NOTE ON BOUNDED SURFACES IN A 3-MANIFOLD

By

Shin'ichi Suzuki

(Received June 23, 1969)

1. Introduction

The following considerations are based upon the semi-linear point of view. By $(P \subset M^3)$ we denote a pair of manifolds such that M^3 is a triangulated 3-dimensional manifold and P is an embedded 2-dimensional manifold, which may not be connected, as a subcomplex in the interior ¹⁾ \mathcal{M}^3 of M^3 . Then, a simple polygonal loop J in P will be called a *co-unknotted loop*, iff J is the boundary of a disk D(J) whose interior is contained in $M^3 - P$. Especially, a co-unknotted loop J is said to be *non-trivial* iff ²⁾ $J \rightleftharpoons 1$ on P. Let F_p resp. $F_{p,\eta}$ be a connected closed (=compact, without boundary) orientable surface of genus p with q boundary curves. R. H. Fox [1] and T. Homma [3] shown that for any pair $(F_p \subset S^3)$, there exists a non-trivial co-unknotted loop on F_p . S. Kinoshita [5] proved the similar theorem for some kinds of $(F_p \subset M^3)$, and L. P. Neuwirth [6] for $(F_{p,\eta} \subset S^3)$. The purpose of the paper is to generalize the theorems for $(F_{p,q} \subset M^3)$ as follows:

Theorem 1. Let $(F_{p,q} \subset M^3)$ be a pair. If the homomorphism $\ell_{\#}$ of the fundamental group $\pi_1(\mathcal{J}F_{p,q})$ into $\pi_1(M^3 - \partial F_{p,q})$, induced by the natural inclusion ℓ : $\mathcal{J}F_{p,q} \longrightarrow M^3 - \partial F_{p,q}$, is not isomorphism, then there exists a non-trivial co-unknotted loop J on $F_{p,q}$.

The proof will be given in §3 by using the Loop Theorem and the Dehn's Lemma.

2. Boundary trivial surfaces

Let $J_1 \cup \cdots \cup J_q \subset M^3$ be an union of q pairwise disjoint simple loops in M^3 . We will say that $J \subset M^3$ is unknotted iff there exists a disk D(J) in M^3 such that $\partial D(J) = J$, and $J_1 \cup \cdots \cup J_q \subset M^3$ is *trivial* iff there exist q pairwise disjoint disks $D(J_1), \cdots, D(J_q)$ in M^3 such that $\partial D(J_1) = J_1, \cdots, \partial D(J_q) = J_q$. A pair $(F_{p,q} \subset M^3)$ is said to be boundary trivial iff $(\partial F_{p,q} \subset M^3)$ is trivial.

A boundary trivial pair (F_p, CM^3) has almost similar properties of $(F_p \subset M^3)$.

¹⁾ \mathcal{G} =interior, ∂ =boundary.

²⁾ \simeq means homotopic to, \sim means homologous to.

SHIN'ICHI SUZUKI

Theorem 2. [Fox-Homma-Kinoshita]. Let $(F_{p,q} \subset M^3)$ be a boundary trivial pair. If $\pi_1(M^3)$ is isomorphic to either a finite fundamental group or infinite cyclic one, then

- (i) there exists a non-trivial co-unknotted loop on $F_{p,q}$,
- (ii) there exist p+q-1 mutually disjoint unknotted loops on $F_{p,q}$ such that they are linearly independent in $H_1(F_{p,q})$.

Proof. Let $k_1 \cup \cdots \cup k_i = \partial F_{p,q}$. If there are q pairwise disjoint disks $D(k_1), \cdots, D(k_q)$ in M^3 such that $\partial D(k_i) = k_i, D(k_i) \cap F_{p,q} = k_i, i = 1, \cdots, q$, then the Theorem is obtained immediately from Theorem B in [5]. So, from now on we suppose that such disks do not exist.

