VARIOUS HAMILTON’S CANONICAL FORMALISMS
AS NON-CONNECTION METHODS FOR VARIOUS
CONNECTION GEOMETRIES IN THE LARGE.
PART II.

TsurusaBuro TAKAsU

(Received June 16, 1969)

This Part II is a sequel to the previous one T. Takasu, [2], which was a
detailed exposition of T. Takasu, [1], in which I had introduced non-connection
geometries in the large based on canonical equations of Hamiltonian types of II-geodesic
curves in my sense.

§1 consisted in “an extension of the duality exposed in the book H. Rund,
to the case depending on special higher order derivatives” adding new formulas
to the Hamilton’s canonical formalism of H( ¥ %%) (Hamiltonian) and L (%, £?)
(Lagrangian), where they were the Lagrangian L (x*,%*) and Hamiltonian H (3%, ;)
respectively.

Thereby it was assumed that the values of

T

(1) fL(xz,fcz, ) dr ‘[H(x;,x;, e ) de
70

]
are invariant under the arbitrary parameter transformation of the type o= (r), the
function ¢ being of class C! such that

(2) ¢ = do/dr>0.
This assumption implies that the theory is invariant under the transformations of the
local coordinates
x4 \ X

as well as under transformations of the parameter subject to the above condition.
It was also assumed that the

. . (M) . . - (M)
Lagrangian L (%, %%, --- , x%), ) Hamiltonian H (x;, %3, -+ , x,),
say, is positively homogeneous of the first degree in i:

(3) (xl’ le’ ot ’xl) an H(xly Zx.la oo yxl) an
M
=2L (xl’x'l’ ...,x1)>0, =2H(x;,.’tz,"',x1)>0,

) ? )

so that
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oL (x2, %2, - (;3) . . ) o
(4) Lo ) gua L (9,2, 2

§

oH Ko, e, . . ¢’5)
(xz, s x2) xp—':H(xz,xx, .oy xz),

%,

it being said in the foot-note (p. 17) that “other cases shall be studied later”.

The purpose of this Part II consists in 1°,2° and 3° below.

1°. The meaning of

d o

(3.3) s ds = (B34 A2, & )= eeeee
and '
(3.4) A2, tat g2 0
' av x>

of Part 1 will be shown (cf. [2.6.3]) in particular to be

%) O ot M ) =0 # (Ao £8)
and
(6) A w=wt 2% (CL. also [T123] and [2532])

ox®
20, To treat the “other cases” (depending on general higher order derivatives)
spoken of above, where M runs over 1,2,---, M, while in §5 of Part I(p. 40), the case
M=1 only is recapitulated. '

39, As for the Kawaguchi spaces of order M, which was slightly touched under
IV, p. 44 of Part I of this paper, it will in this paper be, in particular, brought to
«Kawaguchi space in the large” exposed more in detail (cf. § 4-§13), “general metric
space” being also considered (cf. §14-§23).

N.B. As for the degree of specializations of (i.e. the conditions for) the
differentiable manifolds, see the comment N.B. under Art. 1. 2.

§1. II-Geodesic Curves in the n-Dimensional Doubly Extended
Differentiable Manifolds.

1.1. II-Geodesic Curves in the n-Dimensional Doubly Extended Differentiable

Manifolds. We consider a general n-ary linear differential form
(111 Lo, f?) dx*, (x=dx/dr, etc.; A, ¢, == 1,2, . M),
which is global in the n-dimensional differentiable Manifold

UUa(xéa)), (2:1,2,...’n;a=1’2’...)
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(in current notation (cf. Part I, p. 16)) of class C?,
v=positive integer, v=o0, v=w,

the (1.1.1) being written in an invariant form.

Setting
(1.1.2) ds 2 @, (%, £, - , %) & dr,
(1.1.3) D, (5, %, - 2 &7,

as we have done in (1.2) and (1.3) of Part I, we solve the extremal problem
(1.1.4) b= [ dr =0

in two ways I and II below.

I. The Euler-Lagrange equations are

ox  dr Logr  dr okr de™t
If we define y, (x, %, - ,gc”; by (this seems to be the initiative of the present author)
o 04 _ d 3/ . _qu @ 0L
(116) y,,g ErT de ok + +( 1)” 1 dr¥-1 a(;: >

then (1.1.3}, (w,=y,) and (1.1.5) give

0 . 0 .
1) — e = ——
(1.1.7) aa}{ " ay[,, »

forming the canonical equations of Lagrangian types. When the points 74,7y in
and the curve C passing through 7o, 7, belong to one and the same U. of local
coordinates, the (1.1.7) are the canonical equations of the ordinary local geodesic curve
C, and otherwise the curve C is a ll-geodesic curve corrgsponding to y,=w,(x, J'c---,u;c)),
which is global and an extremal of [1.1.4).

In order to render (1.1.7) into the corresponding Hamiltonian canonical equations,
we proceed as follows. From (1.1.7) we obtain

6.0= 3L ot Ty, = 5wt by = 200yt (30— el
,I

1) This differs from (1.8), p. 41 of Part I in that M = 1.
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Taking _/ such that

(1.1.8) OM = % 0y, —0x" Y,
for the Hamiltonian corresponding to _/, we obtain the Hamilton’s canonical
oM _ . ou_ .
(1.1.9 T x*, s 7

of the extremals (II-geodesic curves):

71 ‘ 71 1 .
(1.1.10) as=aj édr:f 3 dr=j T;’;_ 8s de="[3s]": = 0.
] %0

T

Theorem. For that the extremals 6} (x,%. -+ ,y.)= 0 and 6.0 (x*, *,
coincide, it is necessary and sufficient that
(1.1.11) 0(y.%#)=0.
Proof. From (1.1.3), we obtain

0L = 8y, 2") = 0Yu 2+, 088 = §, 07 X0+, 02r = , Oxn+y, 045,

(1.1.12) 3L (0% e %) = 8 (9, 80)— O,
where
(1.1.13) SH = 8y, in—xn ,.

