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1. Introduction

The following considerations are based upon the semi-linear point of view. By
(PcM?®) we denote a pair of manifolds such that M? is a triangulated 3-dimensional
manifold and P is an embedded 2-dimensional manifold, which may not be connected,
as a subcomplex in the interior ' JM?® of M3. Then, a simple polygonal loop J in P
will be called a co-unknotted loop, iff J is the boundary of a disk D (]J) whose interior
is contained in M?3— P. Especially, a co-unknotted loop J is said to be non—trivial iff ®
Jzk 1on P. Let F, resp. F,,, be a connected closed (=compact, without boundary)
orientable surface of genus p resp. a connected bounded (=compact, with boundary)
orientable surface of genus p with g boundary curves. R. H. Fox and T. Homma
[3] shown that for any pair (FpS?), there exists a non-trivial co—unknotted loop on
F,. S. Kinoshita [5] proved the similar theorem for some kinds of (FycM?), and L. P.
Neuwirth for (F,,;,cS%. The purpose of the paper is to generalize the theorems
for (Fp,,cM?3) as follows:

Theorem 1. Let (F,,,CcM?) be a pair. If the homomorphism ty of the

Sfundamental group =, (9Fy,,,) into ny (M3—03F,,,), induced by the natural inclusion ¢ :
IFy, ;——>M3?—0F,,,, is not isomorphism, then there exists a non—trivial co-unknotted

loop J on Fy,,.
The proof will be given in §3 by using the Loop Theorem and the Dehn’s

Lemma.

2. Boundary trivial surfaces

Let JyU---UJ,CM? be an union of ¢ pairwise disjoint simple loops in M2 We
will say that JCM? is unknotted iff there exists a disk D(J) in M3 such that aD (J)
=/, and J;U---UJ,CM3 is trivial iff there exist q pairwise disjoint disks D (Jfy), ---,
D(J,) in M?® such that oD (J\)=],, - ,0D(J,)=],. A pair (Fp,qCM?®) is said to be
boundary trivial iff (9F,,,cM?3) is trivial.

A boundary trivial pair (F,, ,CM?) has almost similar properties of (F,c M 9,

1) J=interior, d=boundary.
2) '=means homotopic to, ~means homologous to.
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Theorem 2. [Fox-Homma-Kinoshita]. Let (Fp,,CM?) be a boundary trivial
pair. If =, (M?) is isomorphic to either a finite fundamental group or infinite cyclic
one, then

(i) there exists a non-trivial co-unknotted loop on F,,q

(ii) there exist p-+q—1 mutually disjoint unknotted loops on Fp,q such that
they are linearly independent in H; (Fyp,,).

Proof. Let A U---Uk,=0F,,, If there are q pairwise disjoint disks D (&), -+,
D(k,) in M? such that D (k:)=Fk:, D (k)N Fyp,q=Fki,i=1, - ,q, then the Theorem is
obtained immediately from Theorem B in [5]. So, from now on we suppose that such
disks do not exist. ‘

Let ¢; be a simple loop on Fy,, lying in a small neighborhood of k; and “parallel”
to ki, i=1,+,q. Because Fj,,, is orientable, the linking number of ¢; with &; is the

v

same as the sum of the linking numbers of the Fky, -+, ki, ,ky with kii=1,---,q.
But each of these linking numbers is zero, since B U---Uk,CM? is trivial. Because the
linking number of ¢; with &; is zero, we can have g pairwise disjoint disks D (ky), --+,
D(k,) in M? so that a small neighborhood of k; in Fy,, meets D (ki) only at k;, while
the total intersection of Fp,, with D (k;)U-+-U D (ko) consists of a number of simple loops
Ju -+ »J., where v>0. Let A (Jy), -, A () be disks on D (k,)U-+-UD (h,) bounded by
J1, -+ » ], respectively.

