ON PIECEWISE LINEAR UNKNOTTING OF POLYHEDRA

By

L. S. Husch

(Received June 23, 1969)

1. Introduction. A polyhedron P unknots in a $\operatorname{PL}(=$ piecewise linear) manifold M if for any two homotopic PL-embeddings, f, g, of P into M, there is a PL-isotopy, $h_{t}, t \in[0,1]$, of M such that $h_{0}=$ identity and $h_{1} f=g$. If P is a_compact k-dimensional polyhedron, it follows from general position that P unknots in Euclidean ($2 k+2$)-space, $E^{2 k+2}$, and, in general, P knots in $E^{2 k+1}$. One problem in PL-topology has been to determine conditions on P so that P unknots in $E^{2 k+1}$.

Wu [8] showed that a necessary and sufficient condition was the vanishing of certain obstructions in the integral $2 k$-cohomology group of the reduced symmetric product of P. Some other sufficient conditions for the unknotting of P in $E^{2 k+1}$ are

1) P is a connected closed PL-manifold (Zeeman [9]) ;
2) $H^{k}(P)=0$ (Price [7]) ;
3) P is a connected homology manifold (Edwards [2]);
4) P collapses to a subpolyhedron which unknots in $E^{2 k+1}$ (Edwards) [2]).

Let K be a finite complex and let T be a subcomplex. Consider the complex K / T obtained from the first derived of K by removing the first derived neighborhood of T and adding the cone over the boundary of this neighborhood. A polyhedron P is called reduced if it is PL-homeomorphic to the underlying polyhedron of K / T where K is a finite complex and T is a maximal tree in K; i. e., T is a maximal contractible subcomplex of dimension one in K. Some examples of reduced polyhedra are closed connected PL-manifolds.

Theorem 1. Reduced k-dimensional polyhedra unknot in $E^{2 k+1}, k>1$.
It is easily seen that if K and T are as above in the definition of a reduced polyhedron, then the underlying polyhedron of K and the underlying polyhedron of K / T have the same simple homotopy type [6].

Corollary 1. If P is a connected k-dimensional polyhedron which knots in $E^{2 k+1}$, then there exists a polyhedron of the same simple homotopy type of P which unknots in $E^{2 k+1}, k>1$.

In proving this theorem we need a lemma which extends to give a generalization of Zeeman's unknotting theorem [9] for proper embeddings.

Theorem 2. Let $\left\{M_{i}\right\}, i=1, \cdots, n$, be a collection of disjoint compact orientable $(2 m-q+1)$-connected PL-manifolds with nonempty boundaries, $m=$ maximum $\left\{m_{i}=\right.$ dimension $\left.M_{i}\right\}$, and let Q be a ($2 m-q+2$)-connected PL-q-manifold with nonempty boundary, $3 m+4 \leq 2 q$. If f and g are two homotopic (relative \cup bdry M_{i}) proper PLembeddings of $\cup M_{i}$ into Q such that $f \mid \cup$ bdry $M_{i}=g \mid \cap$ bdry M_{i} and $f(\cup$ bdry M_{i}) is contained in a single boundary component of Q, then there is a PL-isotopy $h_{t}, t \in[0,1]$, of Q onto itself such that $h_{0}=$ identity and $h_{1} f=g$.

Note that if we require that h_{t} be the identity on bdry Q or if we did not require that U bdry M_{i} be mapped into a single boundary component of Q, then there are counterexamples to the theorem.
2. Preliminaries. We shall assume familiarity with either [4] or [9]. All maps will be assumed to be PL unless stated otherwise; hence, we shall drop the prefix PL. In the proof of Theorem 2 we shall assume that all manifolds considered are orientable and thus have some fixed orientation. The boundary of a manifold shall have its orientation induced from the manifold. Hence, if N is oriented, then $N \times[0,1]$ shall be oriented so that the natural map $N \longrightarrow N \times\{0\}$ is orientation preserving. All homeomorphisms, unless stated otherwise, shall be orientation preserving.