Let c_i be a simple loop on $F_{p,q}$ lying in a small neighborhood of k_i and "parallel" to k_i , $i=1, \dots, q$. Because $F_{p,q}$, is orientable, the linking number of c_i with k_i is the same as the sum of the linking numbers of the $k_1, \dots, \check{k_i}, \dots, k_q$ with $k_i, i=1, \dots, q$. But each of these linking numbers is zero, since $k_1 \cup \dots \cup k_q \subset M^3$ is trivial. Because the linking number of c_i with k_i is zero, we can have q pairwise disjoint disks $D(k_1), \dots,$ $D(k_q)$ in M^3 so that a small neighborhood of k_i in $F_{p,q}$ meets $D(k_i)$ only at k_i , while the total intersection of $F_{p,q}$ with $D(k_1) \cup \dots \cup D(k_q)$ consists of a number of simple loops J_1, \dots, J_{ν} , where $\nu > 0$. Let $A(J_1), \dots, A(J_{\nu})$ be disks on $D(k_1) \cup \dots \cup D(k_q)$ bounded by J_1, \dots, J_{ν} , respectively.

Let J_1 be a minimal, i.e. there is no other J_i in $A(J_1)$. Then the following three cases can occur:

1) $J_1 \simeq 1$ on $F_{p,q}$. Since J_1 is simple, J_1 bounds a disk $B(J_1)$ on $F_{p,q}$. We consider the intersection $B(J_1) \cap (D(k_1) \cup \cdots \cup D(k_q))$, which is a subset of $\{J_1, \dots, J_p\}$. Let $J_1 \cup J_{t_1} \cup \cdots \cup J_{t_n} = B(J_1) \cap (D(k_1) \cup \cdots \cup D(k_q))$. Then $J_{t_i} \simeq 1$ on $F_{p,q}$ and J_{t_i} bounds a disk $B(J_{t_i})$ on $F_{p,q}$, $i=1, \dots, n$. Thus there exists a disk, say $B(J_{t_1})$, in $B(J_{t_n})$ such that $B(J_{t_1}) \cap (D(k_1) \cup \cdots \cup D(k_q)) = J_{t_1}$. Let $D(k_1) \cup \cdots \cup D(k_q) - A(J_{t_1}) \cup B(J_{t_1})$ be new disks bounded by $k_1 \cup \cdots \cup k_q$, and again denote these by $D(k_1), \dots, D(k_q)$. We may deform $D(k_1) \cup \cdots \cup D(k_q)$ into general position in M^3 , so that

 $F_{p,q} \cap (D(k_1) \cup \cdots \cup D(k_q)) = J_1 \cup \cdots \cup J_{\nu} - J_{t_1}$

By the repetition of the procedure we can get rid of all intersections $J_1, J_{t_1}, \dots, J_{t_n}$ of $F_{p,q} \cap (D(k_1) \cup \dots \cup (D(k_q)).$

From this argument, if all intersections J_1, \dots, J_{ν} of $F_{p,q} \cap (D(k^1) \cup \dots \cup D(k_q))$ are of this type, we can conclude that there are q pairwise disjoint disks $D'(k_1), \dots, D'(k_q)$ in M^3 such that $F_{p,q} \cap D'(k_i) = k_i$. So, we may assume that at least one of J_1, \dots, J_{ν} is not homotopic to 1 on $F_{\nu,q}$.

94

2) $J_1 \sim 0$ on $F_{p,q}$. Let $h_1: D \times I \longrightarrow M^3$ be an embedding of a 3-cell $D \times I$ into M^3 such that

$$h_1(D \times I) \cap (D(k_1(\cup \dots \cup D(k_q)) = h_1(D \times \{0\}) = A(J_1), h_1(D \times I) \cap F_{p,q} = h_1(\partial D \times I) = N(J_1; F_{p,q}),$$

where D is the unit disk, I = [-1, 1] and $N(J_1; F_{p_1, q})$ is a regular neighborhood of J_1 in $F_{p_1,q}$. Let $F(h_1) = F_{p_1,q} - N(J_1; F_{p_1,q}) \cup h_1(D \times \partial I)$. If J_1 does not homologous to any combination of k_1, \dots, k_q on $F_{p_1,q}, F(h_1)$ is an orientable surface of genus p-1 with boundary curves $\partial F_{p_1,q}$. If J_1 is homologous to a combination of $k_1, \dots, k_{p_1,q}, F(h_1)$ is two disjoint orientable surfaces, say M_1 and M_2 , such that ³⁾ $g(M_1) + g(M_2) = p$ and $\partial M_1 \cup \partial M_2 = \partial F_{p_1,q}$. Note that $F(h_1) \cap (D(k_1) \cup \cdots \cup D(k_q)) = F_{p_1,q} \cap (D(k_1) \cup \cdots \cup D(k_q)) - J_1$.

