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1. Introduction. A polyhedron $P$ unknots in a PL ( $=piecewiae$ linear) manifold
$M$ if for any two homotopic PL-embeddings, $f,$ $g$, of $P$ into $M$, there is a PL-isotopy,
$h_{t},$ $t\epsilon[0,1]$ , of $M$ such that $h_{0}=identity$ and $h_{1}f=g$. If $P$ is $a_{-}^{-}compactk$-dimensional
polyhedron, it follows from general position that $P$ unknots in Euclidean $(2k+2)$-space,
$E^{2k+2}$ , and, in general, $P$ knots in $E^{2k+1}$ . One problem in PL-topology has been to
determine conditions on $P$ so that $P$ unknots in $E^{2k+1}$ .

Wu [8] showed that a necessary and sufficient condition was the vanishing of
certain obstructions in the integral $2k$-cohomology group of the reduced symmetric
product of $P$. Some other sufficient conditions for the unknotting of $P$ in $E^{2k+1}$ are

1) $P$ is a connected closed PL-manifold (Zeeman [9]);
2) $H^{k}(P)=0$ (Price [7]);
3) $P$ is a connected homology manifold (Edwards [2]);
4) $P$ collapses to a subpolyhedron which unknots in $E^{2k+1}$ (Edwards) [2]).

Let $K$ be a finite complex and let $T$ be a subcomplex. Consider the complex
$K/T$ obtained from the first derived of $K$ by removing the first derived neighborhood
of $T$ and adding the cone over the boundary of this neighborhood. A polyhedron $P$

is called reduced if it is PL-homeomorphic to the underlying polyhedron of $K/T$

where $K$ is a finite complex and $T$ is a maximal tree in $K;i.e.$ , $T$ is a maximal
contractible subcomplex of dimension one in $K$. Some examples of reduced polyhedra
are closed connected PL-manifolds.

Theorem 1. Reduced k-dimensional polyhedm unknot in $E^{2k+1},$ $k>1$ .
It is easily seen that if $K$ and $T$ are as above in the definition of a reduced

polyhedron, then the underlying polyhedron of $K$ and the underlying polyhedron of
$K/T$ have the same simple homotopy type [6].

Corollary 1. If $P$ is a connected k-dimensional polyhedron which knots in
$E^{2k+1}$ , then there exists a polyhedron of the same simple homotopy type of $P$ which
unknots in $E^{2k+1},$ $k>1$ .

In proving this theorem we need a lemma which extends to give a generalization
of Zeeman’s unknotting theorem [9] for proper embeddings.
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Theorem 2. Let $\{M_{i}\},$ $i=1,$ $\cdots$ , $n$ , be a collection of disjoint compact orientable
$(2m-q+1)$-connected $PL$-manifolds with nonempty boundaries, $m=maximum\{m_{i}=$

dimension $M_{i}$ }, and let $Q$ be a $(2m-q+2)$-connected $PL-q$-manifold with nonempty

boundary, $3m+4\leq 2q$ . If $f$ and $g$ are two homotopic $(relative\cup bdryM_{i})$ proper $PL-$

embeddings of $\cup M_{i}$ into $Q$ such that $ f|\cup$ bdry $ M_{i}=g|\cap$ bdry $M_{i}$ and $ f(\cup$ bdry
$M_{i})$ is contained in a single boundary comp0nent of $Q$, then there is a PL-isotopy
$h_{f},$ $t\epsilon[0,1]$ , of $Q$ onto itself such that $h_{0}=identity$ and $h_{1}$ ] $=g$.

Note that if we require that $h_{t}$ be the identity on bdry $Q$ or if we did not

require that $\cup$ bdry $M_{i}$ be mapped into a single boundary component of $Q$ , then there
are counterexamples to the theorem.

2. Preliminaries. We shall assume familiarity with either [4] or [9]. All maps

will be assumed to be PL unless stated otherwise; hence, we shall drop the prefix PL.

In the proof of $Th\ovalbox{\tt\small REJECT} rem2$ we shall assume that all manifolds considered are orientable
and thus have some fixed orientation. The boundary of a manifold shall have its

orientation induced from the manifold. Hence, if $N$ is oriented, then $N\times[0,1]$ shall

be oriented so that the natural map $N\rightarrow N\times\{0\}$ is orientation preserving. All
homeomorphisms, unless stated otherwise, shall be orientation preserving.

Cl, bdry, int will mean closure, boundary and interior respectively.

