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1. Introduction
The following considerations are based upon the semi-linear point of view. By

$(P\subset M^{3})$ we denote a pair of manifolds such that $M^{3}$ is a triangulated 3-dimensional
manifold and $P$ is an embedded 2-dimensional manifold, which may not be connected,
as a subcomplex in the interior 1) $cgM^{3}$ of $M^{s}$ . Then, a simple polygonal loop $J$ in $P$

will be called a co-unknotted loop, iff $J$ is the boundary of a disk $D(J)$ whose interior
is contained in $M^{3}-P$. Especially, a co-unknotted loop $J$ is said to be non-trivial iff 2)

$J_{-}\wedge\models 1$ on $P$. Let $F_{p}$ resp. $F_{p}$ ,, be a connected closed ( $=compact$ , without boundary)
orientable surface of genus $p$ resp. a connected bounded ( $=compact$ , with boundary)
orientable surface of genus $p$ with $q$ boundary curves. R. H. Fox [1] and T. Homma
[3] shown that for any pair $(F_{p}\subset S^{3})$ , there exists a non-trivial co-unknotted loop on
$F_{L}$ . S. Kinoshita [5] proved the similar theorem for some kinds of $(F_{p}\subset M^{3})$ , and L. P.
Neuwirth [6] for $(F_{\Gamma’ 1}\subset S^{3})$ . The purpose of the paper is to generalize the theorems
for $(\Gamma_{p’ q}^{v}\subset M^{3})$ as follows:

Theorem 1. Let $(F_{pq}\subset M^{3})$ be a pair. If the homomorphism $c_{\#}$ of the
fundamental group $\pi_{1}(JF_{p’ q})$ into $\pi_{1}(M^{3}-\partial F_{pq})$ , induced by the natural inclusion $\ell$ :
$JF_{p’\prime\iota}\rightarrow M^{3}-\partial F_{p’ q}$ , is not isomorphism, then there exists a non-trivial co-unknotted
loop $J$ on $F_{p’ q}$ .

The proof will be given in \S 3 by using the Loop Theorem and the Dehn’s
Lemma.

2. Boundary trivial surfaces

Let $J_{1}\cup\cdots\cup J_{q}\subset M^{3}$ be an union of $q$ pairwise disjoint simple loops in $M^{3}$ . We
will say that $J\subset M^{3}$ is unknotted iff there exists a disk $D(J)$ in $M^{3}$ such that $\partial D(J)$

$=J$, and $J_{1}\cup\cdots\cup J_{q}\subset M^{3}$ is trivial iff there exist $q$ pairwise disjoint disks $D(J_{1}),$ $\cdots$ ,
$D(J_{q})$ in $M^{3}$ such that $\partial D(J_{1})=J_{1},$ $\cdots$ , $\partial D(J_{q})=J_{q}$ . A pair $(F_{p’ q}\subset M^{3})$ is said to be
boundary trivial iff $(\partial F_{p’ q}\subset M^{3})$ is trivial.

A boundary trivial pair $(F_{p’ l}\subset M^{3})$ has almost similar properties of $(F_{p}\subset M^{3})$ .

1) $J=interior,$ $\partial=boundary$ .
2) $\simeq means$ homotopic to, $\sim means$ homologous to.
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Theorem 2. [Fox-Homma-Kinoshita]. Let $(F_{p},{}_{q}CM^{3})$ be a boundary trivial

pajr. If $\pi_{1}(M^{3})$ is isomorphic to either a finite fundamental group or infinite cyclic

one, then

(i) there exists a non-trivial co-unknotted loop on $F_{p’ q}$ ,

(ii) there exist $p+q-1$ mutually disjoint unknotted loops on $F_{pq}$ such that
they are linearly independent in $H_{1}(F_{pq})$ .

Proof. Let $k_{1}\cup\cdots\cup k_{4}=\partial F_{p’ q}$ . If there are $q$ pairwise disjoint disks $D(k_{1}),$ $\cdots$ ,

$D(k_{q})$ in $M^{3}$ such that $\partial D(k_{i})=k_{t},$ $D(k_{i})\cap F_{pq}=k_{i},$ $i=1,$ $\cdots$ , $q$ , then the Theorem is

obtained immediately from Theorem $B$ in [5]. So, from now on we suppose that such

disks do not exist.