3) $J_1 \sim 0$ but $J_1 \simeq 1$ on $F_{p,q}$. Since J_1 is simple, J_1 bounds an orientable surface, say $F_{p',1}$, on $F_{p,q}$, where p > p' > 0. With $h_1: D \times I \longrightarrow M^3$ and $F(h_1)$ as in 2), $F(h_1)$ will be two disjoint orientable surfaces, so that we can denote these by $F_{p-p',q}$ and $F_{p'}$. Note that $F(h_1) \cap (D(k_1) \cup \cdots \cup D(k_1)) = F_{pq} \cap (D(k_1) \cup \cdots \cup D(k_q)) - J_1$.

In both 2) and 3), it is clear that J_1 is a non-trivial co-unknotted loop on $F_{p,q}$; hence the proof of (i) is complete.

By the repetition of the suitable procedure of 1) 2) and 3) for $F(h_1) \cap (D(k_1) \cup \cdots \cup D(k_q))$, and so on, we have a finite number of orientable surfaces $F(h_1, h_2, \cdots, h_\nu)$ in M^3 such that $\partial F(h_1, h_2, \cdots, h_\nu) = \partial F_{p,q}$ and $F(h_1, h_2, \cdots, h_\nu) \cap (D(k_1) \cup \cdots \cup D(k_q)) = \partial F_{p,q}$. Note that $\Phi = F(h_1, h_2, \cdots, h_\nu) \cup D(k_1) \cup \cdots \cup D(k_q)$ is a system of mutually disjoint closed orientable surfaces in M^3 . Then, according to Theorem B in [5], we have mutually disjoint unknotted loops J'_1, \cdots, J'_μ on Φ , where $\mu = g(\Phi)$. Especially, we may assume that $(J'_1 \cup \cdots \cup J'_\mu) \cap (D(k_1) \cup \cdots \cup D(k_q)) = \phi$ and $(J'_1 \cup \cdots \cup J'_\mu) \cap h_i (D \times \partial I) = \phi$, $i = 1, \cdots, \nu$. It is easily checked that we can select p loops in $J_1, \cdots, J_\nu, J'_1, \cdots, J'_\mu$ so that they and k_1, \cdots, k_{q-1} are linearly independent in $H_1(F_p,)$.

This completes the proof of (ii), and of Theorem 2.

Theorem 2 (i) shows that the natural inclusion map $\iota: \mathscr{F}_{p,q} \longrightarrow M^3 - \partial F_{p,q}$ induces a homomorphism $\iota_{\#}: \pi_1(\mathscr{F}_{p,q}) \longrightarrow \pi_1(M^3 - \partial F_{p,q})$ such that ker. $(\iota_{\#}) \neq \{1\}$. This can be weakened as follows:

Theorem 3. Let $(F_{p,q} \subset M^3)$ be a pair, and assume that $q \ge 2$. If there are r mutually disjoint 3-cells Q_1, \dots, Q_r in M^3 such that $q \ge r \ge 2$ $Q_i \cap \partial F_{p,q} \neq \phi$ and $\partial Q_i \cap \partial F_{p,q} = \phi$. Then there exists a non-trivial co-unknotted loop on $F_{p,q}$, that is, the inclusion map $c: \mathcal{G}F_{p,q} \longrightarrow M^3 - \partial F_{p,q}$ induces a homomorphism $c_{\#}: \pi_1(\mathcal{G}F_{p,q}) \longrightarrow \pi_1$

³⁾ g(P) denotes the genus of P.