The (1.1.12) gives our theorem.
Cor. Y= const. along the extremal 6} = 0.
Proof. From (1.1.12), it follows that

i.é= d(y.x*) dH (x*,y,) =0
dr dr ’ dr )

II. We define the parameters of teleparallelism types

(1.1.14) /1,‘},(,), (s=0,1,---, M)
by
b @ M (&)
(1.1.15) dw,— X A}y widx =0 dw?+ 2'0/1},,(,) wrdy =0
. =0 8=

for the given w; and ? defined by
(1.1.16) 0 0, = 9},

so that

equations :

M)
eve ,x1)= 0
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(1.1.17)

2 —
A#,(,)—a)
%

ow,
[©)
0

103

dw?
(8)
ox’

=—w,

A straight forward calculation gives the identity :

d o _ =

(1.1.18) I de ={x
Indeed, we have

d (0] — d vul —

(1.1.19) i = (0, 2#)=

§=0

M
=w; {56"+ 2 o’

Ny . s+
4 3 A X 0]
£=0
LS "
do x4+ w; X
dc
dw, ., G+D . M . (34D
(s);l Xt X }=w1{xl+ 2 A;,(,) x* x* }-
axu §=0

By virtue of [1.1.18), we can deduce

d

dr

@

dr

w?

(1.1.20)

The equations‘of the -
global paths
(1.1.21)

are projections of the
local ones (1.1.21);

by the globalizing function factor

M
=54 3 M8 2.
§=0

(e4+1)

local paths

. ” L (S+D
B4 XA yir =0
§=0

global ones (1.1.21),

by the localizing function factor

. an . an
@y (%, %, -+ , X). ? (x, %, -+, X).
The (11.20) may be rewritten as
(1.1.22) w? —ddT O =g T, e
where
(+1) (s+1)
_ ] o) . D M ea 5 ¥ o
(1.1.23) B (o %y e, %) S d (0, %y e, 0) 3 200 _yop*
=0 axﬂ §=0 x"
with
(3+8) (s+1)
) ) M o 41 M o —
(112) dw# (x’ Xy, x) & ot (x’ Xy, x) 2 ;'Cu a((:))” dr'= 2 A:a(a) ;v dx"=/1;,w1 dx’
8=0 §=0

ox°
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or
(1.1.24) dw,— 1, , de'= 0,
where "
1 det 2 0wy o, 0w, 4, @”_mtl) _ 5 1 (H;l) :
(1.1.26) T, get g (Wx B )_20 Aoy 20/ %
The global paths (1.1.21); are evidently the extremals
(1.1.27) 0-% =0,

which cotncides with (1.1.7).

1.2. Finite Equations of the II-Geodesic Curves. Our
© | o, | o
are vectors with components
@, | @ | (e | (w}) | (1),

(#,1=1,2,--- ,n), so that all formulas in

AT
© l W, { wH
may be written in
o' I ,. ’ w*. ‘ ot l o,

Thus it should be emphasized that we are considering the case, where there exist
n linearly independent 1-forms o', (1=1,2, .-, n), such that det (o (x,%, --- (.‘8 )#£0.
)
N.B. Since g, (6,4, ,x)=w! !, det(gu)={det (i)} {det ()} = {det ()}, the
condition det (wl)#0 is comparable with the condition det(g,.)#0, where the matrices

(gw) exist. Conversely, when the matrices (') exist, we can construct the matrices
(&w). Thus the condition spoken of above is comparable with the condition for the

existence of the doubly extended
affine equiform Euclidean

geomelry in the differeniiable manifolds under consideration, what enables us to
establish doubly extended geometries (in F. Klein’s sense) corresponding to the branches
enlisted in the schemata given in Art. 3.1. later,
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The differential equation (1.1.18), is readily integrable :

(1.2.1) o' =a'dr, (a': const.).
We set
(1.2.2) dgt &t g'dr,
so that "
(1.2.3) fl=alr+c’, (c': const.).

This represents a curve in the large, which behave as for meet and join as well

as for the extremal
(1.2.4) or=10
like straight lines. We have called such curves Il-geodesic curves (T. Takasu, [1])

. an) ] .
corresponding to (! (x,%,--, %)) and the (&) II-geodesic rectangular coordinates referred

to the II-geodesic &'—axes. The (§') are global.
The (1.1.1) becomes

(1.2.5) del—wt =, (x, %, -+, %) da*.

The fofm of (1.1.15) tells us that the local paths of the teleparallelism (1.1.18);

are projected piece-wise into the global paths

(1.2.6) @ _ d o _y

dr? dr dr

by the transformation [1.2.5):
(1.2.7) dé'=ow! (x, %, , x) dx*
continuingly and smoothly.
The identity tells us that the global paths (1.1.18), or [(1.2.6) are projected
5

piece-wise onto the local paths (1.1.18), by the inverse transformation
(1.2.8) dxi=w! o'=w} d§

of Indeed, the (1.1.18), is a linear combination of (1.1.18); as tells us.
Multiplying with o}, we see that the relation

(1.2.9) ‘fﬁ = a' v}

holds along the II-geodesic line—elements.
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§2. Doubly Extended Affine Geometry and

Doubly Extended Euclidean Geometry. »

2.1. Doubly Extended Affine Transformations. We consider the case, where
(§') stands for (x?). In this case, becomes to the form

2.1.1) dE =ah (5,8, &) der,  (det(al)0)

for the II-geodesic line-elements corresponding to (a,, (&, &, - ,‘é’ )) ). In order that the
II-geodesic curve £!(z) may be transformed by [2.1.1] into Il-geodesic curves (&!(r 7))
corresponding to (@} (&, &, - ,E ) ), we must have

(2.1.2) dat (8,8, &) der=0

along the 1l-geodesic line-elements. For, from [2.1.1 ), we obtain

dzgz . d 2 0 dJen “an 2
(2.1.3) N AGLE OB o é o FEE

Integrating along the El-axes, we obtain

=g (& ... S?) gr— [ & (das (&, 8, --- f?)/df) dr.
ow

§ §" (das/dr) de={ (da;/dr) dr § dé"= [f{da}/d7) dr dé"} =const.= —at,

say, by (2.1.2), the sufficient condition for that the repeated integral may be converted
into the double integral (that is, that the integrand is continuous) being evidently
satisfied. Thus we have

(214)  B=dl(@, - E)etal,  (det(al) 20, dy=const.)

Sy

I have called (2.1.4) a doubly extended affine transformation (T Takasu, [6]. (26),
p. 872; [5]. (3.2), p. 63).

From (2.1.1) and (2.1.4), we see that the necessary condition
(2.1.5) da}(&,é, -, &) er=0

is satisfied for the II-geodesic line—elements wunder doubly extended affine transfor-
mations.