Let $c_{l}$ be a simple loop on $F_{p’ q}$ lying in a small neighborhood of $k$ and ”parallel”

to $k_{i},$ $i=1,$ $\cdots$ , $q$ . Because $F_{p’ q}$ , is orientable, the linking number of $c_{i}$ with $k_{i}$ is the

same as the sum of the linking numbers of the $k_{1},$
$\cdots,\check{k}_{i},$

$\cdots$ , $k_{q}$ with $k\iota,$ $i=1,$ $\cdots$ , $q$ .
But each of these linking numbers is zero, since $k_{1}\cup\cdots\cup k_{q}\subset M^{3}$ is trivial. Because the

linking number of $c_{t}$ with $k_{i}$ is zero, we can have $q$ pairwise disjoint disks $D(k_{1}),$ $\cdots$ ,

$D(k_{q})$ in $M^{3}$ so that a small neighborhood of $k_{i}$ in $F_{p’ q}$ meets $D(k_{i})$ only at $k_{i}$ , while

the total intersection of $F_{p’ q}$ with $D(k_{1})\cup\cdots\cup D(k_{q})$ consists of a number of simple $1\infty ps$

$J_{1},$ $\cdots$ , $J_{\nu}$ , where $\nu>0$ . Let $A(J_{1}),$ $\cdots$ , $A(J_{\nu})$ be disks on $D(k_{1})\cup\cdots\cup D(h_{q})$ bounded by

$J_{1},$ $\cdots$ , $J_{\nu}$ , respectively.

Let $J_{1}$ be a minimal, $i.e$ . there is no other $J_{i}$ in $A(J_{1})$ . Then the following

three cases can occur:

1) $J_{1}\simeq 1$ on $F_{p’ q}$ . Since $J_{1}$ is simple, $J_{1}$ bounds a disk $B(J_{1})$ on $F_{pq}$ . We

consider the intersection $B(J_{1})\cap(D(k_{1})\cup\cdots\cup D(k_{W}))$ , which is a subset of $\{J_{1},\cdots,J_{\nu}\}$ . Let

$J_{1}\cup J_{t_{1}}U\cdots\cup J_{t_{n}}=B(J_{1})\cap(D(k_{1})\cup\cdots\cup D(k_{q})))$ . Then $J_{t_{i}}\simeq 1$ on $F_{p’ q}$ and $J_{t_{i}}$ bounds a disk

$B(J_{t_{i}})$ on $F_{pq},$ $i=1,$ $\cdots,$ $n$ . Thus there exists a disk, say $B(J_{t_{1}})$ , in $B(J_{t_{n}})$ such that

$B(J_{t_{1}})\cap(D(k_{1})\cup\cdots\cup D(k_{q}))=J_{t_{1}}$ . Let $D(k_{1})\cup\cdots\cup D(k_{q})-A(J_{t_{1}})\cup B(J_{t_{1}})$ be new disks

bounded by $k_{1}\cup\cdots\cup k_{q}$ , and again denote these by $D(k_{1}),$ $\cdots$ , $D(k_{q})$ . We may deform

$D(k_{1})\cup\cdots\cup D(k_{q})$ into general position in $M^{3}$ , so that

$F_{pq}\cap(D(k_{1})\cup\cdots\cup D(k,())=J_{1}\cup\cdots\cup J_{\nu}-J_{t_{1}}$.
By the repetition of the procedure we can get rid of all intersections $J_{1},J_{t_{1}},$ $\cdots,J\iota_{n}$

of $F_{pq}\cap(D(k_{1})\cup\cdots\cup(D(k_{q}))$ .

From this argument, if all intersections $J_{1},$ $\cdots,J_{\nu}$ of $F_{p’ q}\cap(D(k^{I})\cup\cdots\cup D(k_{q}))$

are of this type, we can conclude that there are $q$ pairwise disjoint disks $D^{\prime}(k_{1}),\cdots,$ $D^{\prime}(k_{q})$

in $M^{3}$ such that $F_{p’ q}\cap D^{\prime}(k_{i})=k_{i}$ . So, we may assume that at least one of $J_{1},$ $\cdots,J_{\nu}$ is

not homotopic to 1 on $F_{p’ q}$ .
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2) $J_{1}+0$ on $F_{p’\circ}$ . Let $h_{1}$ : $D\times I\rightarrow M^{3}$ be an embedding of a 3-cell $D\times I$

into $M^{3}$ such that’

