NOTE ON BOUNDED SURFACES IN A 3-MANIFOLD

By
Shin'ichi Suzuki

(Received June 23, 1969)

1. Introduction

The following considerations are based upon the semi-linear point of view. By $\left(P \subset M^{3}\right)$ we denote a pair of manifolds such that M^{3} is a triangulated 3-dimensional manifold and P is an embedded 2-dimensional manifold, which may not be connected, as a subcomplex in the interior ${ }^{1)} \mathcal{I} M^{3}$ of M^{3}. Then, a simple polygonal loop J in P will be called a co-unknotted loop, iff J is the boundary of a disk $D(J)$ whose interior is contained in $M^{3}-P$. Especially, a co-unknotted loop J is said to be non-trivial iff ${ }^{2)}$ $J \not \vDash 1$ on P. Let F_{p} resp. $F_{p, 7}$ be a connected closed (=compact, without boundary) orientable surface of genus p resp. a connected bounded (=compact, with boundary) orientable surface of genus p with q boundary curves. R. H. Fox [1] and T. Homma [3] shown that for any pair $\left(F_{p} \subset S^{3}\right)$, there exists a non-trivial co-unknotted loop on F_{2}. S. Kinoshita [5] proved the similar theorem for some kinds of $\left(F_{p} \subset M^{3}\right)$, and L. P. Neuwirth [6] for $\left(F_{p, 1} \subset S^{3}\right)$. The purpose of the paper is to generalize the theorems for ($F_{p, q} \subset M^{3}$) as follows:

Theorem 1. Let $\left(F_{p},{ }_{q} \subset M^{3}\right)$ be a pair. If the homomorphism ${ }_{\text {\# }}$ of the fundamental group $\pi_{1}\left(\mathcal{G} F_{p},{ }_{q}\right)$ into $\pi_{1}\left(M^{3}-\partial F_{p}, q\right)$, induced by the natural inclusion ८ : $\mathcal{I} F_{p}, \mathfrak{Z} \longrightarrow M^{3}-\partial F_{p}, q$, is not isomorphism, then there exists a non-trivial co-unknotted loop J on F_{p}, q.

The proof will be given in $\S 3$ by using the Loop Theorem and the Dehn's Lemma.

2. Boundary trivial surfaces

Let $J_{1} \cup \cdots \cup J_{q} \subset M^{3}$ be an union of q pairwise disjoint simple loops in M^{3}. We will say that $J \subset M^{3}$ is unknotted iff there exists a disk $D(J)$ in M^{3} such that $\partial D(J)$ $=J$, and $J_{1} \cup \cdots \cup J_{q} \subset M^{3}$ is trivial iff there exist q pairwise disjoint disks $D\left(J_{1}\right), \cdots$, $D\left(J_{q}\right)$ in M^{3} such that $\partial D\left(J_{1}\right)=J_{1}, \cdots, \partial D\left(J_{q}\right)=J_{q}$. A pair $\left(F_{p, q} \subset M^{3}\right)$ is said to be boundary trivial iff ($\partial F_{y}, q \subset M^{3}$) is trivial.

A boundary trivial pair $\left(F_{p},{ }_{i} \subset M^{3}\right)$ has almost similar properties of $\left(F_{p} \subset M^{3}\right)$.

[^0]Theorem 2. [Fox-Homma-Kinoshita]. Let $\left(F_{p},{ }_{q} \subset M^{3}\right)$ be a boundary trivial pair. If $\pi_{1}\left(M^{3}\right)$ is isomorphic to either a finite fundamental group or infinite cyclic one, then
(i) there exists a non-trivial co-unknotted loop on $F_{p, q}$,
(ii) there exist $p+q-1$ mutually disjoint unknotted loops on $F_{p, q}$ such that they are linearly independent in $H_{1}\left(F_{p}, q\right)$.
Proof. Let $k_{1} \cup \cdots \cup k_{t}=\partial F_{p}, q$. If there are q pairwise disjoint disks $D\left(k_{1}\right), \cdots$, $D\left(k_{q}\right)$ in M^{3} such that $\partial D\left(k_{i}\right)=k_{i}, D\left(k_{i}\right) \cap F_{p}, q=k_{i}, i=1, \cdots, q$, then the Theorem is obtained immediately from Theorem B in [5]. So, from now on we suppose that such disks do not exist.