2.2 Doubly Extended Affine Transformation Group. Let us prove the
Theorem. The totality of the doubly extended affine transformations

2) In§5 of Part I (p. 40), the case M=1 only is recapitulated. In this § 2. M shall run over
1,2,..., M.
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2.2.1) Eregh (2,6, £)&+at,  (ab=const., det (a})=0),
whose inverse transformations are
- Qary _
(2.2.2) $k=a: (E, E) tt E ) $h+a§: (a(’::ConSt., det (a,’:);&()),

forms a group.

Proof. The combination of (2.2.1) with
‘ an

(2.2.4) B=a(E, &) +a,  (a=const., det(d})+0)
gives '

(2.2.5) BBl (6,8, &) Er+DL, (b, =const., det (b})%0),
where

. o . ap . an
b (8,8, -, 8 )=ak (a3 (5,6, -, &) 6 +ad)ar(§,6, -, €)

226 | |
b,=0b;, (§,6, - &) az+a;,

2.2 B (6,8, &) =ah (a3 (6,4, , ) €+ at)
We shall see that
(2.2.8) bi="b, (&,&, - ,(g)) a™+ @ =const.

owing to the summation with respect to m, for which it suffices to prove that

22.9) az db, (6,6, ,§)= 0 |
on summation with respect to m. For the condition (2.1.8) for that the &i-axes
may be II-geodesic curves corresponding to &, (&, £, ,Cg )) becomes ‘ '

(2.2.10) Endat, (&€, E)=0.

follows from the law for ai. Indeed, becomes

(a2 (&8, , ) e tam) dat, (€, €, &)

M)

—{ar (6,8 - E)ertan) dBL (6,5 - E)=0,
so that
_ - (D) _ . an .
(2.2.11) arda, (§,¢,---,&)=ar db’, (£,&, -+ ,¢)
’ o o - . (¢’9] .
=—a;¢n($:$)"')E)dbgn(syey'”’ )fk
. 1) . o)
=_a?(§’$’ "'aE)dEtn(eae"" ’E)Ek

- {Ek da%’ (5’ é’ e ’(lé)> } b—:n (e; é’ AR g)
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by the differential equation
on,

(2.2.12) goday (8,6, ,8)=0

. an
for the II-geodesic curves corresponding to a7 (&, ¢, --- ,'é).

Thus we have

on M) 79}

(2‘2'13) ay ddfn (E’ é, & )= —§* d{az: (5; é; ot ’(E)b-fn (5’ é» o 1(5 )}
=—Ctd{an (6,8, £)aht, (6,8, €))
on

=—&5dbL(£,€,-,8)=0

by the differential equation

(€]

¢x dbt (5’5', e, 8)=0
for the II-geodesic curves corresponding to & (&, &, ---,(EM)). The [2.2.13) shows us

Definition. The group stated in the last theorem will be called the doubly ex-
tended affine group and the geometry belonging to it the doubly extended affine geomeltry.
(Cf. Part I, §5, I, p. 40 in the case M=1).

N.B. The detail may be exposed quite as in T. Takasu, [16].
2.3 Doubly Extended Euclidean Transformations. We consider
(2.3.1) ds?=dg! d¢' =o' 0'=wo=0o, dx* ' d¥=g,, dx* dx*,
(23.2) gu (5% K)=dh =00,  (det(@)£0),
for which the global orthogonality conditions
(2.3.3) al a,=0onk > ar ak=ag**
hold for (2.1.4). In this case, we call (2.1.4) a doubly extended Euclidean transformation.
The condition (2.1.8)
da =0
is satisfied for the ll-geodesic line-elements under doubly extended Euclidean trans-
Sformations still.
The & and & in (2.1.4) will be called the Il-geodesic rectangular coordinates
referred to the 1l-geodesic rectangular &'— resp. &— axes.
The results of Artt. 2.1 and 2.2 hold still and we have
(2.3.4) W?*=w! w'=d&' d§t=ds?=(c ¢!) v?, (@' =c' w),

so that
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(2.3.5) ctet=1.

24. Doubly Extended Euclidean Transformation Group. Since the doubly
extended Euclidean transformation group is obtained evidently as a subgroup of the
doubly extended affine transformation group, the following theorem holds still.

Theoreml. The totality of the doubly extended Euclidean transformattons
- . )
(2.4.1) Fr=al (&6, ,8) 8 +al,  (ab=const., det (a)#0),

whose inverse transformations are

(€. 9]

(2.4.2) gi=at (%, ,&)Brrat,  (ah=const., det (af)0)
accompanied by Sforms a subgroup of the doubly extended affine transformation
group.

Definition. The geometry belonging to the doubly extended Euclidean trans—
formation group will be called the doubly exfena’ed Euclidean geometry. (Cf. Part 1,
§5, p. 40, II, p. 43. This is the case M=1).

N.B. The detail may be exposed quite as in T Takasu, [17], [18].

Duality of Hamiltonian Canonical Formalisms in the Doubly Extended Euclidean
Geometry. Since we have introduced the metric tensor g, (x,%, - ,(;cl)) in into
our doubly extended Euclidean geometry, we can establish a duality of Hamilton’s
canonical formalisms quite as in Art. (1.16)’ on p. 22 of Part I of our paper as well as
in Art. 6.6. in such a way that the Har{liltonian H and the Lagrangian _/ for (x%, y,)
are the Lagrangian and Hamiltonian for (x;, y?) respectively.

2.5. The Differential Equations of the Extremals ds=0 in terms of {3},
(s=0,1,---, M) in the Doubly Extended Euclidean Geometry. In the doubly extended
affine geometry, we have had (1.1.5):

®

| @ d o _ {dx dx* dgg}
25.) G =G e G )=

Now for the'doubly extended Euclidean geometry, we shall prove the equations :

BE_ d o _ z{dzxz ¥ (s dw dx"}
(25.2) dSz = ds ds =w,; d82 + :2/: A;w(s) dS dS

— [ § ,dﬂ__‘?'x”}-_—
. —w"{ﬂgf—*— éo{””}(” ds ds 0,

where
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253  (alomige] B e %) o0 "
as*  oxt  ox? ‘
with
(2.5.4) gh=wl v, L=,
Proof of [2.5.2] Let ’
(2.5.5) e.=(h (1,8 %)) (I=1,2,-,7)

be a natural frame and V a vector in the differentiable manifold M (x, %, -+, x)= U U. (%¢ay)s

so that we may put

M [€. 9]
(2.5.6) 0 e,= _2(’) F;y(s) (x’ x', 0ty x) e;.
We have
Vv=V=«e,,
V+oV=(Ve+dV*) (e,+de,),
(2.5.7) 0V=dV* e.+ V* je,.
Introducing ce, from [2.5.6) into [2.5.7), we have
(2.5.8) 3Vie,=0V=(dVi+ é'; ' dv) e
We set
(2.5.9) 5V 8et qVig ;; I, Ve de.