$h_{1}(D\times I)\cap(D(k_{1}(\cup\cdots\cup D(k_{q}))=h_{1}(D\times\{0\})=A(J_{1})$ ,
$h_{1}(D\times I)\cap F_{p’ q}=h_{1}(\partial D\times I)=N(J_{1} ; F_{p’ q})$ ,

where $D$ is the unit disk, $I=[-1,1]$ and $N(J_{1} ; F_{p}, ,)$ is a regular neighborhood of $J_{1}$

in $F_{p’ q}$ . Let $F(h_{1})=F_{pq}-N(J_{1} ; F_{p’ q})\cup h_{1}(D\times\partial I)$ . If $J_{1}$ does not homologous to any
combination of $k_{1},$

$\cdots,$
$k_{q}$ on $F_{p’ q},$ $F(h_{1})$ is an orientable surface of genus $p-1$ with

boundary curves $\partial F_{p’ q}$ . If $J_{1}$ is homologous to a combination of $k_{1},$ $\cdots$ , $k_{p’ q},$ $ F(h_{1}\lambda$ is
two disjoint orientable surfaces, say $M_{1}$ and $M_{2}$ , such that 3) $g(M_{1})+g(M_{2})=p$ and
$\partial M_{1}\cup\partial M_{2}=\partial F_{p’ q}$ . Note that $F(h_{1})\cap(D(k_{1})\cup\cdots\cup D(k_{q}))=F_{p’ q}\cap(D(k_{1})\cup\cdots\cup D(k_{q}))-J_{1}$ .

3) $J_{1}\sim 0$ but $J_{1}\not\subset 1$ on $F_{p’ q}$ . Since $J_{1}$ is simple, $J_{1}$ bounds an orientable surface,
say $F_{p1}’,$ , on $F_{p’ q}$ , where $p>p^{\prime}>0$ . With $h_{1}$ : $D\times I-M^{3}$ and $F(h_{1})$ as in 2), $F(h_{1})$

will be two disjoint orientable surfaces, so that we can denote these by $F_{p-p\prime,q}$ and $F_{p^{\prime}}$ .
Note that $F(h_{I})\cap(D(k_{1})\cup\cdots\cup D(k))=F_{pq}\cap(D(k_{1})\cup\cdots\cup D(k_{q}))-J_{I}$ .

In both 2) and 3), it is clear that $J_{1}$ is a non-trivial co-unknotted loop on $F_{p’ q}$ ;
hence the proof of (i) is complete.

By the repetition of the suitable procedure of 1) 2) and 3) for $ F(h_{1})\cap(D(k_{1})\cup\cdots\cup$

$D(k_{q}))$ , and so on, we have a finite number of orientable surfaces $F(h_{1}, h_{2}, \cdots , h_{\nu})$ in
$M^{3}$ such that $\partial F(h_{1}, h_{2}, \cdots, h_{\nu})=\partial F_{p’ q}$ and $F(h_{1},h_{2}, \cdots, h_{\nu})\cap(D(k_{1})\cup\cdots\cup D(k_{q}))=\partial F_{p’ q}$ .
Note that $\Phi=F(h_{1},h_{2}, \cdots , h_{\nu})\cup D(k_{1})$ \‘U L.. $\cup D(k_{q})$ is a system of mutually disjoint closed
orientable surfaces in $M^{3}$ . Then, according to Theorem $B$ in [5], we have mutually
disjoint unknotted loops $J_{1}^{\prime},$ $\cdots$ , $J_{\mu}^{\prime}$ on $\Phi$ , where $\mu=g(\Phi)$ . Especially, we may assume
that $(J_{1}^{\prime}\cup\cdots\cup J_{\mu}^{\prime})\cap(D(k_{1})\cup\cdots\cup D(k_{q}))=\phi$ and $(J_{1}^{\prime}\cup\cdot 4\cdot\cup J_{\rho}^{\prime})\cap h_{i}(D\times\partial I)=\phi,$ $i=1,$ $\cdots,$ $\nu$ .
It is easily checked that we can select $p$ loops in $J_{1},$ $\cdots,J_{\nu},J_{1}^{\prime},$ $\cdots,J_{\mu}^{\prime}$ so that they and
$k_{1},$ $\cdots$ , $k_{q-1}$ are linearly indepenpent in $H_{1}$ $(F_{p}, )$ .