Let J; be a minimal, i.e. there is no other J; in A(J;). Then the following
three cases can occur :

1) Ji=1 on F,,,. Since Ji is simple, /i bounds a disk B(/)) on F,,, We
consider the intersection B (/)N (D (k)U---UD(k,)), which is a subset of {Ji,e, ]} Let
J1UJe, U UJe,=B(J)N(D (kU - UD(kq))). Then Ji;~1 on Fy,q and J¢; bounds a disk
B(J.,) on Fy,q i=1,-+,n. Thus there exists a disk, say B(J:,), in B(J:,) such that
B(J:)N(D (k)U - U D (kg))=J;. Let D (k)U--UD (k)—A (Jt;)UB(J:)) be new disks
bounded by k;U---Ukg, and again denote these by D(ky), -, D (k). We may deform
D (k)U---UD k) into general position in M3, so that

FpoN(D (k))U--UD(k,))=/1U"-UJs=J1se

By the repetition of the procedure we can get rid of all intersections [y, Jty, *** »Jt,

of Fp,qN(D (k)U--U(D (Rg)).

From this argument, if all intersections Jy,---,/J, of Fp,,N(D(EYU---U D(ky))
are of this type, we can conclude that there are g pairwise disjoint disks D' (ky), -+, D' (Rq)
in M8 such that Fy,,N D’ (k;)=k: So, we may assume that at least one of Jy, -,/ is

not homotopic to 1 on Fj,q.
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2) J1+~0 on F,,. Let h :DxI—> M3 be an embedding of a 3—cell DxJ
into M?® such that:

hi (DX I)N(D (ky(U -+ U D (k) )=hi (D x {0})=A (]),
hi (DXI)N Fpyq=hy (3D X I)=N (] ; Fy, o),

where D is the unit disk, I=[~1, 11 and N(J;; Fp,,) is a regular neighborhood of J1
in Fp,q Let F(h)=F,,,—N(J; 3 Fp,))Uhy (DX3I). It J; does not homologous to any
combination of k&, -+, k&, on Fp,es F(hy) is an orientable surface of genus p—1 with
boundary curves 0Fp,q. If J; is homologous to a combination of Ry, e s Rpyqs F(hy) is
two disjoint orientable surfaces, say M; and M,, such that?® g(M)+g(M,)=p and
OM;UdM,=0F,,,. Note that F(h)N(D(k)U--UD(k))=Fp,,N(D{k)U--UD (kg) )— /1.

3) Ji~0 but /i1 on F,,,. Since J; is simple, /; bounds an orientable surface,
say Fpi,1, on Fp,q, where p>p'>0. With hy: DxI—> M?* and F(hy) as in 2), F(hy)
will be two disjoint orientable surfaces, so that we can denote these by F,_,.,, and F,.
Note that F (k)N (D (k)U - UD(k))=FpN(D (k) U---UD (ky))—Ji.

In both 2) and 3), it is clear that Ji is a non-trivial co-unknotted loop on F,,,;

hence the proof of (i) is complete.

By the repetition of the suitable procedure of 1) 2) and 3) for F (k)N (D (Bi)U---U
D(k,)), and so on, we have a finite number of orientable surfaces F(hy, hs, -, h,) in
M? such that oF (hy, hy, -+, h)=0F,,, and F(hy,hs,---, )N (D (k))U -+~ U D (k) )=0Fy,,.
Note that @=F(h,, h,, --- , h)UD (k)U---UD(k,) is a system of mutually disjoint closed
orientable surfaces in M3, Then, according to Theorem B in , we have mutually
disjoint unknotted loops Jj, ---, J. on @, where p=g(®). Especially, we may assume
that (J;U--UJ)N(D (k)U--UD (k))=¢ and (iU )Nhi(Dxd)=¢,i=1, -+ ,v.
It is easily checked that we can select p loops in Jy, -+, /., J1, -+, ], so that they and
k1, +++, kgy are linearly indepenpent in H,(F,,).