For 6V =0 a parallelism V=0 arises.

If we solve the differential equations
@®

(2.5.10) avi, S ved _ g
S s=0 d.

d s

with the initial condition V*=V?% at a point P (s=s,), the solution V?(s) has displaced
parallel along the curve x*(s) to another point @ (s=s;) acquiring V*(sy).

For v
(2,5.11) Vi=dx*/ds, ..
the becomes to
()
axr | ¥ dx* dx* _
(2.56.12) 782—+8=20 F’”(')—ds “gs =
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The curves x%(s) as solutions of (1.5.12) will be called the II-geodesic curves.

For the extremal of [2.5.1], we have

(O]
oVi _ 6 dxt _dx, % .. 90 der de _
(25.13) ?—TSW—W‘I‘éi rpv(s) (x’x’ ’x) ds ds
We are in the situation to determine I'Z,,.
Now we have
. ) . ) . a)
G15'14) ezeﬂzza&(xax,'" ’x)‘D;(xrxy'“ ,x)==ghﬂ(x,x,'" ’x)

St Bglﬂ =(e;+de;) (e# +de,)
giving

(2.5.15) 58) ey+e2 5ep=5g1y-

Introducing (2.5.6), we obtain

M (©)) . M ) X )
2‘(', M dx} e et 2(7) {I's, dx*} e e,=0g:,= 20 8 g
= s= P

for all values of d(;c)", so that

)
(2.5.16) Zon T3t @ao T2i= 520

ox*

Interchanging ¢ and v in [2.5.16),

g
(2.5.17) 8o 5+ & e yiiy=" &

9B
ox*

Interchanging 2 and g,

\ 0o
(2.5.18) 8o Iyt &uo F:x(s)=£K" .

X

Forming (2.5.16)+(2.5.17)—(2.5.18) and taking I'{,,=1":,, into account,

. g g g
(2.5.19) 28.; ['Zy(s)= §§”+ gj —Jgf .
ox*  Ox*  Ox?

Multiplying this with % g:.. and replacing I'7,, by {5}, We obtain

&) 0g: 0gu
(2.5.20) {y",}(s,=%gﬂa(3§%"+ aé:i -ﬁ).
X" X

Thus (2.5.13) gives

111
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0 dx* _ad¥x ¥ (. . Mdxr dx .
0s ds  ds? t s b (%4, ’x)ds ds '

In [25.1}, we have already seen

(2.5.21)

d w’__ {dle_l_ZA dx_l_ZA dxr d(;)"}

(2:5.22) s a5 =g T mege t 5 gy s

Now in (2.5.4), we have seen

an an an
(2'5'23) 8wy (x,i‘,---,x)-'m‘ (x’x’ ,x)wlu (xvx.; '"’x)’
) an . an . an
(2.5.24) g (X, %, -, X)=wh (X, %, -, X) 0% (%, X, , X).
Hence
08us , 08ss 08w
2 — _—
womte (% + - 1)
00’ dol,  dd} L
—totut( S it 20+ 2t ur T
ox* ox* ox* Ox+
aaglf_ , 0wl
-l
| 0w, Jut
(2-5-25) {fu}<s)=% (-/'fw(:)'*‘Af,‘(-))'l'%wi 5, {wf, ( ® — @ )
] axv axa
d 0
+ ol ( Ou, _ 90y )} (s=0,1, -, M),
ox+  0x°
Let us show
. dw! ow' 0wt Ow! ®
e 1 a — v — fd —
(2.5.26) w,,{wy(—ag,c)v ¥ Yot (o o )} dar d= 0.

l (8
(2.5.27) The left-hand side = v}, &’ (—aﬁ‘,’—;’——aﬁ’) dx)”
ox  ox°

dot )
+ wf ot (-5(-(:),7"—- 2(,“)) ) dxr dxv.
x x°

Before all, we see

@ (€] ®

(2.5.28) . Z))" 2t w* dx’ — dx’ = w} W,
l 1
(2.5.29) 0w, e 00

ox° ot
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where the last equality is verified by multiplication of the numerator and the denominator

of the left-hand side with .

The first ] The second

term on the right-hand side of (2.5.27) is

dw! ow! 0wl dw! &
o 0 —_—o T v e .\l pt
o (G = 3) ot 38 ) de i
_ ol & ol @ e w, w}
= ! (w,, a(;c)" ~dx’— a(;c)“ a),,dx) =" 0| 0 O 3(;53‘ wh, Wy a;g )
dwl @ 6wf, @\ ®/ dw! dw!
= @t (w;. d(;;)v X’ — ;?: w;, Q,’; a)h-) =" wt(—g)): Wy, — W W, a;f)
ool ® oot ® )/ dw! aa)
= ! (w,. a(,;;” ar’'—w,—y- o) dx") =o® L( @, w5 — @ ‘”")
= 0.
From [2.5.25) and [2.5.26), we see that
(2.5.30) (A dar dir= M2y dar dv,  (s=0,1, - , M),
Introducing [2.5.30) into [2.5.21), we obtain
§ dv _d%, ¥ . a0 dz A o, . D dy dx
(2:5.31) o0s ds ds? ZA"”("( Yok g ds —ae T 4 K ds ds
by [1.1.23). .
Comparing , (2.5.31) thh (2.5.22), we obtain . Q E.D.
If we set
— M (s+1)
(2.5.32) (o} = > {”,}w x /%,
we have
)4 (s+1)
(2.5.33) {LYdxrde= 2 {1} o(x°/%) da dr,
8=0
0 dx _d%, ¥, . M dxr dx
(2'534) . 68 dS - d52 (Eo){uv}(s)(x’x» ’x) ds dS
% T, . W dy dy

=g Tl ) =
Second proof for We proceed as follows.
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w} 0% =w},
(8)
w} w"/w’“)—w,,,
CIIOINO) ®
w} (0?/o*) "= w} o®,

(O ORNO] (6}
ol (0" %) w?=w} o,

2 ® @
i ok 0? =0} o™
® ®
w} WP =wj 0",
O] (O]
0} w? (0 w2)=w} 0" (0] ®}).
w W,
w,,a)hw,,w —-w,,wl,w,,w ,

(*) cu,L w,, dx" w} o}, dx",
(s [©)
w} wg (00 /8x”) d(x"—w,, w} ( aw‘/ax)" ax’

(O O]
=w} of (0wl/ox") dx.