This completes the proof of (ii), and of Theorem 2.
Theorem 2 (i) shows that the natural inclusion map $\ell;JF_{p’ q}\rightarrow M^{3}-\partial F_{p’ q}$

induces a homomorphism $\iota_{\#}$ : $\pi_{1}(JF_{p’ q})\rightarrow\pi_{1}(M^{3}-\partial F_{p’ q})$ such that $ker$ . $(\iota_{\#})\neq\{1\}$ .
This can be weakened as follows:

Theorem 3. Let $(F_{p’ q}\subset M^{3})$ be a pair, and assume that $q\geq 2$ . If there are $r$

mutually disjoint -cells $Q_{1},\cdots,$ $Q,$. in $M^{3}$ such that $ q\geq’\geq 2Q_{i}\cap\partial F_{p’ q}\neq\phi$ and $\partial Q_{i}\cap$

$\partial F_{pq}=\phi$ . Then there exists a non-trivial co-unknotted loop on $F_{pq}$ , that is, the
inclusion map $\iota;lF_{pq}\rightarrow M^{s}-\partial F_{pq}$ induces a homomorphism $r_{*}:$ $\pi_{1}(_{c}\mathcal{J}F_{pq})-\pi_{1}$

3) $g(P)$ denotes the genus of $P$.
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$(M^{3}-\partial F_{p’ q})$ such that $ker$ . $(\ell_{*})\neq\{1\}$ .

The proof will be easily given by using the intersection $F_{p’ q}\cap(\partial Q_{1}\cup\cdots\cup\partial Q_{r})$ .

Remark 1. The genera of knots and links, [2], [10], show the necessity for

the condition on $\partial F_{p’ q}$ in Theorems 2 and 3.

Remark 2. Let $(F_{p_{1}q_{1}}\cup\cdots\cup F_{p_{n}’ q_{n}}\subset M^{3})$ be a system of compact orientable

surfaces, which may be closed or bounded, in $3M^{3}$ . Scrutiny of the proof of Theorem

2 shows that Theorem 2 is true for $(F_{p_{1}q_{1}}\cup\cdots\cup F_{p_{n}’ q_{n}}\subset M^{3})$ with $\pi_{1}(M)$ and

$\partial F_{p_{1}’ q_{1}}\cup\cdots\cup\partial F_{p_{n}q_{n}},$
$\subset M^{3}$ as in Theorem 2.

3. Proof of Theorem 1

It will be noticed that for $F_{p’ q}\subset cgM^{3}$ and $q>0,$ $M^{3}-F_{pq}$ is connected. Let $X=$

$\{M^{3}$ split along $F_{x},$ $,\}^{4)}$ Then $X$ has on its boundary two copies of $F_{p’\cap}$ , which denote

$F^{1},$ $F^{2}$ , noting that

$\partial X=\partial M^{3}\cup(F^{1}\cup F^{2}),$ $F^{1}\cap F^{2}=\partial F_{pq}$ .

Let $\rho:X\rightarrow M^{3}$ be a map defined by
$\rho|X-(F^{1}\cup F^{2})=identity$ ,

$\rho(F^{1})=\rho(F^{2})=F_{pq}$ .
In order to prove the $Th\infty rem1$ , we shall apply the Loop $Threm[8]$ , and

the Dehn’s Lemma [4], [9] for $X$. We shall need the following two lemmas.

Lemma 1. The inclusion map $\varphi^{i}$ : $F^{i}\rightarrow F^{1}\cup F^{2}$ induces a monomorphism

$\varphi_{\#}^{i}$ : $\pi_{1}(F^{i})\rightarrow\pi_{1}(F^{1}\cup F^{2}),$ $i=1,2$ .
Proof. This Lemma is immediately from the following well-known facts. $\pi_{1}(F^{t})$

is free with $2p+q-1$ generators $a_{i1},$ $\cdots$ , $a_{i,p},$ $b_{l,1},$ $\cdots$ . $b_{ip},$ $c_{1},$ $\cdots$ , $c_{q-1}$ , where $a_{i,1},$ $\cdots$ ,

$a_{i,p},$ $b_{l,1},$ $\cdots$ , $b_{i,p}$ are associated with $p$ handles of $F^{i}$ , and $c_{1},\cdots,$ $c_{q-1}$ are $q-1$ components

of $q$ boundary curves $\partial F^{i}=\partial F_{p’ q},$ $i=1,2$ . On the other hand, $\pi_{1}(F^{1}\cup F^{2})$ is generated

by $a_{1,1},$ $\cdots,$ $a_{1,p},$ $b_{1,1},$ $\cdots,$
$b_{1,p},$ $a_{2,1},$ $\cdots,$ $a_{2,p},$ $b_{2,1},$ $\cdots b_{2,p},$ $c_{1},$ $\cdots,$ $c_{q-1},$

$d_{1},$ $\cdots$ , $d_{q-1}$ subject to

the single relation

$(^{*})$ $j=1II[a_{1,j}, b_{1,j}]p\prod_{j=1}^{p}[a_{2,f}, b_{2,i}]^{\prod_{f=1}^{q-1}}[c_{f}, d_{j}]\simeq 1$ ,

where $d_{j}$ is associated with the handle determined by $c_{j}$ and $c_{q},$ $j=1,$ $\cdots$ , $q-1$ .