Cl , bdry, int will mean closure, boundary and interior respectively.
3. Proof of Theorem 2 when $n=2$. By Zeeman [9 ; Theorem 24], there exist isotopies $k^{i}: M_{i} \times[0,1] \longrightarrow Q \times[0,1], i=1,2$, such that $k_{0}^{i}=f\left|M_{i}, k_{1}^{i}=g\right| M_{i}$, and $k_{t}^{i} \mid$ bdry $M_{i}=f$ for all t. Let $M_{i}^{*}=k^{i}\left(M_{i} \times[0,1]\right)$. By general position, we may assume that $\operatorname{dim}\left(M_{1}^{*} \cup M_{2}^{*}\right) \leq 2 m-q+1$. By the engulfing theorem [9 ; Theorem 20], there exist collapsible polyhedra C_{i} in int M_{i}^{*} such that $M_{i}^{*} \cap M_{2}^{*} \subseteq C_{i}$ and $\operatorname{dim} C_{i} \leq 2 m-q+2$. Again by the engulfing theorem, there is a collapsible polyhedron C_{3} in int $(Q \times[0,1])$ such that $C_{1} \cup C_{2} \subseteq C_{3}$ and $\operatorname{dim} C_{3} \leq 2 m-q+3$. By general position and the restriction $3 m+4 \leq 2 q$, we may assume that $C_{3} \cap\left(M_{1}^{*} \cup M_{2}^{*}\right)=C_{1} \cup C_{2}$. Hence, by taking second derived neighborhoods, there is a ($q+1$)-cell N in int $(Q \times[0,1])$ such that $N \cup M_{i}^{*}$ is a properly embedded $\left(m_{i}+1\right)$-cell in N and $N \cup M_{i}^{*}$ and $N \cup M_{2}^{*}$ have disjoint boundaries, say S_{1}, S_{2}, respectively. Suppose $N \cup M_{i}^{*}$ and N are oriented compatibly with M_{i}^{*} and $Q \times[0,1]$, respectively.

Propostion. If the inclusion $i: S_{2} \longrightarrow$ bdry $N-S_{1}$ represents the trivial element of $\pi_{m_{2}}$ (bdry $N-S_{1}$), then there is an isotopy $k_{t}, t \in[0,1]$, of N such that $k_{0}=$ identity, $k_{t} \mid$ bdry $N=$ identity and $k_{1}\left(M_{2}^{*} \cap N\right) \cap\left(M_{1}^{*} \cap N\right)=\phi$.

This proposition is well known. By Irwin [5] [9; Theorem 23], S_{2} bounds a ($m_{2}+1$)-cell C in $N-M_{1}^{*}$; now apply Zeeman's unknotting theorem for codimension three cell pairs [10] [9; Cor. 1 to Theorem 9].

Hence, if the inclusion i represents the trivial element of $\pi_{m_{2}}$ (bdry $N-S_{1}$), we can move M_{2}^{*} off of M_{i}^{*} and the theorem would follow from [3]. Therefore, suppose that i represents a non-trivial element of $\pi_{m_{2}}$ (bdry $N-S_{1}$).