Hence, by multiplication with o'e},
w03 ot {30! /0%%) d% —(dwt/0%%) dxv} = 0,
so that

the first term on the right-hand side of (2.5.27)=

and similarly,

the second term on the right-hand side of (2 5.27) =w; 0! ( gwﬂ

for, from (*), by multiplication with @}, we have

L ]
( (®
0l dx’ =, dx°,

[ONNO] @ @

wg (0w ‘/0x" dx”—w,, (06 /0x°) dx° = w}, (00, /0x*) dx”,
what proves

a ® _
T ) dxt dx =0,

2.6. The Differential Equations of the Extremals ds=0 in teims of {1},
(s=0,1,--, M) in the Doubly Extended Euclidean Geometry, in Part 1.

For this case, we will show before all that

(2.6.1) TAPS _“’1’;_”=o, (s=1,2, -, M).

081, 08w _ 08w\ .
gt 8 + s T (s x*
e (e )

0&in , 981

Proof. PATRY

, . . 0Zu
= ';‘ glv (x C) + o XF'— g')p x/‘) .
0

X ox* ox?
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Now, when g,, are positively homogeneous of zero degree in %, we have

g
(2.6.2) i af;‘"_\ 0, in 28 _ 0,
ox? ox*
(S=1$2’ b ’M)’

the partial derivatives themselves being positively homogeneous of zero degree in %,
whence follows (2 Q.E.D.

Next let us prove

(26.3) R e R i A B! e SH R a8

ds? dst 'O T ds T ds ds? ®"ds ds

in the case, where g,, and o are homogeneous of zero degree in i* and M =1 i.e.

@an -, .
L (x,%, -+, x) is homogeneous of one degree in .
From and [2.5.21), it follows that

' 5 2 242 dx* dx
(2.64) os cfiz - fzsf {"a”}“’)—&'%csi d—’; ’

which becomes by (2.5.27) to

0 dx* _ dix dx* dxv
(2.6.5) ds ds _ ds? o s ds ds '

From and [2.6.5), we obtain Q. E.D.

§3. Other (Doubly) Extended Geometries by Hamilton’s
Canonical Formalisms as Non-Connection Methods.

3.1. Other (Doubly) Extended Geometries by Hamilton’s Canonical Forma-
lisms as Non-Connection Methods. 7he 22 branches of the classical geometry in
the sense of “Evrlanger Programm” of F. Klein enlisted below may be doubly extended
in two ways (cf. I and II, Art. 1.1.) quite as in the case of simply extending, directly
or indirectly (cf. T. Takasu, [16-28]) even in the case® of Art. 1.1:

3) The branches obtained in this § 3 are different from those of III, p. 44 of Part I in that here
wp are not always homogeneous of zero degree in %.
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Lie’s higher sphere geometry - -.ccccocoveeriiniiiiiinii.. venerireeeesnaansares T
- Parabolic Lie geom. Dual parabolic Lie geom.
S .
kS Equiform Laguerre geom. Dual equiform Laguerre geom.
L
g
S Dual conformal geom. Conformal geom.
& .
§ Laguerre geom. Dual Laguerre geom.
K, .
@ |
Sphere-geometrical ~ Sphere-geometrical Sphere-geometrical
Euclidean geom. Non-Euclidean geom.  Dual Euclidean geom.
. ( Projective-geome- Projective-geome- : Projective-geometrical
§ | trical Euclid. geom. trical Non-Euclid. geom. Dual Euclidean geom.
£
g Equiform geom. Dual equiform geom.
S
) Equi-affine geom Dual Equi-affine geom.
8 -
3 | ~
S Affine geom. Dual affine geom.
S
&
Projective geometry-.-.::-----. Lie’s line-sphere transf.-.---cocooeeveeen l

(In 3 dimension)

Thus we discovered 44 new branches of geometry. The details are under preparation.

§4. Local Geometry of Finsler—Craig—Synge—Kaivaguchi Spaces.

4.1. Synge’s Vectors and Metric Tepsors in the Kawaguc_hi Space. Synge
and Craig called the metric apace in which the arc length s along a parametrized curve

x=x(z), (A=1,2,--,m) is given by the integral
A n Gn
(4.1.1) s=I F(x,% - ,%)dr, (= dx/dr, etc)

the Kawaguchi space of order M as was stated under IV, p. 44 of Part I of this
paper. Thereby it was assumed that (4.1.1) shall satisfy the so-called Zermero’s conditions :

(4.1.2)

M (S—K+1)
AKF= Z (;{) xl F(s)1=03 (K=213,"';M)

=K

M ()
{Al F= 2 sx? F(s)1=F,
8=1

for the invariancy (intrinsicality) under the parameter transformations, where

(4.1.3) Fesyi=3F/a%1.
Owing to A. Kawaguchi [T] and H. Hombu, [4.1.2]can be reduced to the three

conditions
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(4.1.4) 4, F=F, 4;,F=0, 4;F=0.

The metric tensor g, (x,%, - ,(xm) for (4.1.1) was written out on p. 44 of our
Part T as (IV. 2) (cf. M. Kawaguchi, [1], p. 724):
(¢.2] M M 1 1
(415) b *g/-m (x’ x.’ *tty x)zMFZm F(Ill)ﬂ F(M)v'l'*(‘g *@+*@ *(‘g:
to which I should have supplemented A. Kawaguchi’s another form (cf. ibid, (4.4)):
(4.1.6) G (5, %, -+ %)= MF?= Foyy, Fou,+ 6, G+ €, 6.

The quadratic form
an an
4.17)  dst=gu (% -, %) der do ’ dst=* g, (x,%, - , %) dz» de>
is always expressible in the form

(4.1.8) ds’=w' o', } ds?=*e! *ot,

but for undergoing doubly extended transformations of the types:

M) . ) !
’ (* a;a (x’ X, X )s *ao),

(4-1.9) (a}; (x, x‘; L X ), dz):
where

o) ‘

(4'1'10) (ah (x’yx’ R x)) (*a)f. (xyx.’ °e ,(;l)))

is an orthogonal matrix and

an T (D
(4.1.11) o'=d(x,%, -, x) dxr, (* o' =%} (x, %, .-+ , x) dx*,
the (@) i the (w}) ‘ the (w,) the (*w!) ‘ the (*@b) the (*w,)
being the components of the vector
) ‘ ®, 1 oL ‘ 1) *@ ' *w, ] *pt *w,

and thus we could have proceeded quite as in § 2.

