihomirov’s another
problem [2] (Theorem 4) for all cases of F. (In [1] and [2], only the case $F=C$ has
been considered.)

2. The rank $Z_{F}(S)$ .
Theorem 1. Let $B\epsilon \mathfrak{M}(n, F)$ be skew-hermitian (or hermitian) and $\{u_{1},\cdots, u_{m}\}$

a maximal independent set in $z_{F}(B)$ such that $u_{i}Bu_{j}^{*}=0$ for all $i,j=1,$ $\cdots m$ . Then

(i) the integer $m$ is independent of the choice of the maximal independent
set, and

(ii) $m=rankZ_{F}(B)$ .

1) The author wishes to thank Professor Y. C. Wong for his advice during the preparation of this
note.
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Proof. Let $\{v_{1}, \cdots, v_{/c}\}$ be an independent set of $z_{F}(B)$ such that $v_{p}Bv_{q}^{*}=0$ for
all $p,$ $q=1,$ $\cdots,$

$k$ . Suppose $h>m$ , and suppose $v_{1},$ $\cdots,$
$v_{l}\epsilon L=L\{u_{1}, \cdots , u_{m}\}$ and $ v_{\ell+1},\cdots$ ,

$v_{k}\phi L$ , where $0\leq l\leq m$ and $L\{u_{1}, \cdots , u_{m}\}$ denotes the subspace spanned by $u_{1},$ $\cdots$ , $u_{m}$

(over $F$ ). If $l<m$ , then we can decompose $L$ into $L=L\{v_{1}, \cdots, v_{l}\}\oplus L_{1}$ . Let $w_{\ell+1},$ $\cdots$ ,
$w_{m}$ be a basis of $L_{1}$ . Since $k>m$ , there exists $v_{0}=\sum_{r=l+1}^{k}\lambda_{r}v_{r}(\neq 0)$ in $z_{F}(B)$ such that
$v_{0}Bw_{\epsilon}=0$ for all $s=l+1,$ $\cdots$ , $m$ . Furthermore, since $v_{0}Bv_{t}^{*}=0$ for all $t=1,$ $\cdots,$

$l$ and
$B$ is skew-hermitian (or hermitian), the maximality of the independent set $\{u_{1}, \cdots, u_{m}\}$

requires that $v_{0}\epsilon L$ . Without loss of generality, we may assume the coefficient $\lambda_{l+1}$ in $v_{0}$ is
not zero. Define

$x_{p}=\left\{\begin{array}{l}v_{p} if p\neq l+1,\\p=1, \cdots, k.\\v_{0} if p=l+1,\end{array}\right.$

Then $\{x_{1}, \cdots, x_{k}\}$ is an independent set of $z_{F}(B)$ such that $x_{p}Bx_{q}=0$ for all $p,$ $q=1$ ,
, $k$ , and $x_{1},$ $\cdots,$

$x_{l+1}\epsilon L$ . By continuing this processes, we can at last find an independent
set $\{y_{1}, \cdots , y_{k}\}$ of $z_{F}(B)$ such that $y_{p}Byq=0$ for all $p,$ $q=1,$ $\cdots,$

$k$ and $y_{1},$ $\cdots,$
$y_{m}\epsilon L$ .

This contradicts the maximality of the independent set $\{u_{1}, \cdots, u_{m}\}$ . Hence $k\leq m$

and statement (i) is proved.

Statement (ii) follows immediately from (i).

In order to prove $Th\ovalbox{\tt\small REJECT} rem2$ below we need the following lemma whose proof
is quite simple and hence is ommitted.

Lemma 1. Let $A\epsilon \mathfrak{M}(n, F)$ . Then rank $Z_{F}(A)=rank$ $Z_{F}(UAU^{*})$ for all
nonsingular $U$ in $\mathfrak{M}(n, F)$ .

Theorem 2. Let $S\epsilon \mathfrak{M}(n, F)$ be skew-hermitian.

(i) If $F=R$ , then rank $Z_{F}(S)=n-\not\in rank$ $S$ .
(ii) If $F=C$, then rank $Z_{F}(S)=n$ -rank $ S+\min$ $\{p, q\}$ , where $p,$ $q$ are

respectively the numbers of positive and negative eigenvalues of the
hermitan matrix $\epsilon_{1}S$ , where $\epsilon_{1}=\sqrt{-1}(\epsilon C)$ .

(iii) If $F=H$, then

rank $Z_{F}(S)=\{n-\frac{1}{2}(1+rankn-\not\in rankS, S)$

,

if rank $S$ is even,

if rank $S$ is odd.