SHIN'ICHI SUZUKI

$(M^3 - \partial F_{p,q})$ such that ker. $(\iota_{\#}) \neq \{1\}$.

The proof will be easily given by using the intersection $F_{p,q} \cap (\partial Q_1 \cup \cdots \cup \partial Q_r)$.

Remark 1. The genera of knots and links, [2], [10], show the necessity for the condition on $\partial F_{p,q}$ in Theorems 2 and 3.

Remark 2. Let $(F_{p_1,q_1}\cup\cdots\cup F_{p_n,q_n}\subset M^3)$ be a system of compact orientable surfaces, which may be closed or bounded, in $\mathcal{S}M^3$. Scrutiny of the proof of Theorem 2 shows that Theorem 2 is true for $(F_{p_1,q_1}\cup\cdots\cup F_{p_n,q_n}\subset M^3)$ with $\pi_1(M^3)$ and $\partial F_{p_1,q_1}\cup\cdots\cup\partial F_{p_n,q_n}\subset M^3$ as in Theorem 2.

3. Proof of Theorem 1

It will be noticed that for $F_{p,q} \subset \mathcal{I}M^3$ and $q > 0, M^3 - F_{p,q}$ is connected. Let $X = \{M^3 \text{ split along } F_{p,q}\}$.⁴⁾ Then X has on its boundary two copies of $F_{p,q}$, which denote F^1, F^2 , noting that

$$\partial X = \partial M^3 \cup (F^1 \cup F^2), F^1 \cap F^2 = \partial F_p, q.$$

Let $\rho: X \longrightarrow M^3$ be a map defined by $\rho \mid X - (F^1 \cup F^2) = \text{identity},$

 $\rho (F^1) = \rho (F^2) = F_{p,q}.$

In order to prove the Theorem 1, we shall apply the Loop Theorem [8], and the Dehn's Lemma [4], [9] for X. We shall need the following two lemmas.

Lemma 1. The inclusion map $\varphi^i : F^i \longrightarrow F^1 \cup F^2$ induces a monomorphism $\varphi^i_{\#} : \pi_1(F^i) \longrightarrow \pi_1(F^1 \cup F^2), i=1, 2.$

Proof. This Lemma is immediately from the following well-known facts. $\pi_1(F^i)$ is free with 2p+q-1 generators $a_{i,1}, \dots, a_{i,p}, b_{i,1}, \dots, b_{i,p}, c_1, \dots, c_{q-1}$, where $a_{i,1}, \dots, a_{i,p}, b_{i,1}, \dots, b_{i,p}, c_1, \dots, c_{q-1}$, where $a_{i,1}, \dots, a_{i,p}, b_{i,1}, \dots, b_{i,p}$ are associated with p handles of F^i , and c_1, \dots, c_{q-1} are q-1 components of q boundary curves $\partial F^i = \partial F_{p,q}$, i=1, 2. On the other hand, $\pi_1(F^1 \cup F^2)$ is generated by $a_{1,1}, \dots, a_{1,p}, b_{1,1}, \dots, b_{1,p}, a_{2,1}, \dots, a_{2,p}, b_{2,1}, \dots, b_{2,p}, c_1, \dots, c_{q-1}, d_1, \dots, d_{q-1}$ subject to the single relation

(*)
$$\prod_{j=1}^{p} [a_{1,j}, b_{1,j}] \prod_{j=1}^{p} [a_{2,j}, b_{2,j}] \prod_{j=1}^{q-1} [c_{j}, d_{j}] \simeq 1,$$

where d_j is associated with the handle determined by c_j and c_q , $j=1, \dots, q-1$.

Let η_i be an element in $\pi_1(F^i)$ such that $\eta_i \rightleftharpoons 1$ in F^i , i=1,2. η_i is represented by a word $W(a_{i,1}, \dots, a_{i,p}, b_{i,1}, \dots, b_{i,p}, c_1, \dots, c_{q-1})$. It is easily checked that the reduced element $W/(*) \rightleftharpoons 1$ on $F^1 \cup F^2$.