This completes the proof of (ii), and of Theorem 2.

Theorem 2 (i) shows that the natural inclusion map ¢: JFy,q —> M3—0F,,,
induces a homomorphism ¢y : 7, (IFp,q) — 7 (M3—03F,,,) such that ker. (rs) % {1}.
This can be weakened as follows :

Theorem 3. Let (F,,,cM %) be a pair, and assume that q=2. If there are r
mutually disjoint 3—cells Q,, -, Q, in M?® such that q=>1>2 QiNoFy,,#¢ and QN
0Fy,,=¢. Then there exists a non-trivial co-unknotted loop on Fy,,, that is, the
inclusion map ¢ : 9F,, .—>M 2—0Fy,, induces a homomorphism ¢ty : 7, (IFp, J—>m,

3) & (P) denotes the genus of P.
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(M3—03F,,q) such that ker. (c4)% {1}
The proof will be easily given by using the intersectidn Fp,qN(0Qy U - U0Q).

Remark 1. The genera of knots and links, [2], [10], show the necessity for
the condition on 8F,,, in Theorems 2 and 3.

Remark 2. Let (F,,qU-*UFyp,,q,CM?) be a system of compact orientable
surfaées, which may be closed or bounded, in JM?3. Scrutiny of the proof of Theorem
2 shows that Theorem 2 is true for (Fyp,q,U---UFp,,,CM?) with m (M?) and
5‘F§1,,,1U---U3F,,.nqn, cM? as in Theorem 2.

3. Proof of Theorem 1

It will be noticed that for Fy,,CIM? and ¢>0, M®—Fy,q is connected. Let X=
{M? split along F;,,}.¥ Then X has on its boundary two copies of Fy,., which denote
F1, F2, noting that

0X=0M3*U(F'UF?, FINF*=0F,,,

Let p:X—> M3 be a map defined by
p| X—(F!'U F?=identity,
p (FY)=p (F?)=Fpq

In order to prove the Theorem 1, we shall apply the Loop Theorem [8], and
the Dehn’s Lemma [4], for X. We shall need the following two lemmas.

Lemma 1. The inclusion map ¢':Ft—> F1UF?® induces a monomorphism
@iy 7y (F) —> n (FTUF?), i=1,2.

Proof. This Lemma is immediately from the following well-known facts. = (F'%)
is free with 2p+q—1 generators @i, ***,@i>p b1, ++ - biyp, €1y =o* 5 Cq—1, Where @iy, -+,
@iy py biy1y o+ » iy p are associated with p handles of Fi, and ¢y, ++, C4—1 are g—1 components
of ¢ boundary curves dF =03F},q, i=1,2. On the other hand, =, (F1UF?) is generated

by Ais1s *°° , Q15 ps b1)19 Sty blyp, A2515 " » asz, ps bz,ly b bZ’p, Ci, 5 Cq—1, dl; b 5dq—l SubjeCt to
the single relation

p » qg-1
% T [ansbi,5) H [as5be,i] 1T (epd]=1,
j=1 j=1 J=1

where d; is associated with the handle determined by c; and ¢q, j=1,++,q—1.

Let 7: be an element in @ (F%) such that 7 ~~ 1 in Ft, i=1,2. 7, is represented
by a word W (@i,1, *** » Gy, 0515+ Bi,py €1y oo+ » Cay). It is easily checked that the reduced
element W/(*) 4= 1 on F'UF?2

4) For more precise construction see Neuwirth (7], Chap. IIL




NOTE ON BOUNDED SURFACES IN A 3-MANIFOLD 97

Lemma 2. One of the inclusion maps 6° : Fi—s X,{=1,2, induces a
homomorphism 6y : n, (Fi) —> n,(X) such that ker. (0%%)5= {1}.