Let c_{i} be a simple loop on F_{p}, q lying in a small neighborhood of k_{i} and "parallel" to $k_{i}, i=1, \cdots, q$. Because F_{p}, q, is orientable, the linking number of c_{i} with k_{i} is the same as the sum of the linking numbers of the $k_{1}, \cdots, 火_{i}, \cdots, k_{q}$ with $k_{i}, i=1, \cdots, q$. But each of these linking numbers is zero, since $k_{1} \cup \cdots \cup k_{4} \subset M^{3}$ is trivial. Because the linking number of c_{i} with k_{i} is zero, we can have q pairwise disjoint disks $D\left(k_{1}\right), \cdots$, $D\left(k_{q}\right)$ in M^{3} so that a small neighborhood of k_{i} in $F_{p, q}$ meets $D\left(k_{i}\right)$ only at k_{i}, while the total intersection of F_{p}, q with $D\left(k_{1}\right) \cup \cdots \cup D\left(k_{q}\right)$ consists of a number of simple loops J_{1}, \cdots, J_{ν}, where $\nu>0$. Let $A\left(J_{1}\right), \cdots, A\left(J_{\nu}\right)$ be disks on $D\left(k_{1}\right) \cup \cdots \cup D\left(h_{4}\right)$ bounded by J_{1}, \cdots, J_{ν}, respectively.

Let J_{1} be a minimal, i.e. there is no other J_{i} in $A\left(J_{1}\right)$. Then the following three cases can occur :

1) $J_{1} \simeq 1$ on F_{p}, q. Since J_{1} is simple, J_{1} bounds a disk $B\left(J_{1}\right)$ on $F_{p, q}$. We consider the intersection $B\left(J_{1}\right) \cap\left(D\left(k_{1}\right) \cup \cdots \cup D\left(k_{4}\right)\right)$, which is a subset of $\left\{J_{1}, \cdots, J_{2}\right\}$. Let $\left.J_{1} \cup J_{t_{1}} \cup \cdots \cup J_{t_{n}}=B\left(J_{1}\right) \cap\left(D\left(k_{1}\right) \cup \cdots \cup \dot{D}\left(k_{q}\right)\right)\right)$. Then $J_{t_{i}} \simeq 1$ on $F_{p, q}$ and $J_{t_{i}}$ bounds a disk $B\left(J_{t_{i}}\right)$ on $F_{p}, q, i=1, \cdots, n$. Thus there exists a disk, say $B\left(J_{t_{1}}\right)$, in $B\left(J_{t_{n}}\right)$ such that $B\left(J_{t_{1}}\right) \cap\left(D\left(k_{1}\right) \cup \cdots \cup D\left(k_{q}\right)\right)=J_{t_{1}}$. Let $D\left(k_{1}\right) \cup \cdots \cup D\left(k_{q}\right)-A\left(J_{t_{1}}\right) \cup B\left(J_{t_{1}}\right)$ be new disks bounded by $k_{1} \cup \cdots \cup k_{q}$, and again denote these by $D\left(k_{1}\right), \cdots, D\left(k_{q}\right)$. We may deform $D\left(k_{1}\right) \cup \cdots \cup D\left(k_{q}\right)$ into general position in M^{3}, so that

$$
F_{p}, q \cap\left(D\left(k_{1}\right) \cup \cdots \cup D\left(k_{q}\right)\right)=J_{1} \cup \cdots \cup J_{\nu}-J_{t_{1} \bullet}
$$

By the repetition of the procedure we can get rid of all intersections $J_{1}, J_{t_{1}}, \cdots, J_{t_{n}}$ of $F_{p}, q \cap\left(D\left(k_{1}\right) \cup \cdots \cup\left(D\left(k_{q}\right)\right)\right.$.