3. Proof of Theorem 2 when $n=2$ . By Zeeman [9; Theorem 24], there exist

isotopies $k^{i}$ : $M_{i}\times[0,1]\rightarrow Q\times[0,1],$ $i=1,2$ , such that $k_{0}^{l}=f|M_{\ell},$ $k_{1}^{\ell}=g|M_{i}$ , and $k_{t}^{\ell}|$

bdry $M_{i}=f$ for all $t$ . Let $M\ddagger=k^{i}(M_{i}\times[0,1])$ . By general position, we may assume
that dim $(Mi\cup Mi)\leq 2m-q+1$ . By the engulfing theorem [9; Theorem 20], there exist

collapsible polyhedra $ C\iota$ in int $M_{\ell}^{*}$ such that $M\ddagger\cap M_{2}\subseteq C_{i}$ and dim $C_{i}\leq 2m-q+2$ . Again

by the engulfing theorem, there is a collapsible polyhedron $C_{3}$ in int $(Q\times[0,1])$ such

that $C_{1}\cup C_{2}\subseteq C_{3}$ and dim $C_{8}\leq 2m-q+3$ . By general position and the restriction
$3m+4\leq 2q$, we may assume that $C_{3}\cap(Mi\cup M_{2}^{*})=C_{1}\cup C_{2}$ . Hence, by taking &cond

derived $neighborh\ovalbox{\tt\small REJECT} ds$, there is a $(q+1)$-cell $N$ in int $(Q\times[0,1])$ such that $ N\cup M\ddagger$ is

a properly embedded $(m_{i}+1)$-cell in $N$ and $N\cup M$ : and $N\cup M_{2}^{*}$ have disjoint

boundaries, say $S_{1},$ $S_{2}$ , respectively. Suppose $ N\cup M\ddagger$ and $N$ are oriented compatibly

with $Mi$ and $Q\times[0,1]$ , respectively.

Propostion. If the inclusion $i$ : $S_{2}\rightarrow bdryN-S_{1}$ represents the trivial

element of $\pi_{m_{2}}$ (bdry $N-S_{1}$ ), then there is an isotopy $k_{t},$ $t\epsilon[0,1]$ , of $N$ such that

$k_{0}=identity,$ $k_{t}|bdryN=identity$ and $ k_{1}(M_{2}^{*}\cap N)\cap(M;\cap N)=\phi$ .
This proposition is well known. By Irwin [5] $[9; Th\infty rem23],$ $S_{2}$ bounds a

$(m_{2}+1)$-cell $C$ in $N-Mi$ ; now apply Zeeman’s unknotting theorem for codimension

three cell pairs [10] [9; Cor. 1 to Theorem 9],
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Hence, if the inclusion $i$ represents the trivial element of $\pi_{m_{2}}$ (bdry $N-S_{1}$ ), we
can move $M_{2}^{\cdot}$ off of $Mi$ and the theorem would $fol1_{Q}w$ from [3]. Therefore, suppose
that $i$ represents a non-trivial element of $\pi_{m_{2}}$ (bdry $N-S_{1}$ ).

Let $p_{t}\epsilon g(bdryM_{i}),$ $ q_{i}\epsilon$ Si, $i=1,2$ . There exist arcs $\alpha_{i}$ in $M$ : such that bdry
$\alpha_{i}=\{p_{i}\times\{1\}, q_{i}\}$ and int $\alpha_{i}\subset intM_{\ell}^{*}-N$. Let $\alpha$ be an arc in bdry $Q$ such that bdry
$\alpha=\{p_{1}, p_{2}\}$ and int $\alpha\subseteq bdryQ-g$ (bdry $(M_{1}\cup M_{2})$ ). Note that if $!^{2m-q+1<0}$ , then
the theorem is true; hence we can suppose that $Q$ is simply connected. Hence there is
a 2-cell $D$ in $Q\times[0,1]$ such that bdry $D=\alpha_{1}\cup\alpha_{2}\cup\alpha\times\{1\}\cup\alpha_{3}$ where bdry $\alpha_{3}=\{q_{1}, q_{2}\}$

and int $\alpha_{3}\subseteq bdryN-(S_{1}\cup S_{2})$ and such that int $D\subseteq Q\times(O, 1)-(N\cup M_{1}^{*}\cup M_{2}^{\cdot})$ . Hence,
by taking a second derived neighborhood of $D$ , there is a $(q+1)$-cell $N_{0}$ in $Q\times[0,1]$