Let $\eta\iota$ be an element in $\pi_{1}(F^{l})$ such that $\eta_{t}\not\subset 1$ in $F^{\ell},$ $i=1,2$ . $\eta_{i}$ is repraeented

by a word $W$ $(a_{i,1}, \cdots , a_{ip},b_{i1}, \cdots , b_{ip}, c_{1}, \cdots , c_{q-1})$ . It is easily checked that the reduced

element $W/(^{*})\neq 1$ on $F^{1}\cup F^{2}$ .

4) For more precise construction see Neuwirth (7], Chap. III.
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Lemma 2. One of the inclusion maps $\theta^{i}$ : $F^{i}\rightarrow X,$ $i=1,2$ , induces a
homomorphism $\theta^{i_{*}}$ : $\pi_{1}(F^{i})\rightarrow\pi_{1}(X)$ such that $ker$ . $(\theta_{\#}^{i})\neq\{1\}$ .

Proof. By the assumption of the Theorem 1, there is a closed curve $\eta$ in $JF_{p}$ ,a
such that $\eta\neq 1$ in $M^{3}-\partial F_{p’ q}$ . Let $\eta_{1}=\rho^{-1}(\eta)\cap F^{1}$ and $\eta_{2}=\rho^{-1}(\eta)\cap F^{2}$ . According to
Lemma 1, $\eta_{i}\pm 1$ on $F^{1}\cup F^{2},$ $i=1,2$ . So, it suffices to show that $\theta^{i}(\eta_{i})\simeq 1$ in $X$.

Let $f$ : $D\rightarrow M^{3}-\partial F_{p’ q}$ be a continuous map such that $ f(\partial D)=\eta$ . Let $U_{f}$ be
the set of points $x\epsilon D$ such that $\Gamma^{-1}f(x)$ contains at least two points, and let $S_{f}$ be
the closure of $U_{f}$ in $D$. Then we may assume that $dim.S_{f}\leq 1$ and $S_{f}$ consists of i)
double lines, ii) triple points which are crossing points of double lines and iii) branch
points $S_{f}-U_{f}$ . Since the number of triple points and branch points is finite, we may
assume that triple points and branch points do not lie on $F_{p’ q}$ . Then $f^{-1}(f(lD)\cap F_{p’ q})$

is a finite number of simple arcs $\Gamma_{1},$ $\cdots$ , $\Gamma_{\lambda}$ on $D$ . From the above assumption we may
assume that for every point $y\epsilon\Gamma_{1}\cup\cdots\cup\Gamma_{\lambda}\cup\partial D,$ $f|N(y;D)$ is a homeomorphism.
Therefore, by a slight modification of $f$, we conclude that $\Gamma_{1},$

$\cdots,$
$\Gamma_{\lambda}$ are mutually

disjoint, $\partial D\cap\Gamma_{i}=\partial\Gamma_{i},$ $i=1,$ $\cdots$ , $\lambda$ , and $\Gamma_{1}\cup\cdots\cup\Gamma_{\lambda}$ divides $D$ into $\lambda+1$ regions
$E_{1},$ $\cdots$ , $E_{\lambda+1}$ . Then, at least one of $E_{1},$ $\cdots$ , $E_{\lambda+1}$ is a disk, say $E_{1}$ . Note that $f(\partial E_{1})$

is a loop on $F_{p’ q}$ and homotopic 1 in $M^{3}-\partial F_{p’ q}$ . We will examine $f(\partial E_{1})$ on $F_{p’ q}$ ,
and $\gamma_{1}^{\prime}=\rho^{-1}(f(\partial E_{1}))\cap F^{1}$ and $\gamma_{2}^{\prime}=\rho^{-1}(f(\partial E_{1}))\cap F^{2}$ on $F^{1}\cup F^{2}$ . The following two
cases can occur:

1) $f(\partial E_{1})*1$ on $F_{p’ q}$ . In this case, according to Lemma 1, each loop of $\gamma_{1}^{\prime}$

and $\gamma_{\acute{a}}$ is not homotopic to 1 on $F^{1}\cup F^{2}$ . On the other hand, one of them bounds a
singular disk $\rho^{-1}(f(E_{1}))$ in $X$. So, we have completed the proof of Lemma.