From this argument, if all intersections J_{1}, \cdots, J_{ν} of $F_{p, q} \cap\left(D\left(k^{\imath}\right) \cup \cdots \cup D\left(k_{q}\right)\right)$ are of this type, we can conclude that there are q pairwise disjoint disks $D^{\prime}\left(k_{1}\right), \cdots, D^{\prime}\left(k_{q}\right)$ in M^{3} such that $F_{p}, q \cap D^{\prime}\left(k_{i}\right)=k_{i}$. So, we may assume that at least one of J_{1}, \cdots, J_{ν} is not homotopic to 1 on F_{p}, q.
2) J_{1} 卜 0 on F_{p}, c_{c}. Let $h_{1}: D \times I \longrightarrow M^{3}$ be an embedding of a 3-cell $D \times I$ into M^{3} such that

$$
\begin{aligned}
& h_{1}(D \times I) \cap\left(D \left(k_{1}\left(\cup \cdots \cup D\left(k_{q}\right)\right)=h_{1}(D \times\{0\})=A\left(J_{1}\right),\right.\right. \\
& h_{1}(D \times I) \cap F_{p}, h_{q}=h_{1}(\partial D \times I)=N\left(J_{1} ; F_{p}, q\right),
\end{aligned}
$$

where D is the unit disk, $I=[-1,1]$ and $N\left(J_{1} ; F_{p},{ }_{0}\right)$ is a regular neighborhood of J_{1} in F_{p}, q. Let $F\left(h_{1}\right)=F_{p}, q_{q}-N\left(J_{1} ; F_{p}, q\right) \cup h_{1}(D \times \partial I)$. If J_{1} does not homologous to any combination of k_{1}, \cdots, k_{q} on $F_{p, q}, F\left(h_{1}\right)$ is an orientable surface of genus $p-1$ with boundary curves $\partial F_{p}, q$. If J_{1} is homologous to a combination of $k_{1}, \cdots, k_{p}, q, F\left(h_{1}\right)$ is two disjoint orientable surfaces, say M_{1} and M_{2}, such that ${ }^{3)} g\left(M_{1}\right)+g\left(M_{2}\right)=p$ and $\partial M_{1} \cup \partial M_{2}=\partial F_{p}, q$. Note that $F\left(h_{1}\right) \cap\left(D\left(k_{1}\right) \cup \cdots \cup D\left(k_{q}\right)\right)=F_{p},{ }_{q} \cap\left(D\left(k_{1}\right) \cup \cdots \cup D\left(k_{q}\right)\right)-J_{1}$.
3) $J_{1} \sim 0$ but $J_{1} \neq 1$ on F_{p}, q. Since J_{1} is simple, J_{1} bounds an orientable surface, say $F_{p^{\prime}, 1}$, on $F_{p, q}$, where $p>p^{\prime}>0$. With $h_{1}: D \times I \longrightarrow M^{3}$ and $F\left(h_{1}\right)$ as in 2), $F\left(h_{1}\right)$ will be two disjoint orientable surfaces, so that we can denote these by $F_{p-p^{\prime}, \boldsymbol{q}}$ and $F_{p^{\prime}}$. Note that $F\left(h_{1}\right) \cap\left(D\left(k_{1}\right) \cup \cdots \cup D(k)\right)=F_{p q} \cap\left(D\left(k_{1}\right) \cup \cdots \cup D\left(k_{q}\right)\right)-J_{1}$.

In both 2) and 3), it is clear that J_{1} is a non-trivial co-unknotted loop on $F_{p, q}$; hence the proof of (i) is complete.