such that

i) $\overline{N}=N\cup N_{0}$ is a $(q+1)$-cell in $Q\times[0,1]$ ;
ii) $\overline{N}\cap M^{*}$ is a properly embedded $(m_{i}+1)$-cell in $\overline{N}$ ;

iii) $\overline{N}\cap Q\times\{1\}=bdry|\overline{N}\cap Q\times\{1\}=\overline{\eta}$ is a regular meighborhood of $\alpha\times\{1\}$ in
$Q\times\{1\}$ ;

iv) $\overline{\eta}\cap M$ : is a properly embedded $m_{i}$-cell in $\overline{\gamma/}$ ;
v) $-’,0=\overline{\eta}\cap$ (bdry $Q\times\{1\}$ ), $\overline{A}=\overline{\eta}\cap$ (bdry $g(M_{i})\times\{1\}$ ), $\overline{B}_{i}=\overline{r_{/}}\cap(g(M_{i})\times\{1\})$ are

regular neighborhoods of $\alpha\times\{1\},$ $p_{i}\times\{1\}$ , respectively, in bdry $Q\times\{1\}$ , bdry
$g(M_{i})\times\{1\},$ $g(M_{i})\times\{1\}$ , respectively;

vi) the triple (bdry $\overline{N}$, bdry $(\overline{N}\cap M\ddagger)$ , bdry $(\overline{N}\cap M_{2})$ ) is homeomorphic to (bdry
$N,$ $S_{1},$ $S_{2}$).

Let $\rho:Q\times[1]-*Q$ be the natural map defined by $\rho(x, 1)=x$ and let $\eta=\rho(\overline{\eta})$,
$\eta_{0}=\rho(\overline{\eta}0),$ $A_{i}=\rho(\overline{A}_{i}),$ $B_{i}=\rho(\overline{B}_{i})$ . Consider the standard sphere pair $(S^{q}, S^{m_{1}})$ .
$S^{q}=\Delta_{+}^{q}\cup\Delta_{-}^{q}$ where $\Delta_{+}^{q},$

$\Delta_{-}^{q}$ are $q$-cells such that bdry $\Delta_{+}^{b}\cap$ bdry $\Delta_{-}^{q}=\Delta_{+}^{q}\cap\Delta_{-}^{q}$ .
Similarly $S^{m_{1}}=f_{+}^{m_{1}}\cup\Delta_{-}^{m_{1}}$ such that $(\Delta_{+}^{p}, \Delta_{+}^{m1})$ and $(\Delta_{-}^{q}, \Delta_{-}^{m_{1}})$ are cell pairs.

There exists a homeomorphism $\lambda:(S^{q}, S^{m_{1}})\rightarrow(bdry(\eta\times[1,2])$ , bdry $(B_{1}\times[1$ ,

2])) such that $\lambda(\Delta_{+}^{q}, \Delta_{+}^{m_{1}})=(\eta_{0}\times[1,2], A_{1}\times[1,2])$ . By Irwin [5], $[9; Th\ovalbox{\tt\small REJECT} rem23]$ ,

there exists an embedding $\varphi:S^{m_{2}}\rightarrow S^{q}-S^{m_{1}}$ such that $\varphi(S^{m_{2}})$ represents any
element of $\pi_{m_{2}}(S^{q}-S^{m_{1}})$ . $We’ 11$ make our choice of the element of this group later;

suppose that some choice has been made.

We may assume that
vii) the $m_{2}$-cell $\tilde{B}=\lambda^{-1}$ ($B_{2}\times\{1,2\}\cup Ct$ (bdry $B_{2}-A_{2})\times[1,2]$ ) $\subseteq\varphi(S^{m_{2}})$ ;

viii) $Cl(\varphi(S^{m_{2}})-\tilde{B})$ is properly embedded in $\Delta_{+}^{q}$ ;

ix) there exists a homeomorphism $\beta_{0}$ : $A_{2}\times[1,2]\rightarrow Cl(\varphi(S^{m_{2}})-B)$ such that
$\lambda\beta_{0}$ : $A_{2}\times[1,2]\rightarrow Q\times[1,2]$ is a concordance and hence may be assumed
to be an isotopy [3] such that $\lambda\beta_{0}(x, t)=(g(x), t)$ for $t=1,2$ .
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$\lambda\varphi(S^{m_{2}})$ bounds a properly embedded $(m_{2}+1)$-cell $D_{0}$ in $\eta\times[1,2]$ . Again we
find a homeomorphism $\beta_{1}$ : $B_{2}\times[1,2]\rightarrow D_{0}$ for which $\lambda\beta_{1}$ : $B_{2}\times[1,2]$ is a concordance
such that

x) $\lambda\beta_{1}(x, t)=(g(x), t),$ $t=1,2$ ;

xi) $\lambda\beta_{1}(x, t)=(g(x), t),$ $t\epsilon[1,2].’ x\epsilon Cl$ (bdry. $B_{2}-A_{2}$);

xii) $\lambda\beta_{1}|A_{2}\times[1,2]=\lambda\beta_{0}$ .
Define $H:M_{2}\times[1,2]-Q\times[1,2]$ by