But, in this paper, I will give a present author's new procedure (cf. §5- §19, §13-
§23 being in preparation).
It should be noted that the expressibility of ds? in the forms (4.1.7), [4.1.8), [6.3.1),

4) This is a corrected form. Another quadratic form is found on p.6 of A. Kawaguchi, (1.
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and thit of the foot-note® of Art. 4.1. is possible but for undergoing doubly
extended transformations of the types (4.1.9), thus the above different quadratic forms
must be transformable into one another by a transformation of the type (4.1.9).

§5. TT-Geometry as a Global Geometry of Finsler-Craig-Synge—-
Kawaguchi Spaces in the Large in Differentiable Manifolds.

5.1. Finsler-Craig-Synge-Kawaguchi Spaces in the Large in Differrentiable
Manifolds. The Finsler-Craig-Synge-Kawaguchi space is originarily of local nature.
I am now in the situation fo bring it into ome in the large. For this purpose, we
consider an n—dimensional differentiable manifold

(511) U Ua(x"(a)), (2=1’2:"'sn; a=1’2,"')
(in current notation (cf. Art. 1.1.) of class C°,
v=positive integer l ‘y=o00, I v=w,

where U, is an open domain of the local coordinates (x(,)-

Let (4.1.1):

o i

T T
. an ] an
(5.1.2) 3=I F (%), Zays *** 5 Xay) AT =I F(xgy, X » X ) dr
7o %0

R

be defined in the domain U.N Us.

The Euler-Lagrange equations of the extremal problem

: an ]
(5.1.3) b5 =3 [ Flrw da, - Xew)de =0
To
are : o
S (12 _OF __d[0F_ d oF .,
5.1.4) s%;)( 1) drc® Faou= oxt,, dr Loxy,, dr aaeg,)“L
d¥-t oF
(=1 »d—r,,—_la—(;c?;] =0.
Define a covariant vector Wy (Xcay> Xays =+ ,(:(),,)) by (this point seems to be initiative

of the present author)

du-t  F
oF d aF+.,,+(_1)y-1_d_{ﬂ__m_’

M
def 8—1 — -_—
(6.15) @ —51( 1yt Feo= ox* dr o0x» ox*

and let its components be
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an an . .
' (5'16) a)lp (x(a)3 X(a)s *** x(a))=wly (x(ﬁ)’ Xy, ’x(ﬁ)), (l=19 2a AR n) 1 Ua n Dﬂ-

Let us now proceed in two ways I and II below.
I. Define the Lagrangian by
a0 an

(5'1'7) .&=[(xak:"')x)gwﬂ(xais ...,x)x'l‘

in UU.. Since [5.1.7) is written in an invariant form, is global in U U..

~ From [5.1.7), we obtain

(5.1.8) | 0L _ ;.

The Euler-Lagrange equations for the extremals

(5.1.9) dg = af Pdr=0
%o
become now to
8L . _ d (8F d oF L at oF
5.1.10) 37 = on= g (G e )

on one hand and the Euler-Lagrange equations for the extremals [5.1.3), become
(5.1.11) = Wy,

on the other hand. Thus we have

oF
ox* *

(5.1.12) %ﬁ_= oy =

The and the [5.1.10] constitute the Lagrange’s canonical equations for
the extremals :

(5.1.13) —g—f:—=i“, g‘x{;@.

In order to establish (5.1.14); below, which, together with (5.1.11)=(5.1.14),
constitutes Lagrange’s canonical equations

oOF _,, OF

wr X

(5.1.14)

we consider (cf. (4.1.5), (4.1.6)):
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(5.1.15) #=Fimtg, iriv=y, &, .
where
(5.1.16) PR AT B - )

For o I F2dr= 0, the Lagrange’s canonical equations are

To

P i, = 21 P

(5.1.17) Ty = == 2, .

Now, by virtue of (5.1.11) = (5.1.14);, we have

. oF? oF .
Yu= —ax——?.Fa =2F @,,

(5.1.18) 9s=2F @&,=25 @,.
Hence (5.1.17); gives

oF:_ 1 oF*_ oF

= =x*
0y, 2F o, oo, ’

what establishes (5.1.14);. Q.E.D.
If we set
(5.1.19) F=/+¢=w,i"+9,
then [5.1.13] and [5.1.12) tell us that |

op _ 0 _
(5.1.20) b=0, 5=0,
so that
(5.1.21) S=0 (&%, - , %),

The [5.1.19) is a kind of canonical transformation (cf. Def., p. 31 of Part 1. Here we
have d¥ =g (%, %, -+ , %) dr.)

Proceeding quite as in the case of (1.1.7) and [(1.1.9), from

5013, . [BLg

we obtain the Hamilton’s canonical equations

(5.1.22) OH _ g;#= —a,,

3(0,,
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adopting _4 such that
(5.1.23) O M =5+ dw,—0x" @, :

for the extremals (II-geodesic curves) ds=0. Thus #o (5.1.13) and (5.1.14), there
corresponds one and the same set of Hamilton’s canonical equations what
justifies the following theorem, which is obtained also by comparing and
(5.1.14

Theorem. (5.1.9) and (5.1.3) are one and the same extremal problem : ds=d80=0.

Quite as in the case of (1.1.12), we obtain

(5.1.24) 0L+0H=6 (v, 4*)=da.
II. We define the parameters of teleparallelism types
(5.1.25) Ay (s=0,1,---, M)
by
(5.1.26)  dw,— é Ay 0 dzv= 0 dw*+ .22/1;,(,, wk dir= 0

for the w, above and * defined by

(5.1.27) o' 0, =0},
so that
a 2
(5.1.28) A=t 20 = 00
ax” ox”

A straight forward calculation gives the identity
d " b4 . s+1)
(5.1-29) -—E;— %:wl {xl-l- 'é,o A:v(‘) xt xv}
quite as in the case of (1.1.18).
From (5.1.29) follows:

(5.1.30) AL O gy S e
1. dc dr 2 B

The equations of the
global paths local paths
+1 t
(5.1.31) d;‘id_“;= 0 #4 é‘?’o Mo i 2= 0

show us that these paths are projections of the
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local paths (5.1.31); by the globalizing global paths (5.1.31); by the localiéing

Sfunction factor Sfunciton factor
. an . an
wl(x’x,"'ax)' wl(x’x’---,x)_

The (5.1.30) may be rewritten as

d o oy o o GID
2_____ﬁ= 2 %)
(5.1.32) ® i de 44, 2 %,
Where .
— . an a1 Y e
(5.1.33) AR, (%, %, 0, x) L@ (X, %, 0, X) 2 S —F
s=0 X a(x),
x
with
. an a # “0 de, @D
(5.1.34) dw, (%, %, , %) BLo? (x, - ,x) 2 & dw,
\ s=0 X 0x%s
or
(5.1.35) dw,— 12, w; dx'= 0,
where -
— 0w, ., , 0w, 5 Ow, M+D
i def .2 [l a il 4 —_—
(5.1.36) T, <6x¢ e R )
M (s+1)
=2 sz(") x"'/):'".
§=0
Evidently the global paths (5.1.31) are the e#tremals"
w ———
(5.1.37) S

which coincide with (5.1.29)=0.