By the repetition of the suitable procedure of 1) 2) and 3) for $F\left(h_{1}\right) \cap\left(D\left(k_{1}\right) \cup \cdots \cup\right.$ $D\left(k_{y}\right)$, and so on, we have a finite number of orientable surfaces $F\left(h_{1}, h_{2}, \cdots, h_{\nu}\right)$ in M^{3} such that $\partial F\left(h_{1}, h_{2}, \cdots, h_{\nu}\right)=\partial F_{p, q}$ and $F\left(h_{1}, h_{2}, \cdots, h_{\nu}\right) \cap\left(D\left(k_{1}\right) \cup \cdots \cup D\left(k_{q}\right)\right)=\partial F_{p, q}$. Note that $\Phi=F\left(h_{1}, h_{2}, \cdots, h_{\nu}\right) \cup D\left(k_{1}\right) \cup \cdots \cup D\left(k_{q}\right)$ is a system of mutually disjoint closed orientable surfaces in M^{3}. Then, according to Theorem B in [5], we have mutually disjoint unknotted loops $J_{1}^{\prime}, \cdots, J_{\mu}^{\prime}$ on Φ, where $\mu=g(\Phi)$. Especially, we may assume that $\left(J_{1}^{\prime} \cup \cdots \cup J_{\mu}^{\prime}\right) \cap\left(D\left(k_{1}\right) \cup \cdots \cup D\left(k_{q}\right)\right)=\phi \quad$ and $\left(J_{1}^{\prime} \cup \cdots \cup J_{\mu}^{\prime}\right) \cap h_{i}(D \times \partial I)=\phi, i=1, \cdots, \nu$. It is easily checked that we can select p loops in $J_{1}, \cdots, J_{\nu}, J_{1}^{\prime}, \cdots, J_{\mu}^{\prime}$ so that they and k_{1}, \cdots, k_{q-1} are linearly indepenpent in $H_{1}\left(F_{p}\right.$,).

This completes the proof of (ii), and of Theorem 2.
Theorem 2 (i) shows that the natural inclusion map $\iota: \mathcal{J} F_{p, q} \longrightarrow M^{3}-\partial F_{p, q}$ induces a homomorphism $\ell_{\#}: \pi_{1}\left(\mathcal{J} F_{p}, q\right) \longrightarrow \pi_{1}\left(M^{3}-\partial F_{p}, q\right)$ such that ker. $\left(\iota_{\#}\right) \neq\{1\}$. This can be weakened as follows:

Theorem 3. Let $\left(F_{p}, q \subset M^{3}\right)$ be a pair, and assume that $q \geq 2$. If there are r mutually disjoint 3 -cells $Q_{1}, \cdots, Q_{\text {, in }} M^{3}$ such that $q \geq 1 \geq 2 Q_{i} \cap \partial F_{p}, q \neq \phi$ and $\partial Q_{i} \cap$ $\partial F_{p}, q=\phi$. Then there exists a non-trivial co-unknotted loop on F_{p}, q, that is, the inclusion map $:: \mathcal{G} F_{p}, q \longrightarrow M^{3}-\partial F_{p}, q$ induces a homomorphism $\subset_{\#}: \pi_{1}\left(\mathcal{G} F_{p}, q\right) \longrightarrow \pi_{1}$

[^1]$\left(M^{3}-\partial F_{p}, q\right)$ such that ker. $\left(\iota_{\#}\right) \neq\{1\}$.
The proof will be easily given by using the intersection $F_{p, q} \cap\left(\partial Q_{1} \cup \cdots \cup \partial Q_{r}\right)$.
Remark 1. The genera of knots and links, [2], [10], show the necessity for the condition on $\partial F_{p, q}$ in Theorems 2 and 3.

Remark 2. Let $\left(F_{p_{1}, q_{1}} \cup \cdots \cup F_{p_{n}}, q_{n} \subset M^{3}\right)$ be a system of compact orientable surfaces, which may be closed or bounded, in $\mathcal{G} M^{3}$. Scrutiny of the proof of Theorem 2 shows that Theorem 2 is true for $\left(F_{p_{1}, q_{1}} \cup \cdots \cup F_{p_{n}, q_{n}} \subset M^{3}\right)$ with $\pi_{1}\left(M^{3}\right)$ and $\partial F_{p_{1}, q_{1}} \cup \cdots \cup \partial F_{r_{n} q_{n}}, \subset M^{3}$ as in Theorem 2.