Let $p_{i} \in g\left(\right.$ bdry $\left.M_{i}\right), q_{i} \in S_{i}, i=1,2$. There exist arcs α_{i} in M_{i}^{*} such that bdry $\alpha_{i}=\left\{p_{i} \times\{1\}, q_{i}\right\}$ and int $\alpha_{i} \subset$ int $M_{i}^{*}-N$. Let α be an arc in bdry Q such that bdry $\alpha=\left\{p_{1}, p_{2}\right\}$ and int $\alpha \subseteq$ bdry $Q-g\left(b d r y\left(M_{1} \cup M_{2}\right)\right)$. Note that if $!2 m-q+1<0$, then the theorem is true; hence we can suppose that Q is simply connected. Hence there is a 2-cell D in $Q \times[0,1]$ such that bdry $D=\alpha_{1} \cup \alpha_{2} \cup \alpha \times\{1\} \cup \alpha_{3}$ where bdry $\alpha_{3}=\left\{q_{1}, q_{2}\right\}$ and int $\alpha_{3} \subseteq$ bdry $N-\left(S_{1} \cup S_{2}\right)$ and such that int $D \subseteq Q \times(0,1)-\left(N \cup M_{1}^{*} \cup M_{2}^{*}\right)$. Hence, by taking a second derived neighborhood of D, there is a ($q+1$)-cell N_{0} in $\boldsymbol{Q} \times[0,1]$ such that
i) $\bar{N}=N \cup N_{0}$ is a ($q+1$)-cell in $Q \times[0,1]$;
ii) $\bar{N} \cap M_{i}^{*}$ is a properly embedded $\left(m_{i}+1\right)$-cell in \bar{N};
iii) $\bar{N} \cap Q \times\{1\}=$ bdry $\bar{N} \cap Q \times\{1\}=\bar{\eta}$ is a regular meighborhood of $\alpha \times\{1\}$ in $Q \times\{1\} ;$
iv) $\bar{\eta} \cap M_{i}^{*}$ is a properly embedded m_{i}-cell in $\bar{\eta}$;
v) $\bar{i}_{0}=\bar{\eta} \cap($ bdry $Q \times\{1\}), \bar{A}=\bar{\eta} \cap\left(\right.$ bdry $\left.g\left(M_{i}\right) \times\{1\}\right), \bar{B}_{i}=\overline{r_{i}} \cap\left(g\left(M_{i}\right) \times\{1\}\right)$ are regular neighborhoods of $\alpha \times\{1\}, p_{i} \times\{1\}$, respectively, in bdry $Q \times\{1\}$, bdry $g\left(M_{i}\right) \times\{1\}, g\left(M_{i}\right) \times\{1\}$, respectively;
vi) the triple (bdry \bar{N}, bdry $\left(\bar{N} \cap M_{i}^{*}\right)$, bdry $\left.\left(\bar{N} \cap M_{2}^{*}\right)\right)$ is homeomorphic to (bdry $\left.N, S_{1}, S_{2}\right)$.

Let $\rho: Q \times[1] \longrightarrow Q$ be the natural map defined by $\rho(x, 1)=x$ and let $\eta=\rho(\bar{\eta})$, $\eta_{0}=\rho\left(\bar{\eta}_{0}\right), A_{i}=\rho\left(\bar{A}_{i}\right), B_{i}=\rho\left(\bar{B}_{i}\right)$. Consider the standard sphere pair ($\left.S^{q}, S^{m_{1}}\right)$. $S^{q}=\Delta_{q}^{q} \cup \Delta_{\underline{q}}$ where $\Delta_{q}^{q}, \Delta \underline{q}$ are q-cells such that bdry $\Delta_{+}^{b} \cap$ bdry $\Delta \underline{q}=\Delta_{+}^{q} \cap \Delta \underline{q}$. Similarly $S^{m_{1}}={\Lambda_{+}^{m_{1}} \cup \Delta_{-}^{m_{1}}}^{\text {s. }}$ such that $\left(\Delta_{+}^{p}, \Delta_{+}^{m 1}\right)$ and $\left(\Delta_{-}^{q}, \Delta_{-}^{m}\right)$ are cell pairs.
There exists a homeomorphism $\lambda:\left(S^{q}, S^{m_{1}}\right) \longrightarrow\left(\right.$ bdry $(\eta \times[1,2])$, bdry $\left(B_{1} \times[1\right.$, 2])) such that $\lambda\left(\Delta_{+}^{q}, \Delta_{+}^{m_{1}}\right)=\left(\eta_{0} \times[1,2], A_{1} \times[1,2]\right)$. By Irwin [5], [9; Theorem 23], there exists an embedding $\varphi: S^{m_{2}} \longrightarrow S^{q}-S^{m_{1}}$ such that $\varphi\left(S^{m_{2}}\right)$ represents any element of $\pi_{m_{2}}\left(S^{q}-S^{m_{1}}\right)$. We'll make our choice of the element of this group later ; suppose that some choice has been made.