Proof. Case 1. $F=R$ .
By a well-known result (for example, see [3, p. 285]) and Lemma 1, we may

assume that
$S=diag\{0_{k},J_{1}, \cdots,J_{l}\}$ ,
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where $0_{k}$ is the $k\times k$ zero matrix and each $J_{i}=\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right)$ . Then rank $S=2l$ and $n=k+2l$.
Let

$u_{j}=(0, \cdots, 0,1,[0, \cdots, 0),$ $j=1,$ $\cdots,$
$k$,

$\uparrow\overline{\ovalbox{\tt\small REJECT}}$

$j$-th comwnent

and

$u_{k+i}=(0, \cdots , 0,1,1,0, \cdots , 0),$ $i=1,$ $\cdots$ , $l$.
$(k+2i-1)th\uparrow$

component

Then $\{u_{1}, \cdots , u_{k+l}\}$ is an independent set in $z_{r}(S)(=R^{n})$ and $u_{s}Su_{t}=0$ for all $s,$ $t=1$ ,

... , $k+l$. Let $u=(r_{1}, \cdots , r_{n})\epsilon R^{n}$ be such that $uSui=0$ for all $s=1,$ $\cdots$ , $k+l$. Then
$-r_{k+2i-1}+r_{k+2i}=0,$ $i=1,$ $\cdots,$

$l$.
Hence $u$ is linearly dependent on $\{u_{1}, \cdots , u_{k+l}\}$ , and by $Th\infty rem1$ , rank $Z,$ $(S)=$

$k+l=n-l=n-*$ rank $S$ .
Case 2. $F=C$.
Let $p,$ $q$ and $\epsilon_{1}$ be defined as in statement (ii). Then by a well-known result

(for example, see [3, p. 274]) and Lemma 1, we may assume that

$S=diag\{0_{k},-\epsilon_{1}I_{p}, \text{\’{e}}_{1}I_{q}\}$ ,

where $0_{k}$ is the $k\times k$ zero matrix and $I_{p}$ and $I_{q}$ are respectively the $p\times p$ and $q\times q$

identity matrices. Then rank $S=p+q$ and $n=k+p+q$ . Suppose $p\leq q$ . Let

$u_{j}=(0, \cdots , 0,1,0, \cdots , 0),$ $j=1,$ $\cdots$ , $k$ ,

$j$-th $com\mu$)
$nent\uparrow$

and

$u_{k+i}=(0, \cdots , 0,10\uparrow’’\cdots , 0,1,0, \cdots ’ 0),$
$i=1,$ $\cdots$

’
$p$ .

$(k+i)$ th component
$(k+p+i)\uparrow$ th component

Then $\{u_{1}, \cdots , u_{k+p}\}$ is an independent set in $z_{7}(S)$ and $u_{s}Su_{t}=0$ for all $s,$ $t=1,$ $\cdots$ ,
$k+p$ . Let $u=$ $(c_{1}, \cdots , c_{n})\epsilon C^{n}$ such that

(1) $uSu:=0$ , for all $s=1,$ $\cdots$ , $k+p$ ,

and

(2) $uSu=0$ .
From (1) it follows that

(3) $-c_{k+i}\epsilon_{1}+c_{k+p+i}\epsilon_{1}=0$ , $i=1,$ $\cdots,p$ ,

and from (2) and (3) it follows that



12 YIK-HOI AU-YEUNG

$\sum_{l=1}^{q-p}c_{k+2p+l}\epsilon_{1}c_{k+2p+l}=0$ .

Hence we have $c_{k+i}=c_{k+p+i}$ for all $i=1,$ $\cdots$ , $p$ and $c_{k+2p+l}=0$ for all $l=1,$ $\cdots$ , $q-p$ , and
consequently $u$ is linearly dependent on $\{u_{1}, \cdots , u_{k+p}\}$ . By Theorem 1 we see that
rank $Z_{F}(S)=k+p=n$ -rank $S+\min\{p, q\}$ .

Case 3. $F=H$,

Let rank $S=m$ and $k=n-m$ . Then by a known result (for example, see [4] or
[5]) and Lemma 1, we may assume that

$S=\left\{\begin{array}{ll}diag \{0., -\epsilon_{1}I_{m/2}, \epsilon_{1}I_{m/2}\}, & if m is even,\\diag \{0_{k}, -\epsilon_{1}I_{(m-1)/2}, \epsilon_{1}I_{(m-1)/2}, \text{\’{e}}_{1}\}, & if m is odd,\end{array}\right.$

and by proceeding as in Case 2, we can easily prove statement (iii).

3. Some results of V. R. Tihomirov.

Let $A=(a_{ij})\epsilon \mathfrak{M}(n, F)$ . As in Tihomirov’s papers $[1, 2]$ , we define $h(A)=\sum_{\ell=1}^{n}\sum_{j=1}^{n}$

$[a_{jj}-a_{ji}^{*}][a_{if}^{*}-a_{ji}]$ . Obviously, we have $h(A)=Tr[(A-A^{*})(A^{*}-A)]$ , where $Tr$ means
“trace”. In order to prove $Th\ovalbox{\tt\small REJECT} rems3$ and 4 we need the following lemma.