3. Proof of Theorem 1

It will be noticed that for $F_{p}, q \subset \mathcal{G} M^{3}$ and $q>0, M^{3}-F_{p},{ }_{q}$ is connected. Let $X=$ $\left\{M^{3}\right.$ split along $\left.\left.F_{p},{ }_{i}\right\} .{ }^{4}\right)$ Then X has on its boundary two copies of F_{p}, r, which denote F^{1}, F^{2}, noting that

$$
\partial X=\partial M^{3} \cup\left(F^{1} \cup F^{2}\right), F^{1} \cap F^{2}=\partial F_{p, q} .
$$

Let $\rho: X \longrightarrow M^{3}$ be a map defined by

$$
\begin{aligned}
& \rho \mid X-\left(F^{1} \cup F^{2}\right)=\text { identity }, \\
& \rho\left(F^{1}\right)=\rho\left(F^{2}\right)=F_{p}, q .
\end{aligned}
$$

In order to prove the Theorem 1, we shall apply the Loop Theorem [8], and the Dehn's Lemma [4], [9] for X. We shall need the following two lemmas.

Lemma 1. The inclusion map $\varphi^{i}: F^{i} \longrightarrow F^{1} \cup F^{2}$ induces a monomorphism $\varphi_{\#}^{i}: \pi_{1}\left(F^{i}\right) \longrightarrow \pi_{1}\left(F^{1} \cup F^{2}\right), i=1,2$.

Proof. This Lemma is immediately from the following well-known facts. $\pi_{1}\left(F^{i}\right)$ is free with $2 p+q-1$ generators $a_{i, 1}, \cdots, a_{i, p}, b_{i, 1}, \cdots . b_{i}, p, c_{1}, \cdots, c_{q-1}$, where $a_{i, 1}, \cdots$, $a_{i, p}, b_{i, 1}, \cdots, b_{i, p}$ are associated with p handles of F^{i}, and c_{1}, \cdots, c_{q-1} are $q-1$ components of q boundary curves $\partial F^{i}=\partial F_{p}, q, i=1,2$. On the other hand, $\pi_{1}\left(F^{1} \cup F^{2}\right)$ is generated by $a_{1,1}, \cdots, a_{1}, p, b_{1,1}, \cdots, b_{1}, p, a_{2}, 1, \cdots, a_{2}, p, b_{2,1}, \cdots b_{2}, p, c_{1}, \cdots, c_{q-1}, d_{1}, \cdots, d_{q-1}$ subject to the single relation

$$
\begin{equation*}
\prod_{j=1}^{n}\left[a_{1}, j, b_{1}, j\right] \prod_{j=1}^{n}\left[a_{2}, j, b_{2}, i\right] \prod_{j=1}^{q-1}\left[c_{j}, d_{j}\right] \simeq 1 \tag{*}
\end{equation*}
$$

where d_{j} is associated with the handle determined by c_{j} and $c_{q}, j=1, \cdots, q-1$.
Let η_{i} be an element in $\pi_{1}\left(F^{i}\right)$ such that $\eta_{i} \neq 1$ in $F^{i}, i=1,2 . \eta_{i}$ is represented by a word $W\left(a_{i, 1}, \cdots, a_{i}, p, b_{i}, 1, \cdots, b_{i, p}, c_{1}, \cdots, c_{q-1}\right)$. It is easily checked that the reduced element $\left.W / /^{*}\right) \neq 1$ on $F^{1} \cup F^{2}$.

[^2]Lemma 2. One of the inclusion maps $\theta^{i}: F^{i} \longrightarrow X, i=1,2$, induces a homomorphism $\theta^{i}{ }_{\#}: \pi_{1}\left(F^{i}\right) \longrightarrow \pi_{1}(X)$ such that ker. $\left(\theta^{i} \#\right) \neq\{1\}$.

Proof. By the assumption of the Theorem 1, there is a closed curve η in $\mathcal{G} F_{p}, g$ such that $\eta \neq 1$ in $M^{3}-\partial F_{p}, q$. Let $\eta_{1}=\rho^{-1}(\eta) \cap F^{1}$ and $\eta_{2}=\rho^{-1}(\eta) \cap F^{2}$. According to Lemma 1, $\eta_{i} \neq 1$ on $F^{1} \cup F^{2}, i=1,2$. So, it suffices to show that $\theta^{i}\left(\eta_{i}\right) \simeq 1$ in X.