4) For more precise construction see Neuwirth [7], Chap. III.

96

NOTE ON BOUNDED SURFACES IN A 3-MANIFOLD

Lemma 2. One of the inclusion maps $\theta^i : F^i \longrightarrow X, i = 1, 2$, induces a homomorphism $\theta^i_{\#} : \pi_1(F^i) \longrightarrow \pi_1(X)$ such that ker. $(\theta^i_{\#}) \neq \{1\}$.

Proof. By the assumption of the Theorem 1, there is a closed curve η in $\mathcal{F}_{p,g}$ such that $\eta \neq 1$ in $M^3 - \partial F_{p,g}$. Let $\eta_1 = \rho^{-1}(\eta) \cap F^1$ and $\eta_2 = \rho^{-1}(\eta) \cap F^2$. According to Lemma 1, $\eta_i \neq 1$ on $F^1 \cup F^2$, i=1, 2. So, it suffices to show that $\theta^i(\eta_i) \simeq 1$ in X.

Let $f: D \longrightarrow M^3 - \partial F_{p,q}$ be a continuous map such that $f(\partial D) = \eta$. Let U_f be the set of points $x \in D$ such that $f^{-1}f(x)$ contains at least two points, and let S_f be the closure of U_f in D. Then we may assume that dim. $S_f \leq 1$ and S_f consists of i) double lines, ii) triple points which are crossing points of double lines and iii) branch points $S_f - U_f$. Since the number of triple points and branch points is finite, we may assume that triple points and branch points do not lie on $F_{p,q}$. Then $f^{-1}(f(\mathcal{J}D) \cap F_{p,q})$ is a finite number of simple arcs $\Gamma_1, \dots, \Gamma_\lambda$ on D. From the above assumption we may assume that for every point $y \in \Gamma_1 \cup \dots \cup \Gamma_\lambda \cup \partial D$, $f \mid N(y; D)$ is a homeomorphism. Therefore, by a slight modification of f, we conclude that $\Gamma_1, \dots, \Gamma_\lambda$ are mutually disjoint, $\partial D \cap \Gamma_i = \partial \Gamma_i$, $i=1, \dots, \lambda$, and $\Gamma_1 \cup \dots \cup \Gamma_\lambda$ divides D into $\lambda+1$ regions $E_1, \dots, E_{\lambda+1}$. Then, at least one of $E_1, \dots, E_{\lambda+1}$ is a disk, say E_1 . Note that $f(\partial E_1)$ is a loop on $F_{p,q}$ and homotopic 1 in $M^3 - \partial F_{p,q}$. We will examine $f(\partial E_1)$ on $F_{p,q}$, and $\gamma'_1 = \rho^{-1}(f(\partial E_1)) \cap F^1$ and $\gamma'_2 = \rho^{-1}(f(\partial E_1)) \cap F^2$ on $F^1 \cup F^2$. The following two cases can occur :

1) $f(\partial E_1) \rightleftharpoons 1$ on $F_{p,q}$. In this case, according to Lemma 1, each loop of γ'_1 and γ'_2 is not homotopic to 1 on $F^1 \cup F^2$. On the other hand, one of them bounds a singular disk $\rho^{-1}(f(E_1))$ in X. So, we have completed the proof of Lemma.

2) $f(\partial E_1) \simeq 1$ on $F_{p,q}$. In this case, it will be noticed that the loops γ'_1 and γ'_2 are homotopic to 1 in F^1 and F^2 , respectively. Since $f(\mathscr{I}E_1) \cap F_{p,q} = \phi$ and one of γ'_1 and γ'_2 , say γ'_1 , bounds a singular disk $\rho^{-1}(f(E_1))$ in X. We replace $\rho^{-1}(f(E_1))$ by a singular disk \mathcal{A}_1 in X which boundes by γ'_2 . Then we have another continuous map $f_1: D \longrightarrow M^3 - \partial F_{p,q}$ such that $f_1 \mid D - \mathscr{I}E_1 = f$ and $\rho^{-1}(f_1(E_1)) = \mathcal{A}_1$. Thus, we can eliminate $\partial E_1 - \partial D$ from $\Gamma_1 \cup \cdots \cup \Gamma_2$ by a slight modification of f_1 .