$H(x, t)$ $=$ $(g(x), t)$ $x\epsilon Cl(M_{2}-B_{2})$

$=$ $\lambda\beta_{1}(x, t)$ $x\epsilon B_{2}$ .
Note that $H$ is a concordance such that $H(x, 2)=(g(x),2)1x\epsilon\acute{M}_{2}$ ,

$\mathfrak{l}\cdot)\}$

Consider $M_{1}^{*}=M_{1}^{l}\cup g(M_{1})\times[1,2]$ and t$i $I|f^{\eta}$ ,

$M_{2}=M_{2}^{*}\cup H(M_{2}\times[1,2])$ in $M\times[0,2]$ . $ M_{1}^{**}\cap M_{2}^{**}=IntM_{1}^{**}\cap$ int $M_{2}^{u}=R\overline{N}\cap M_{4}^{*}$ ) $\cup$

$B_{1}\times[1,2])]\cap[(\hat{N}\cap M_{2}^{*})\cup D_{0}]$ , the intersection of a $(m_{1}+1)\prec el1$ and a $(m_{2}+1)$-cell, both
of which are properly embedded in the $(q+1)$-cell $N\cup\phi\ltimes[1,2]$ ). By $ch^{\mathfrak{l}}\infty^{A}bing^{4\ovalbox{\tt\small REJECT}}\varphi$

correctly above, the inclusion bdry $[(\overline{N}\cap M_{2}^{*})\cup D_{0}]\rightarrow bdry[\overline{N}\cup(\eta\times[1,2])]$ -bdry
$[(\overline{N}\cap M_{1}^{*})\cup(B_{1}\times[1,2])]$ will be null-homotopic and we $caIl$ proceed as before after the
Proposition.

$\backslash $

4. Proof of Theorem 2 when $n>2$ . There exist isotopies $k^{i}$ : $M_{i}\times[0,1]\rightarrow Q$

$\times[0,1],$ $i=1,$ $\cdots$ , $n$ , such that $k_{0}^{\ell}=f|M_{i},$ $k_{1}^{\ell}=g|M_{i,\}};$ . Consider the following statement

$I(j)$ : There exist isotopjes $\overline{k}^{i}$ : $M_{i}\times[0,p]\rightarrow Q\times[0,p],$ $i=1,$ $\cdots$ , $n$ , such that $\overline{k}_{0}^{l}=fl_{J\backslash }$

$|M_{i},\overline{k}_{p}^{i}=g|M_{i},$ $\overline{k}_{t}^{r}$ (bdry $M_{r}$) $\cap\overline{k_{t}^{l}}$ (bdry $M_{s}$ ) $=\phi$ for $r,$
$s\epsilon\{1, \cdots , n\},$ $t\epsilon[o,p]$ and $\overline{k^{r}}(M$,

$\times[o, p])\cap\overline{k^{s}}(M_{\epsilon}\times[0, p])=\phi$ for $r,$ $s\epsilon\{1, \cdots , j\}$ .
By \S 3, $I(2)$ is true. Suppose that $I(j)$ is true and that $\overline{k}^{1}(M_{1}\times[o,p])\cap\overline{k}^{J+1}$

$(M_{J+1}\times[0, p])\neq\phi$ . We shall attempt to move $\overline{k}^{j+1}(M_{J+1}\times[o, p])$ off $\overline{k}^{1}(M_{1}\times[o, p])$ so
that $k^{r}(M_{r}\times[0, p])\cap\overline{k}^{s}(M_{t}\times[0, p])=\phi for/r,$ $s\epsilon\{1, \cdots , j\}$ . $Con^{\iota}s^{I}ider$ the proof in \S 3.