We may assume that
vii) the m_{2}-cell $\tilde{B}=\lambda^{-1}\left(B_{2} \times\{1,2\} \cup C l\left(\right.\right.$ bdry $\left.\left.B_{2}-A_{2}\right) \times[1,2]\right) \subseteq \varphi\left(S^{m_{2}}\right)$;
viii) $C l\left(\varphi\left(S^{m_{2}}\right)-\tilde{B}\right)$ is properly embedded in Δ_{+}^{q};
ix) there exists a homeomorphism $\beta_{0}: A_{2} \times[1,2] \longrightarrow C l\left(\varphi\left(S^{m_{2}}\right)-B\right)$ such that $\lambda \beta_{0}: A_{2} \times[1,2] \longrightarrow Q \times[1,2]$ is a concordance and hence may be assumed to be an isotopy [3] such that $\lambda \beta_{0}(x, t)=(g(x), t)$ for $t=1,2$.
$\lambda \varphi\left(S^{m_{2}}\right)$ bounds a properly embedded $\left(m_{2}+1\right)$-cell D_{0} in $\eta \times[1,2]$. Again we find a homeomorphism $\beta_{1}: B_{2} \times[1,2] \longrightarrow D_{0}$ for which $\lambda \beta_{1}: B_{2} \times[1,2]$ is a concordance such that
x) $\lambda \beta_{1}(x, t)=(g(x), t), t=1,2$;
xi) $\lambda \beta_{1}(x, t)=(g(x), t), t \in[1,2], x \in C l\left(\right.$ bdry $\left.B_{2}-A_{2}\right)$;
xii) $\lambda \beta_{1} \mid A_{2} \times[1,2]=\lambda \beta_{0}$.

Define $H: M_{2} \times[1,2] \longrightarrow Q \times[1,2]$ by

$$
\begin{aligned}
H(x, t) & =(g(x), t) & & x \in C l\left(M_{2}-B_{2}\right) \\
& =\lambda \beta_{1}(x, t) & & x \in B_{2} .
\end{aligned}
$$

wit
$M_{2}^{* *}=M_{2}^{*} \cup H\left(M_{2} \times[1,2]\right)$ in $M \times[0,2] . M_{1}^{*} \cap M_{2}^{* *}=$ Int $M_{1}^{* *} \cap$ int $\left.M_{2}^{*}=\llbracket \bar{N} \cap M_{1}^{*}\right) \cup$ $\left.\left.B_{1} \times[1,2]\right)\right] \cap\left[\left(\hat{N} \cap M_{2}^{*}\right) \cup D_{0}\right]$, the intersection of a $\left(m_{1}+1\right)$-cell and a ($\left.m_{2}+1\right)$-cell, both of which are properly embedded in the ($q+1$)-cell $\left.N \cup \cup_{j} \times[1,2]\right)$. By choósing ${ }^{\sim} \varphi$ correctly above, the inclusion bdry $\left[\left(\bar{N} \cap M_{2}^{*}\right) \cup D_{0}\right] \longrightarrow$ bdry $[\bar{N} \cup(\eta \times[1,2])]$ - bdry $\left[\left(\bar{N} \cap M_{1}^{*}\right) \cup\left(B_{1} \times[1,2]\right)\right]$ will be null-homotopic and we can proceed as before after the Proposition.
4. Proof of Theorem 2 when $n>2$. There exist isotopies $k^{i}: M_{i} \times[0,1] \longrightarrow Q$ $\times[0,1], i=1, \cdots, n$, such that $k_{0}^{i}=f\left|M_{i}, k_{1}^{i}=g\right| M_{i}$. Consider the following statement $I(j):$ There exist isotopies $\bar{k}^{i}: M_{i} \times[0, p] \longrightarrow Q \times[0, p], i=1, \cdots, n$, such that $\bar{k}_{0}^{i}=f$ $\left|M_{i}, \bar{k}_{p}^{i}=g\right| M_{i}, \bar{k}_{t}^{r}\left(\right.$ bdry $\left.M_{r}\right) \cap \overline{k_{i}^{s}}\left(\right.$ bdry $\left.M_{s}\right)=\phi$ for $r, s \in\{1, \cdots, n\}, t \in[0, p]$ and $\overline{k^{r}}\left(M_{r}\right.$ $\times[0, p]) \cap \vec{k}^{s}\left(M_{s} \times[0, p]\right)=\phi$ for $r, s \in\{1, \cdots, j\}$.