Let $f: D \longrightarrow M^{3}-\partial F_{p, q}$ be a continuous map such that $f(\partial D)=\eta$. Let U_{f} be the set of points $x \in D$ such that $f^{-1} f(x)$ contains at least two points, and let S_{f} be the closure of U_{f} in D. Then we may assume that $\operatorname{dim} . S_{f} \leq 1$ and S_{f} consists of i) double lines, ii) triple points which are crossing points of double lines and iii) branch points $S_{f}-U_{f}$. Since the number of triple points and branch points is finite, we may assume that triple points and branch points do not lie on $F_{p, q}$. Then $f^{-1}\left(f(\mathcal{G} D) \cap F_{p}, q\right)$ is a finite number of simple arcs $\Gamma_{1}, \cdots, \Gamma_{2}$ on D. From the above assumption we may assume that for every point $y \in \Gamma_{1} \cup \cdots \cup \Gamma_{\lambda} \cup \partial D, f \mid N(y ; D)$ is a homeomorphism. Therefore, by a slight modification of f, we conclude that $\Gamma_{1}, \cdots, \Gamma_{\lambda}$ are mutually disjoint, $\partial D \cap \Gamma_{i}=\partial \Gamma_{i}, i=1, \cdots, \lambda$, and $\Gamma_{1} \cup \cdots \cup \Gamma_{\lambda}$ divides D into $\lambda+1$ regions $E_{1}, \cdots, E_{\lambda+1}$. Then, at least one of $E_{1}, \cdots, E_{\lambda+1}$ is a disk, say E_{1}. Note that $f\left(\partial E_{1}\right)$ is a loop on $F_{p, q}$ and homotopic 1 in $M^{3}-\partial F_{p, q}$. We will examine $f\left(\partial E_{1}\right)$ on $F_{p, q}$, and $\gamma_{1}^{\prime}=\rho^{-1}\left(f\left(\partial E_{1}\right)\right) \cap F^{1}$ and $\gamma_{2}^{\prime}=\rho^{-1}\left(f\left(\partial E_{1}\right)\right) \cap F^{2}$ on $F^{1} \cup F^{2}$. The following two cases can occur:

1) $f\left(\partial E_{1}\right) \neq 1$ on F_{p}, q. In this case, according to Lemma 1, each loop of γ_{1}^{\prime} and γ_{2}^{\prime} is not homotopic to 1 on $F^{1} \cup F^{2}$. On the other hand, one of them bounds a singular disk $\rho^{-1}\left(f\left(E_{1}\right)\right)$ in X. So, we have completed the proof of Lemma.
2) $f\left(\partial E_{1}\right) \simeq 1$ on $F_{p, q}$. In this case, it will be noticed that the loops γ_{1}^{\prime}, and γ_{2}^{\prime} are homotopic to 1 in F^{1} and F^{2}, respectively. Since $f\left(\mathcal{G} E_{1}\right) \cap F_{p, q}=\phi$ and one of γ_{1}^{\prime} and γ_{2}^{\prime}, say γ_{1}^{\prime}, bounds a singular disk $\rho^{-1}\left(f\left(E_{1}\right)\right)$ in X. We replace $\left.\rho^{-1}\left(f\left(E_{1}\right)\right)\right)$ by a singular disk Δ_{1} in X which boundes by γ_{2}^{\prime}. Then we have another continuous map $f_{1}: D \longrightarrow$ $M^{3}-\partial F_{p, q}$ such that $f_{1} \mid D-\mathcal{G} E_{1}=f$ and $\rho^{-1}\left(f_{1}\left(E_{1}\right)\right)=\Delta_{1}$. Thus, we can eliminate $\partial E_{1}-$ ∂D from $\Gamma_{1} \cup \cdots \cup \Gamma_{2}$ by a slight modification of f_{1}.

By the repetition of the procedure we can have a continuous map $f_{n}, n \leq \lambda$, of D into $M^{3}-\partial F_{p}, q$ such that $f_{n}(D) \cap \mathcal{G} F_{p, q}=f_{n}(\partial D)=\eta$. Therefore, one of loops $\eta_{1}^{\prime} \cup \eta_{2}^{\prime}=$ $\rho^{-1}(\eta)$ comes to bound a singular disk $\rho^{-1}\left(f_{n}(D)\right)$ in X.