By the repetition of the procedure we can have a continuous map $f_n, n \leq \lambda$, of D into $M^3 - \partial F_{p,q}$ such that $f_n(D) \cap \mathscr{F}_{p,q} = f_n(\partial D) = \eta$. Therefore, one of loops $\eta'_1 \cup \eta'_2 = \rho^{-1}(\eta)$ comes to bound a singular disk $\rho^{-1}(f_n(D))$ in X.

This completes the proof of the Lemma 2.

We can now proceed the proof of the Theorem 1. By Lemma 2, there is a loop η' in $F^1 \cup F^2 - (F^1 \cap F^2)$ such that $\eta' \simeq 1$ on $F^1 \cup F^2$ and $\eta' \simeq 1$ in X. Since X and η' satisfy the hypothesis of the Loop Theorem, there exists another simple loop J' in $F^1 \cup F^2 - (F^1 \cap F^2)$ such that $J' \simeq 1$ on $F^1 \cup F^2$ and $J' \simeq 1$ in X. Then J' may bound a

SHIN'ICHI SUZUKI

singular disk without singularity on the boundary. Hence by the Dehn's Lemma J' bounds a disk D(J') in X. So, we have a non-trivial co-unknotted loop J on $F_{p,q}$ by setting $J = \rho(J')$, and we have completed the proof of Theorem 1.

Remark 3. Let $(F_{p_1,q_1} \cup \cdots \cup F_{p_n,q_n} \subset M^3)$ be as Remark 2 in § 2. If one of the homomorphisms $\iota^i \#$ of the fundamental groups $\pi_1(\mathcal{G}F_{p_i,q_i})$ into $\pi_1(M^3 - \partial F_{p_1,q_1} - \cdots - \partial F_{p_n,q_n})$, induced by the natural inclusions, is not an isomorphism, then there exists a non-trivial co-unknotted loop on $F_{p_1,q_1} \cup \cdots \cup F_{p_n,q_n}$.

Remark 4. Stallings' counter-example [11, §6] shows that Theorem 1 is not true for a non-orientable surface G even with $\iota_{\#}: \pi_1(\mathcal{G}G) \longrightarrow \pi_1(M^3 - \partial G)$ as in Theorem 1.

REFERENCES

- [1] R. H. Fox : On the imbedding of polyhedra in 3-space, Ann. of Math., Vol. 49 (1948), pp. 426-470.
- [2] F. Frankl and L. Pontrjagin : Ein Knotensatz mit Anwendung auf die Dimensionstheorie, Math. Ann., Vol. 102 (1930), pp. 785-789.
- [3] T. Homma : On the existence of unknotted polygons on 2-manifolds in E³, Osaka Math. J., Vol. 6 (1954), pp. 129-134.
- [4] T. Homma : On Dehn's lemma for S³, Yokohama Math. J., Vol. 5 (1957), pp. 223-244.
- [5] S. Kinoshita : On Fox's property of a surface in a 3-manifold, Duke Math. J., Vol. 33 (1966), pp. 791-794.
- [6] L. Neuwirth : The algebraic determination of the genus of knots, Amer. J. Math., Vol. 82 (1960), pp. 791-798.
- [7] L. P. Neuwirth : "KNOT GROUPS" Princeton Univ. Press, (1965).
- [8] C. D. Papakyriakopoulos : On solid tori, Proc. London Math. Soc. III, Vol. 7 (1957), pp. 281-299.
- [9] C. D. Papakyriakopoulos : On Dehn's lemma and asphericity of knots, Ann. of Math., Vol. 66 (1957), pp. 1-26.
- [10] H. Seifert : Über das Geschlecht von Knoten, Math. Ann., Vol. 110 (1934), pp. 571-592.
- [11] J. Stallings : On the loop theorem, Ann. of Math., Vol. 72 (1960), pp. 12-19.

Department of Mathematics Kōbe University

98