By $\S 3, I(2)$ is true. Suppose that $I(j)$ is true and that $\bar{k}^{1}\left(M_{1} \times[0, p]\right) \cap \bar{k}^{j+1}$ $\left(M_{j+1} \times[0, p]\right) \neq \phi$. We shall attempt to move $\bar{k}^{j+1}\left(M_{j+1} \times[0, p]\right)$ off $\bar{k}^{1}\left(M_{1} \times[0, p]\right)$ so that $k^{r}\left(M_{r} \times[0, p]\right) \cap \bar{k}^{s}\left(M_{t} \times[0, p]\right)=\phi$ for $r, s \in\{1, \cdots, j\}$. Consider the proof in $\S 3$. In the first part of the proof, we worked in the interior of the cell N, where N is a regular neighborhood of C_{3}. Note that since $3 m+4 \leq 2 q C_{3}$ can be chosen so that $C_{3} \cap$ $\bar{k}^{r}\left(M_{r} \times[0, p]\right)=\phi$ for $r \in\{2, \cdots, j\}$ and hence N can be chosen so that $N \cap \bar{k}^{r}\left(M_{r} \times\right.$ $[0, p])=\phi$.

In the second part of the proof, we worked in $\eta \times[1,2] . \eta$ can be chosen so that $\eta \cap g\left(M_{r}\right)=\phi$ for $r \neq 1, j+1$, Hence from the proof of $\S 3$, we can find isotopies $\bar{k}^{i}: M_{i} \times[0, p+1] \longrightarrow Q \times[0, p+1], i=1, j+1$, such that $\bar{k}_{0}^{i}=f\left|M_{i}, \overline{k_{p+1}^{i}}=g\right| M_{i}, \overline{k^{1}}\left(M_{1}\right.$ $\times[0, p+1]) \cap \bar{k}^{j+1}\left(M_{j+1} \times[0, p+1]\right)=\phi$. For $i=2, \cdots, j$, define $\bar{k}^{i}(x, t)=(g(x), t)$ for $t \epsilon$ $[p, p+1]$. Now separate $\bar{k}^{2}\left(M_{2} \times[0, p+1]\right)$ and $\bar{k}^{j+1}\left(M_{j+1} \times[0, p+1]\right)$ as above, using the interval $[p+1, p+2]$ if necessary. By induction, $I(j+1)$ is true, hence, by induction,
the theorem is true.
Note by choosing carefully the required $\eta^{\prime} s$ in the two proofs above, we have the following.