$)\prime 1$

In the first part of the proof, we wbrked in the interior of the cell $N$, where $N$ is a
regular neighborhood of $C_{3}$ . Note that since $3m+4\leq 2qC_{3}$ can be chosen so that $ C_{3}\cap$

$\overline{k}^{r}(M_{r}\times[0, p])=\phi$ for $r\epsilon\{2, \cdots , j\}$ and hence $N$ can be chosen so that $ N\cap\overline{k}^{r}(M_{r}\times$

$[o, p])=\phi$ .
In the second part of the proof, we worked in $\eta\times[1,2]$ . $\eta$ can be chosen so

that $\eta\cap g(M_{r})=\phi$ for $r\neq 1,j+1$ , Hence from the proof of \S 3, we can find isotopies
$\overline{k}^{i}$ : $M\iota\times[0,p+1]\rightarrow Q\times[0, p+1],$ $i=1,$ $j+1$ , such that $\overline{k}_{0}^{l}=f|M_{i},$ $h_{p+1}^{\ell}=g|M_{i},\overline{k^{1}}-(M_{1}$

$\times[0,p+1])\cap\overline{k}^{j+1}(M_{J+1}\times[0, p+1])=\phi$ . For $i=2,$ $\cdots$ , $j$ , define $\overline{k}^{t}(x, t)=(g(x), t)$ for $ t\epsilon$

$[p, p+1]$ . Now separate $\overline{h}^{2}(M_{2}\times[0, p+1])$ and $\overline{k}^{J+1}(M_{j+1}\times[o, p+1])$ as above, using
the interval $[p+1.p+2]$ if necessary. By induction, $I(j+1)$ is true, hence, by induction,
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the theorem is true.

Note by choosing carefully the required $\eta^{\prime}s$ in the two $pr\infty fs$ above, we have
the following.

Corollary 2. Let $M_{i},$ $Q,f$ and $g$ be as in Theorem 2 except suppose that there
exists a connectted nonempty open subset $V$ of bdry $Q$ such that $ f(bdryM_{t})\cap V\neq\phi$

for each $i$. The isotopy $h_{t}$ can be chosen so that $h_{t}|$ bdry $Q-V$ is the identity for
all $t$ and $i$.

4. Proof of Theorem 1. Suppose $P=|K/T|$ where $K$ and $T$ are given in the
definition that $P$ is reduced. Let $a$ be the cone point and let $p;|K|\rightarrow P$ be the
usual projection map. (Note that, in general, $p$ is not PL.) Let $\overline{R}$ be the second derived
neighborhood of the $(k-1)$-skeleton of $K$ in $K$ and let $R=p(\overline{R})$ . Note that $Ct(|K|-\overline{R})$

$=C\ell(P-R)=\cup D_{i}$ where $\{D_{i}\}$ is a collection of disjoint $k$-cells. Let $f$ and $g$ be two
embeddings of $P$ into $E^{2k+1}$ . By either [2] or [7], there is an isotopy $k_{t}$ of $E^{2k+1}$

onto itself such that $k_{0}=identity$ and $k_{1}f|R=g|R$. Let $N_{0}$ be a regular neighborhood
of $g$ ( $|$ st $(a,$ $K/T)|$ ) mod $f(Ct(P-|st(a, K/T)|))\cup g(Cl(P-|st(a, K/T)|))$ in $E^{2k+1}$

[1] and let $N$ be a regular neighborhood of $g(Cl(R-|st(a, K/T)|))$ mod $f(\cup D_{i})\cup g$

$(\cup D_{i})$ in $Cl(E^{2k+1}-N_{0})$ . Let $Q=Cl(E^{2k+1}-N),$ $V=int$ (bdry $N_{0}\cap MryN$). Hence
$k_{1}f|\cup D_{i}$ and $g|\cup D_{i}$ are two embeddings $of\cup D_{i}$ into $Q$ which satisfy the hypotheses
of Corollary 2. Hence there is an isotopy $\overline{h}_{t}$ of $Q$ onto itself such that $\overline{h}_{0}=identity$ ,
$\overline{h}_{t}|bdry$ $Q-V$ is the $identity$

{

and $\overline{h}_{1}k_{1}f|\cup D_{i}=g|\cup D_{i}$ . Define an isotopy $h_{t}$ of
$E^{2k+1}$ onto itself by

$h_{t}(x)=\overline{h_{t}}(x)$ $x\epsilon Q$

$=x$ $x\epsilon Cl(N-N_{0})$

$=j_{t}(x)$ $x\epsilon N_{0}$

where $j_{t}$ is an isotopy of $N_{0}$ onto itself which is the conical extension of $h_{t}|$ bdry $N_{0}$

$\cap bdryN$ and the identity on bdry $N_{0}$-bdry $N$. The composition $h_{t}k_{t}$ gives the desired
isotopy.
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