Lemma 2. Let $X,$ $Y\epsilon \mathfrak{M}(n, F)$ . Then

(i) $Tr(XX^{*})\geq 0$ $and=0$ if and only if $X=0$ ;
(ii) $ReTr(XY)=ReTr(YX)$ , where $Re$ means “the real part”, and
(iii) $XYX*=0$ if and only if $Tr(X^{*}XYX^{*}XY^{*})=0$ .
Proof. (i) and (ii) follow immediately from definition. We now prove (iii). If

$XYX*=0$ , then $X^{*}XYX^{*}XY^{*}=0$ , so that $Tr(X^{*}XYX^{*}XY^{*})=0$ . Conversely, if $Tr$

$(X^{*}XYX^{*}XY^{*})=0$ , then, by (ii), $ReTr(XYX^{*}XY^{*}X^{*})=ReTr(X^{*}XYX^{*}XY^{*})=0$ ,
and consequently by (i) $XYX*=0$ .

Theorem 3. Let $A\epsilon \mathfrak{M}(n, F)$ . Then

$h(A)=h(UAU^{*})$ ,

for any unitary matrix $U$ in $\mathfrak{M}(n, F)$ .
Proof. By Lemma 2 and the fact that $U$ is unitary, we have

$h(UAU^{*})=ReTr[(UAU^{*}-UA^{*}U^{*})(UA^{*}U^{*}-UAU^{*})]$

$=ReTr[U(A-A^{*})(A^{*}-A)U^{*}]$

$=ReTr[U^{*}U(A-A^{*})(A^{*}-A)]$

$=ReTr[(A-A^{*})(A^{*}-A)]$

$=h(A)$ .
Theorem 4. Let $A,$ $X\epsilon \mathfrak{M}(n, F),$ $X^{*}X=I_{n}+E$ and $S=A-A^{*}$ .
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(i) If XAX* is hermitian, then

(4) $h(A)=Tr(ESS)+Tr(SES)+Tr$ (ESES).

(ii) If

(5) $h(A)=2ReTr(ESS)+ReTr$ (ESES),

then XAX* is hermitian.

Proof. If XAX* is hermitian, then $XSX*=0$ and by Lemma 2 and the fact
that $S$ is skewhermitian, we have $Tr(X^{*}XSX^{*}XS)=0$ . Hence

$-h(A)+Tr(ESS)+Tr(SES)+Tr$ (ESES) $=0$ .
If (5) holds, then by Lemma 2 we have

$ReTr(SS)+ReTr(ESS)+ReTr(SES)+ReTr$ (ESES) $=0$ .
Hence

$ReTr(X^{*}XSX^{*}XS)=0$ ,

and by Lemma 2 we have $XSX*=0$ and hence XAX* is hermitian.

Remarks.

1. Since for $F=R$ or $C$ , we have $Tr(XY)=Tr(YX)$ for any $X,$ $Y\epsilon \mathfrak{M}(n, F)$

and $Tr(XY)$ is real if $X$ and $Y$ are hermitian, and since $E$ and $SS$ are, by definition,

hermitian, so in these cases we see that $Tr(ESS)$ ( $=Tr$ (SES)) and $Tr$ (ESES) are real

in expression (4). But this is not the case for $F=H$. For example, take $A=\left(\begin{array}{ll}0 & \epsilon_{1}+\epsilon_{2}\\0 & -\epsilon_{3}\end{array}\right)$

and $X=(_{0^{1}}^{\epsilon}01)$ , where $\{1, \epsilon_{1}, \epsilon_{2}, \epsilon_{3}\}$ is the basis of $H$, then $S=A-A^{*}=\left(\begin{array}{l}0 \epsilon_{1}+\epsilon_{2}\\\epsilon_{1}+\epsilon_{2}-2_{-3}^{\epsilon}\end{array}\right)$ ,

$E=X^{*}X-I_{2}=\left(\begin{array}{ll}0- & \epsilon_{1}\\o_{\epsilon_{1}} & \end{array}\right)$ , $XAX*=\left(\begin{array}{ll}-l & 0\\0 & 0\end{array}\right)(hermitian),$ $h(A)=8,$ $Tr(ESS)=4\epsilon_{3}+4,$ $Tr(SES)$

$=4$ and $Tr(ESES)=-4\epsilon_{3}$ .
2. The mistake in Tihomirov’s paper[2] is that, besides that there are misprints

in indices, the term $Tr(ESS)+Tr$ (SES) has been omitted in expressions (4) and (5).
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