Corollary 2. Let M_{i}, Q, f and g be as in Theorem 2 except suppose that there exists a connectted nonempty open subset V of bdry Q such that $f\left(\right.$ bdry $\left.M_{i}\right) \cap V \neq \phi$ for each i. The isotopy h_{t} can be chosen so that $h_{t} \mid$ bdry $Q-V$ is the identity for all t and i.
4. Proof of Theorem 1. Suppose $P=|K / T|$ where K and T are given in the definition that P is reduced. Let a be the cone point and let $p:|K| \longrightarrow P$ be the usual projection map. (Note that, in general, p is not PL.) Let \bar{R} be the second derived neighborhood of the $(k-1)$-skeleton of K in K and let $R=p(\bar{R})$. Note that $C l(|K|-\bar{R})$ $=C l(P-R)=\cup D_{i}$ where $\left\{D_{i}\right\}$ is a collection of disjoint k-cells. Let f and g be two embeddings of P into $E^{2 k+1}$. By either [2] or [7], there is an isotopy k_{t} of $E^{2 k+1}$ onto itself such that $k_{0}=$ identity and $k_{1} f|R=g| R$. Let N_{0} be a regular neighborhood of $g(|\operatorname{st}(a, K / T)|) \bmod f(C l(P-|\operatorname{st}(a, K / T)|)) \cup g\left(C l\left(P_{-\mid}|\operatorname{st}(a, K / T)|\right)\right)$ in $E^{2 k+1}$ [1] and let N be a regular neighborhood of $g(C l(R-|s t(a, K / T)|)) \bmod f\left(\cup D_{i}\right) \cup g$ $\left(\cup D_{i}\right)$ in $C l\left(E^{2 k+1}-N_{0}\right)$. Let $Q=C l\left(E^{2 k+1}-N\right), V=$ int (bdry $\left.N_{0} \cap b d r y N\right)$. Hence $k_{1} f \mid \cup D_{i}$ and $g \mid \cup D_{i}$ are two embeddings of $\cup D_{i}$ into Q which satisfy the hypotheses of Corollary 2. Hence there is an isotopy \bar{h}_{t} of Q onto itself such that $\bar{h}_{0}=$ identity, $\bar{h}_{t} \mid$ bdry $Q-V$ is the identity and $\bar{h}_{1} k_{1} f\left|\cup D_{i}=g\right| \cup D_{i}$. Define an isotopy h_{t} of $E^{2 k+1}$ onto itself by

$$
\begin{aligned}
h_{t}(x) & =\bar{h}_{t}(x) & & x \in Q \\
& =x & & x \in C l\left(N-N_{0}\right) \\
& =j_{t}(x) & & x \in N_{0}
\end{aligned}
$$

where j_{t} is an isotopy of N_{0} onto itself which is the conical extension of $h_{t} \mid$ bdry N_{0} \cap bdry N and the identity on bdry N_{0}-bdry N. The composition $h_{t} k_{t}$ gives the desired isotopy.

REFERENCES

〔1〕 M．M．Cohen．A general theory of relative regular neighborhoods．Trans．Amer．Math．Soc． 136 （1969），189－229．
〔2〕 C．H．Edwards，Jr．Unknotting polyhedral homology manifolds．Michigan Math．J． 15 （1968）， 81－95．
［3］J．F．P．Hudson．Concordance and isotopy of PL embeddings．Bull．Amer．Math．Soc． 72 （1966），534－535．
〔4］J．F．P．Hudson．Piecewise Linear Topology．W．A．Benjamin，Inc．，New York， 1969.
［5］M．C．Irwin．Embeddings of polyhedral manifolds．Ann．of Math． 82 （1965），1－14．
〔6〕．J．Milnor，Whitehead torsion．Bull．Amer．Math．Soc． 72 （1966），358－426．
［7］T．M．Price．Equivalence of embeddings of k－complexes in E^{n} for $n \leq 2 k+1$ ．Michigan Math． J． 13 （1966），65－69．
［8］W．Wu．On the isotopy of complexes in a euclidean space，I．Sci．Sinica 9 （1960），21－46．
〔9］E．C．Zeeman．Seminar on Combinatorial Topology．I．H．E．S．，Paris， 1963.
〔10］E．C．Zeeman．Unknotting Combinatorial balls．Ann．of Math． 78 （1963），501－526．
Virginia Polytechnic Institute Blacksburg，Virginia