2) $f(\partial E_{1})\simeq 1$ on $F_{pq}$ . In this case, it will be noticed that the $1\infty ps\gamma_{1}^{\prime}$ and $\gamma_{2}^{\prime}$ are
homotopic to 1 in $F^{1}$ and $F^{2}$ , respectively. Since $ f(JE_{1})\cap F_{p’ q}=\phi$ and one of $\gamma_{1}^{\prime}$ and

$\gamma_{2}^{\prime}$ , say $\gamma_{1}^{\prime}$ , bounds a singular disk $\rho^{-I}(f(E_{1}))$ in $X$. We replace $\rho^{-1}(f(E_{1})))$ by a singular
disk $\Delta_{1}$ in $X$ which boundes by $\gamma_{2}^{\prime}$ . Then we have another continuous map $f_{1}$ : $ D\rightarrow$

$M^{3}-\partial F.,q$ such that $f_{1}|D-9E_{1}=f$ and $\rho^{-1}(f_{1}(E_{1}))=\Delta_{1}$ . Thus, we can eliminate $\partial E_{1}-$

$\partial D$ from $\Gamma_{1}\cup\cdots\cup I_{2}^{7}$ by a slight modification of $f_{1}$ .
By the repetition of the procedure we can have a continuous map $f_{n},$ $ n\leq\lambda$ , of

$D$ into $M^{3}-\partial F_{p’ q}$ such that $ f_{n}(D)\cap lF_{p’ q}=f_{n}(\partial D)=\eta$ . Therefore, one of loops $\eta_{1}^{\prime}\cup\eta_{2}^{\prime}=$

$\rho^{-1}(\eta)$ comes to bound a singular disk $\rho^{-1}(f_{n}(D))$ in $X$.
This completes the proof of the Lemma 2.
We can now proceed the proof of the Theorem 1. By Lemma 2, there is a loop

$\eta^{\prime}$ in $F^{1}\cup F^{2}-(F^{1}\cap F^{2})$ such that $\eta^{\prime}\sim$ on $F^{1}\cup F^{2}$ and $\eta^{\prime}\simeq 1$ in $X$. Since X and $\eta^{\prime}$

satisfy the hypothesis of the Loop Theorem, there exists another simple loop $J^{\prime}$ in $F^{I}$

$\cup F^{2}-(F^{1}\cap F^{2})$ such that $J^{\prime}*1$ on $F^{1}\cup F^{2}$ and $J^{\prime}\simeq 1$ in $X$. Then $J^{\prime}$ may bound a
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$\ell$

singular disk $W\dot{\}}ti\}^{out}si_{Il}$gularity $onf^{heb_{0\}}\iota nd_{4}ary}|$
}

Hence by $the_{1}Dehn’ s$ Lemma $J^{\prime}$

bounds a disk $D^{(^{\ell}}(J^{\prime})$ in $r_{X}$. So, we have a non-trivial co-unknotted loop $J$ on $F_{p’ q}$

by setting $I=\rho’(J^{\prime})$ , and we have completed the proof of Theorem 1.

Remark 3. Let $(F_{p_{1}’ q_{1}}\cup\cdots\cup F_{p_{n}’ q_{n}}\subset M^{3})$ be as Remark 2 in \S 2. If one of the

homomorphisms $ C^{i}\#$ of the fundamental groups $\pi_{1}(dF_{p_{i}’ q_{i}})$ into $\pi_{1}(M^{3}-\partial F_{p_{1}’ q_{1}}-\cdots-$

$\partial F_{p_{n}q_{n}})$ , induced by the natural inclusions, is not an isomorphism, then there exists a

non-trivial co-unknotted loop on $F_{p_{1}’ q_{1}}\cup\cdots\cup F_{p_{n}’ q_{n}}$ .

Remark 4. Stallings’ counter-example [11, \S 6] shows that Theorem 1 is not

true for a non-orientable surface $G$ even with $f\#;\pi_{1}(cJG)\rightarrow\pi_{1}(M^{3}-\partial G)$ as in $Threm$

1.

$-\approx-\sim\rightarrow-\vee$
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