Proof. By the assumption of the [Theorem 1|, there is a closed curve 7 in IFp,,
such that pa+1 in M®—4F,,,. Let ni=p ' (p)NF' and 9,=p1(p)NF2 According to
Lemma 1, 7:4=1 on F1UF?, §=1,2. So, it suffices to show that 0% (p:)=1 in X.

Let f: D—— M?3—3F,,, be a continuous map such that Sf(0D)=yn. Let Uy be
the set of points xe D such that 7-if () contains at least two points, and let S, be
the closure of U; in D. Then we may assume that dim.S 7 <1 and S; consists of i)
double lines, ii) triple points which are crossing points of double lines and iii) branch
points S;—U,. Since the number of triple points and branch points is finite, we may
assume that triple points and branch points do not lie on Fy,q. Then f~1(f(YD)NF,,,)
is a finite number of simple arcs Iy, -+, I"; on D. From the above assumption we may
assume that for every point yel’,U---UTl;UdD, fIN(y;D) is a homeomorphism.
Therefore, by a slight modification of f, we conclude that I” 1 =+, 'z are mutually
disjoint, 0DNI';=dl";, i=1,---,2, and I'yU -- UI'; divides D into A+1 regions
E,, -, Esyy. Then, at least one of £, --- » By is a disk, say E;. Note that f(3F))
is a loop on F,,, and homotopic 1 in M?®—0F,,,. We will examine f(0E;) on Fp,,,
and 7i=p"'(f(0E;) )NF' and y;=p~!(f(0E))NF? on F'UF: The following two

cases can occur :
1) f(OE\)~=1 on F,,, In this case, according to Lemma 1, each loop of 7}
and 7; is not homotopic to 1 on F!'UF2 On the other hand, one of them bounds a

singular disk 07! (f(E;)) in X. So, we have completed the proof of Lemma.

2) f(0E))=1 on Fy,, In this case, it will be noticed that the loops 7;.and y; are
homotopic to 1 in F! and F?, respectively. Since f(JE;)NFp,q=¢ and one of 7, and
T2 say 71, bounds a singular disk p~!(f(E;)) in X. We replace o~ (f(E1))) by a singular
disk 4, in X which boundes by 7,. Then we have another continuous map f; : D—>
M?®—0F,,q such that f;| D—JIE,=f and p~! (f; (E;))=4;. Thus, we can eliminate 9E;—
0D from I'yU---U !’y by a slight modification of fi-

By the repetition of the procedure we can have a continuous map fn,n<A, of
D into M3—0F,,, such that f, (D)NIF,,,=f, (0D)=7. Therefore, one of loops .U n;=
p~!(n) comes to bound a singular disk o= (f, (D)) in X.

This completes the proof of the Lemma 2.

We can now proceed the proof of the fTheorem 1l. By Lemma 2, there is a loop
7" in F1UF*—(F'NF?) such that »'a~1 on F'UF? and 7’=1 in X. Since X and 7’
satisfy the hypothesis of the Loop Theorem, there exists another simple loop J/ in F!
UF2—(F1n F?) such that J'==1 on F'UF? and J'~1 in X. Then /' may bound a
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singular disk w;t;hout smgulanty on, the bopndary Hence by the Dehns Lemma J'
bounds a disk D( J) in X. So, we have a non—tr1v1a1 co—unknotted loop J on Fy,,
by setting /= p( J"), and we have completed the proof of Theorem 1.

Remark 3. Let (Fpl,qlu---UF;,n,anMs) be as Remark 2 in §2. If one of the
homomorphisms ¢i# of the fundamental groups 7y (Fp;,q;) into (M3—0Fp,,q,—
0Fy,,q,), induced by the natural inclusions, is not an isomorphism, then there exists a

non-trivial co-unknotted loop on Fyp ,q,U U Fpysqp-

Remark 4. Stallings’ counter-example [11, §6] shows that is not
true for a non—orientable surface G even with ¢ : 7, (JG) —> 7, (M ®—3G) as in Theorem

1.
MNW/MWV/WV
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