This completes the proof of the Lemma 2.
We can now proceed the proof of the Theorem 1. By Lemma 2, there is a loop η^{\prime} in $F^{1} \cup F^{2}-\left(F^{1} \cap F^{2}\right)$ such that $\eta^{\prime}=\vDash 1$ on $F^{1} \cup F^{2}$ and $\eta^{\prime} \simeq 1$ in X. Since X and η^{\prime} satisfy the hypothesis of the Loop Theorem, there exists another simple loop J^{\prime} in F^{1} $\cup F^{2}-\left(F^{1} \cap F^{2}\right)$ such that $J^{\prime} \not \vDash 1$ on $F^{1} \cup F^{2}$ and $J^{\prime} \simeq 1$ in X. Then J^{\prime} may bound a
singular disk without singularity on the boundary．Hence by the Dehn＇s Lemma J^{\prime} bounds a disk $D^{\prime}\left(J^{\prime}\right)$ in \dot{X} ．So，we have a non－trivial co－unknotted loop J on $F_{p, q}$ by setting $J=\rho^{\prime}\left(J^{\prime}\right)$ ，and we have completed the proof of Theorem 1．

Remark 3．Let（ $F_{p_{1}, q_{1}} \cup \cdots \cup F_{p_{n}}, q_{n} \subset M^{3}$ ）be as Remark 2 in $\S 2$ ．If one of the homomorphisms $i^{i} \#$ of the fundamental groups $\pi_{1}\left(\mathcal{G} F_{p_{i}, q_{i}}\right)$ into $\pi_{1}\left(M^{3}-\partial F_{p_{1}, q_{1}}-\cdots\right.$－ $\partial F_{p_{n}, q_{n}}$ ），induced by the natural inclusions，is not an isomorphism，then there exists a non－trivial co－unknotted loop on $F_{p_{1}, q_{1}} \cup \cdots \cup F_{p_{n}, q_{n}}$ ．

Remark 4．Stallings＇counter－example［11，§6］shows that Theorem 1］is not true for a non－orientable surface G even with $\ell \#: \pi_{1}(\mathcal{G} G) \longrightarrow \pi_{1}\left(M^{3}-\partial G\right)$ as in Theorem 1.

REFERENCES

〔1］R．H．Fox ：On the imbedding of polyhedra in 3－space，Ann．of Math．，Vol． 49 （1948）， pp．426－470．
［2］F．Frankl and L．Pontrjagin ：Ein Knotensatz mit Anwendung auf die Dimensionstheorie， Math．Ann．，Vol． 102 （1930），pp．785－789．
［3］T．Homma ：On the existence of unknotted polygons on 2－manifolds in E^{3} ，Osaka Math． J．，Vol． 6 （1954），pp．129－134．
［4］T．Homma ：On Dehn＇s lemma for S^{3} ，Yokohama Math．J．，Vol． 5 （1957），pp．223－244．
［5］S．Kinoshita ：On Fox＇s property of a surface in a 3－manifold，Duke Math．J．，Vol． 33 （1966），pp．791－794．
［6］L．Neuwirth ：The algebraic determination of the genus of knots，Amer．J．Math．，Vol． 82 （1960），pp．791－798．
〔7〕 L．P．Neuwirth ：＂KNOT GROUPS＂Princeton Univ．Press，（1965）．
［8］C．D．Papakyriakopoulos ：On solid tori，Proc．London Math．Soc．III，Vol． 7 （1957），pp． 281－299．
［9］C．D．Papakyriakopoulos：On Dehn＇s lemma and asphericity of knots，Ann．of Math．，Vol． 66 （1957），pp．1－26．
［10］H．Seifert ：Über das Geschlecht von Knoten，Math．Ann．，Vol． 110 （1934），pp．571－592．
［11］J．Stallings ：On the loop theorem，Ann．of Math．，Vol． 72 （1960），pp．12－19．
Department of Mathematics
Kōbe University

[^0]: 1) $\mathcal{J}=$ interior, $\partial=$ boundary.
 2) \simeq means homotopic to, \sim means homologous to.
[^1]: 3) $g(P)$ denotes the genus of P.
[^2]: 4) For more precise construction see Neuwirth [7], Chap. III.