5.2. Finite Equations of II-Geodesic Curves in the Finsler-Craig-Synge-
Kawaguchi Space in the Large. Quite as in Art. 1.2., our

@ ‘ W, \ w*
are vectors with components Cavy
@), | @) | (@] (@), | W),
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so that all functions in .
0] \ Wy l @t
may be written in
u

l 4 o
w". ‘ WDy, l w*”. , ). , ;.

The differential equation (5.1.31); is readily integrable :

(5.2.1) o'=al dr, (@ : const.).
We set
(5.2.2) d§t ¥ gl dr=o',
so that
(5.2.3) §=a't+c!, (¢’: const.).

This represents a curve in the large, which behave as for meet and join as well as
for the extremal

(5.2.4) os=10
like straight lines. We will call such curves Il-geodesic curves (T. Takasu, [1])

corresponding to (& (x,%, - ,(;[c))) and the (§) Il-geodesic rectangular coordinates
refered to the 1l-geodesic &'-axes. The (¢') are global.

The (1.1.1) becomes .
(5.2.5) A =w'= o, (x, %, -+ , %) drn.
The form of [5.1.29),t¢lls us that the local paths of teleparallelism (9.1.31)

are projected piece-wise into the global paths

d2 El d z _
(5.2.6) = g 5): =0

by the transformation [(5.2.5):

(€5 84

(5.2.7) ‘ de'=a, (x, %, -+ , x ) dx*

continuingly and smoothly.

The identity [5.1.32] tells us that the global paths (5.1.31), or[5.2.6) are projected
piece-wise onto the local paths (5.1.31); by the inverse transformation

(5.2.8) dx*=w} o' =w} d¢' :
of [5.2.5) Indeed, the (5.1.31), is a linear combination of (5.1.31); as [5.1.30] tells us.
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Multiplying with o}, we see that the relation

dx?
dr

=a' w}

(5.2.9)
holds along the 11-geodesic line-elements.

§6. TT-Affine Geometry as Doubly Extended Global
Affine Geometry and TT-Euclidean Geometry as
Doubly Extended Global Euclidean Geometry in
the Finsler-Craig-Synge-Kawaguchi Spaces' in

the Large in Differentiable Manifolds.

6.1. Doubly Extended TT-Affine Transformations. We consider the case,
where (&) stands for (x?). In this case, (5.2.7) becomes to the form
an

(6.1.1) - d—El = ag; (E, é) MY f ) df"', (det (a},_)#())

for the II-geodesic line—elements corresponding to (a} (£, g, ,(‘En) ). In order that the

II-geodesic curve (£!(s)) may be transformed by into II-geodesic curves (£*(s))
. ¥ ‘ e
corresponding to (@ (¢,§, -+ ,(53), we must have

)

(6.1.2) dai (£,&,.-,&8)der= 0
along the Tl-geodesic line-elements. For, from [6.1.1}, we obtain

I AP . O
(6.1-3) W—zg—dn(f,e, ,e) ds +ah(51f’ ’E)W.

Integrating along the &-axes, we obtain

—_ . n

Bmdy (66, F) 60— [ 6 (da (8,4, ,€)/ds) ds.
Now
§ & (da}/ds) ds= (da},/ds) ds § d&*
= ff (da./ds) ds dé" =const. = —al, »
say, by the sufficient condition for that the repeated integral may be converted

into the double integral (that is, that the integrand is continuous) being evidently

satisied. Thus we have
(6.1.4) Bl (6,8, £)&tal,  (det(ah)%0, ai=const.).

Let us call a doubly extended TT-affine Transformation. From
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and (6.1.4), we see that the necessary condition

(6.1.5) dai (8,6, £)en=0

is satisfied for the ll-geodesic line-elements under doubly extended affine tmhsfor-
mations.

6.2. Doubly Extended TT-Affine Transformation Group. We can prove the
following theorem quite parallel to the analogous theorem in Art. 2.2

Theorem. The totality of the doubly extended T T-affine transformations

D

(6.2.1) ern=al (&, &, ... &)+ at, (a=const., det (ak)+0),

whose inverse {ransformations are

— (€.9] '
(622) ék——_ a;i (5, E, Ty f ) Ev + a’:v (d’; =c0nst., det <a§)¢ 0)1
forms a group.

Definition. The grouﬁ stated in the last theorem will be called the doubly ex-
tended TT-affine transformation group and the geometry belonging to it the doubly
extended T T-affine geometry (cf. Art. 2.2), which is doubly extended global affine geometry
in the Finsler-Craig-Synge-Kawaguchi space in the large in differentiable manifolds.

N.B. The detail may be exposed as in T. Takasu, [16].

6.3. Doubly Extended TT-Euclidean Transformations. We consider -
6.3.1) ds’=di dét=0' ' =wo=1d! dx* o, dx' =g, dx* dx’,
6.3.2) G (1,7, o %) =0l 0l =0, @,
in the Finsler-Craig-Synge-Kawaguchi space in the large in differentiable manifolds,
for which the global orthogonality conditions
(6.3.3) al al=0on = al af =o"*
hold for [6.1.4). In this case we call a doubly extended T T-Euclidean trans-
Jormation.
The condition (6.1.5)

o)

(6.3.4) da, (£,&, - ,&)6r=0

is satisfied for the 1l-geodesic line—elements under doubly extended TT-Euclidean
transformations still.

The & and & in will be called the Il-geodesic rectangular coordinates
refered to the 11-geodesic rectangular &'— resp. &'-axes.




