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1. Introduction : Rainville considered the set of polynomials g» (x) defined
by

(L) eV (xt)=3 gatr)-17 s
where ¥ (#) admits of the power-series expansion

(1.2) V(=2 ax Wu’:
n=0 n.
The interest of considering such set of polynomials consists in observing that the
Laguerre polynomials L{ (x) possess the generating function
5 L (x)

(L.3) | e oFy (— ;5 14a; —xt)=n§o Aran

or that a more general class of hypergeometric polynomials possesses the analogous

generating function [2]:

) al’ ............ ,ap; _
(1.4) ¢ ok, [‘31, ............ Bas xt:I
_ %o — P, Oy, e , ap; “vtv"*
—."%0p+1Fq[ Bry cerereeeeens ,‘Bq;x] nl "

Our object is to derive a general recurrence formula from which the corresponding
formula for the sets given by [L.I] will follow easily. Moreover, we shall show some
applications of our result in the case of polynomials given by [1.3] and [1.4). Lastly it is
interesting to note that the well-known Kummer’s transformation

(1.5) e 1Fi(c—a;c;—x)=1F1(a;c; %)

yields the obvious identity

(1.6) oy (—m, c-—a+1;c+1;1)="i@n.ﬁ‘,
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2. General recurrence formula :

For our purpose, we shall first prove the following theorem.

Theorem : If flx)= %An x"
and e f(x)= b B, x",
n=0
_ v m+1
(21) then (n"l' 1) Bn+l _Bn+mz=,ow Am+1
Proof :
Let y=e*f(x)
then y is a solution of the differential equation
(2.2) y=e [f(x)+f ()]

Now we have

Z(n+1) Buyx7= £ Buxng 3 3 WAL gy, mem,

M3

ne 3 v m+l n
Bnx +n=2(; m§0 (n—m)! [ Amsr 27

n=0

Comparing terms on both sides we obtain

(n+1) Bn+1-—Bn+ 2 m+1

m=0 (n—m) : AMI,

which is (2.1).
3. Recurrence formula for the set of Rainville:

From [1.1) we notice that the polynomial g, (¢) is generated by

: z =5 X

(3.1) e ?l’(xt)—"é'0 &n () 1
o "
where re= n2=0 1

3.2) A= @l p_ &
. n!
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It follows therefore from (2.1) the following relation
33) goi (=80 O1+3 (1) amea 174,
But we know that
(34) g t1=3 () antm.

Thus it follows from and
(3.5) (n+1) [gns1 () —gn ] =1g 741 ()

where &' “)=st (g}

the result was obtained by Rainville in a different manner.

4. Some applications of the result (3.3):
(A) From [1.3) we notice that

@ — = & LB
(4-1) e OFI( ,1+a, xt)-— ;ow— .

Thus we obtain

il
S
=
]
<
—
Ao
)
Il
—_
|
—
R
S

4.2) &n ()= pr

—_
+
R
3
+
R
3

It follows therefore from that

(a) _ @ 3 (—1)m+1(a+2)nt’"+1
(4.3) (n+1) L () —(n+a+ 1) L ()=2 i L)l (o Tm

Now we know that

3 (Lt (—tF
o El(n—Fk) ! (1+a

(4.4) L ()=

Thus we derive from [4.3] and [4.4)] the well-known formula for the Laguerre
polynomials '
(4.5) (n+1) L, (t)+¢ L+ () =(n+a+1) L (8).

(B) Next noticing the generating function (1.4) we obtain from our result
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(4.6) »+1Fy [—(n+1), g soorrceenees ’,‘%Z : ¢ ]""11+1
— f’ n\_(a1)m
m=0 (m) (B)m+1

5. Kummer’s transformation :

Applying the result (2.1) of our main theorem on the following Kummer’s tans-

formation
(5.1) e 1Fi(c—a;c; —x)=1F1(a;c; %),
we derive
—(=1)"(c—a) = (@ .
5:2) An=- Qunl Ba= (©nn! ™’
so that we have
5.3 @ _ i _qm(n) (c=a+1)m
53 (c+1), m{o( 1 (m) (c+1)m °
which is equivalent to
( s (=N, Cc— . . =_k(q)n.;ﬁ
‘54) 2F1( n,c a+1,C+1,1) (C+1)n .
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