126 TSURUSABURO TAKASU

The results of Artt. 6.1. and 6.2. hold still and we have

(6.3.5) =0 '=d: dF=ds*=(c’ ¢!) o?, (wt=clw).
so that
(6’316) Cl C,=1.

6.4. Doubly Extended TT-Euclidean Transformation Groap. Since the
doubly extended TT-Euclidean transformation group is obtained evidently as a
subgroup of the doubly extended T T-affine transformation group, the following theorem
holds still.

Theoreml. The totality of the doubly extended T T-Euclidean transformations

forms a subgroup of the doubly extended TT-affine transformation group.

Definition. The group stated in the last theorem will be called the doubly ex-
tended TT-Euclicean transformation group and the geometry belonging to it the
doubly extended TT-Euclidean geometry, which is doubly extended global Euclidean
geometfy in the Finsler— Craig-Synge Kawaguchi space in the large in differentiable
manifolds. (Cf. Art. 2.4.)

N.B. The detait may be exposed quite as in T. Takasu, [17], [18].
The following two sections may be exposed quite as in sections 2.4. resp, 2.6.
6.5. The Differential Equations of the Extremals ds=0 in térms of {1},

(s=0,1,---, M) in the Doubly Extended TT-Euclidean Geometry.

6.6. Duality of Hamilton’s Canonical Formalisms in the Doubly Extended
TT-Euclidean Geometry. Since we have introduced the metric tensor g,, (x,%, - ,(:jr{;
into our doubly extended TT-Euclidean geometry, we can establish a duality of
Hamilton’s canonical formalisms quite as in (1.16) on p. 22 of Part I of our paper in
such a way that the Hamiltonian _J and the Lagrangian  for (x% y;) are the

Lagrangian and the Hamiltonian for (x;, %) respectively.

6.7. The Differential Equations of the Extremals ds=0 in termas of {},
(s=0,---, M) in the Doubly Extended TT-Euclidean Geometry, in the Case, where

(€-9) .
g (x,%,--,x) are Homogeneous of Zero Degree in = of Part I.

N.B. The following 17 secticns are in preparation.
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PART IIIL

§ 7. TT-Equiform (=TT-Conformal) Geometry as Doubly Extended Global
Equiform Geometry in the Finsler-Craig-Synge-Kawaguchi Spaces in the Large in
Differentiable Manifolds.

§8. TT-Projective Geometry as Doubly Extended Global Projective Geometry in
the Finsler—Craig-Synge-Kawaguchi Spaces in the Large in Differentiable Manifolds.

§9. TT-Non-Euclidean Geometry as Doubly Extended Global Non-Euclidean
Geometry in the Finsler—Craig-Synge-Kawaguchi Spaces in the Large in Differentiable
Manifolds.

§10. TT-Laguerre Geometry as Doubly Extended Global Laguerre Geometry in
the Finsler-Craig-Synge-Kawaguchi Spaces in the Large in Differentiable Manifolds.

§11. TT-Equiform Laguerre Geometry as Doubly Extended Global Equiform
Laguerre Geometry in the Large in the Finsler-Craig-Synge-Kawaguchi Spaces in the
Large in Differentiable Manifolds.

§ 12. TT-Lie Geometry as Doubly Extended Global Lie Geometry in the Finsler—
Craig—-Synge-Kawaguchi Spaces in the Large in Differentiable Manifolds.

§ 13. TT-Parabolic Lie Geometry as Doubly Extended Global Parabolic Lie
Geometry in the Finsler-Craig-Synge-Kawaguchi Spaces in the Large in Differentiable
Manifolds.

PART 1IV.

§14. Local General Affine Geometry and Local General Metric Geometry.

§15. Global General Affine Geometry in Differentiable Manifolds and Global
General Metric (General Euclidean) Geometry in Differentiable Manifolds.

§16. Global General Equiform Geometry in Differentiable Manifolds.

§17. Global General Conformal Geometry in Differentiable Manifolds.

§18. Global General Projective Geometry in Differentiable Manifolds.

§19. Global General Non-Euclidean Geometry in Differentiable Manifolds.
§20. Global General Laguerre Geometry in Differentiable Manifolds.

§21. Global General Equiform Laguerre Geometry in Differentiable Manifolds.
§22. Global General Lie Geometry in Differentiable Manifolds.

§ 23. Global General Parabolic Lie Geometry in Differentiable Manifolds.
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Corrigenda To
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VARIOUS HAMILTON’S CANONICAL FORMALISMS AS NON-CONNECTION
METHODS FOR VARIOUS CONNECTION GEOMETRIES IN THE LARGE.

PART 1.
Page line for read
15 l 7 th the
> » I 1 123 2]
s s d 17 eqnation equation
. J 19 ol of
’ s J 20 Hamiltonian Hamilton-Jacobi
16 l 4 n -, n
. + 7 724. 724.)
17 l 6
18 J 11 L--H L:..-H?
. 1 1 O,y XH Oy eeeeodH
20 .L 13 o 8uz
22 1 4 g g
> s 1 5 26 16. .
an_ | oan
> s J 7 Kheeod) X008 Xy Xy X)) X,0 00X X°
an
., ., Ya oo, X2 Xy e, %
> s I 9 (2, X2, +-+ (X2, X2y =+
23 |t 6 F %
26 + 13 He¢ H!
27 I 8 dw, dw,
s d 9 X X2,
> T 5 &u» &uv
28 + 7 0y, ++0%, Oy*.--0x,
s s t 1 x*. x*,
30 I 7 &u &
s > J 9 v Euv
33 1 1 (3.3)--- cf. (2.6.3) of Part II
34 d 2 dx z
s s d 3 (3.4)--- cf. (2.6.3) of Part II
s s t 3 (3.13)--- cf. (2.6.3) of Part II
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Page line for read
35 + 7 61‘.’1’= =
o, 4 3 J. ds j Lds

% %
40 + 14 the)---(2.33) the---(2.33)).
. J 10 becomes becomes (cf. (2.35))
41 1 8 (2.19) (5.5)
. t 3 and with (1.11) and
43 J 12 d;, a,
44 + 2 Fiyy Fuys Foou Fans
46 d 2 r 6.6) ¥
. | i) 3 SJunciton Sfunction
47 t 3 oq’ dg’
. T2 aq; dq;
48 ! 3 ag---dpt 3q;-3p"
- { 13 opt op
49 0 1 dq’, dg’
56 I 4 tty ty ,
60 t 5 . Kawaguchi (p. 61, lines 2...27)

M. Kawaguchi

61 d 1 ‘4 3 4
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