ON PIECEWISE LINEAR UNKNOTTING OF POLYHEDRA

By

L. S. Husch

(Received June 23, 1969)

1. Introduction. A polyhedron P unknots in a PL (=piecewise linear) manifold M if for any two homotopic PL-embeddings, f, g, of P into M, there is a PL-isotopy, $h_t, t \in [0, 1]$, of M such that h_0 =identity and $h_1 f = g$. If P is a compact k-dimensional polyhedron, it follows from general position that P unknots in Euclidean (2k+2)-space, E^{2k+2} , and, in general, P knots in E^{2k+1} . One problem in PL-topology has been to determine conditions on P so that P unknots in E^{2k+1} .

Wu [8] showed that a necessary and sufficient condition was the vanishing of certain obstructions in the integral 2k-cohomology group of the reduced symmetric product of P. Some other sufficient conditions for the unknotting of P in E^{2k+1} are

- 1) P is a connected closed PL-manifold (Zeeman [9]);
- 2) $H^{k}(P) = 0$ (Price [7]);
- 3) *P* is a connected homology manifold (Edwards [2]);
- 4) P collapses to a subpolyhedron which unknots in E^{2k+1} (Edwards) [2]).

Let K be a finite complex and let T be a subcomplex. Consider the complex K/T obtained from the first derived of K by removing the first derived neighborhood of T and adding the cone over the boundary of this neighborhood. A polyhedron P is called *reduced* if it is PL-homeomorphic to the underlying polyhedron of K/T where K is a finite complex and T is a maximal tree in K; i.e., T is a maximal contractible subcomplex of dimension one in K. Some examples of reduced polyhedra are closed connected PL-manifolds.

Theorem 1. Reduced k-dimensional polyhedra unknot in E^{2k+1} , k>1.

It is easily seen that if K and T are as above in the definition of a reduced polyhedron, then the underlying polyhedron of K and the underlying polyhedron of K/T have the same simple homotopy type [6].

Corollary 1. If P is a connected k-dimensional polyhedron which knots in E^{2k+1} , then there exists a polyhedron of the same simple homotopy type of P which unknots in E^{2k+1} , k > 1.

In proving this theorem we need a lemma which extends to give a generalization of Zeeman's unknotting theorem [9] for proper embeddings.

L. S. HUSCH

Theorem 2. Let $\{M_i\}$, $i=1, \dots, n$, be a collection of disjoint compact orientable (2m-q+1)-connected PL-manifolds with nonempty boundaries, m=maximum $\{m_i=dimension M_i\}$, and let Q be a (2m-q+2)-connected PL-q-manifold with nonempty boundary, $3m+4\leq 2q$. If f and g are two homotopic (relative \cup bdry M_i) proper PL-embeddings of $\cup M_i$ into Q such that $f| \cup$ bdry $M_i=g| \cap$ bdry M_i and $f(\cup$ bdry $M_i)$ is contained in a single boundary component of Q, then there is a PL-isotopy h_i , $t \in [0, 1]$, of Q onto itself such that $h_0=identity$ and $h_1f=g$.

Note that if we require that h_i be the identity on bdry Q or if we did not require that \cup bdry M_i be mapped into a single boundary component of Q, then there are counterexamples to the theorem.

2. Preliminaries. We shall assume familiarity with either [4] or [9]. All maps will be assumed to be PL unless stated otherwise; hence, we shall drop the prefix PL. In the proof of Theorem 2 we shall assume that all manifolds considered are orientable and thus have some fixed orientation. The boundary of a manifold shall have its orientation induced from the manifold. Hence, if N is oriented, then $N \times [0,1]$ shall be oriented so that the natural map $N \longrightarrow N \times \{0\}$ is orientation preserving. All homeomorphisms, unless stated otherwise, shall be orientation preserving.

Cl, bdry, int will mean closure, boundary and interior respectively.

3. Proof of Theorem 2 when n=2. By Zeeman [9; Theorem 24], there exist isotopies $k^i: M_i \times [0,1] \longrightarrow Q \times [0,1], i=1,2$, such that $k_0^i=f | M_i, k_1^i=g | M_i$, and $k_i^i |$ bdry $M_i=f$ for all t. Let $M_i^*=k^i (M_i \times [0,1])$. By general position, we may assume that dim $(M_1^* \cup M_2^*) \leq 2m-q+1$. By the engulfing theorem [9; Theorem 20], there exist collapsible polyhedra C_i in int M_i^* such that $M_i^* \cap M_2^* \subseteq C_i$ and dim $C_i \leq 2m-q+2$. Again by the engulfing theorem, there is a collapsible polyhedron C_3 in int $(Q \times [0,1])$ such that $C_1 \cup C_2 \subseteq C_3$ and dim $C_3 \leq 2m-q+3$. By general position and the restriction $3m+4\leq 2q$, we may assume that $C_3 \cap (M_1^* \cup M_2^*) = C_1 \cup C_2$. Hence, by taking second derived neighborhoods, there is a (q+1)-cell N in int $(Q \times [0,1])$ such that $N \cup M_i^*$ is a properly embedded (m_i+1) -cell in N and $N \cup M_1^*$ and $N \cup M_2^*$ have disjoint boundaries, say S_1, S_2 , respectively. Suppose $N \cup M_i^*$ and N are oriented compatibly with M_i^* and $Q \times [0,1]$, respectively.

Propostion. If the inclusion $i: S_2 \longrightarrow bdry N - S_1$ represents the trivial element of π_{m_2} (bdry $N - S_1$), then there is an isotopy $k_t, t \in [0, 1]$, of N such that $k_0 = identity, k_t | bdry N = identity$ and $k_1 (M_2^* \cap N) \cap (M_1^* \cap N) = \phi$.

This proposition is well known. By Irwin [5] [9; Theorem 23], S_2 bounds a (m_2+1) -cell C in $N-M_1^*$; now apply Zeeman's unknotting theorem for codimension three cell pairs [10] [9; Cor. 1 to Theorem 9].

88

Hence, if the inclusion *i* represents the trivial element of π_{m_2} (bdry $N-S_1$), we can move M_2^* off of M_1^* and the theorem would follow from [3]. Therefore, suppose that *i* represents a non-trivial element of π_{m_2} (bdry $N-S_1$).

Let $p_i \,\epsilon \, g$ (bdry M_i), $q_i \,\epsilon \, S_i$, i=1, 2. There exist arcs α_i in M_i^* such that bdry $\alpha_i = \{p_i \times \{1\}, q_i\}$ and int $\alpha_i \subset$ int $M_i^* - N$. Let α be an arc in bdry Q such that bdry $\alpha = \{p_1, p_2\}$ and int $\alpha \subseteq$ bdry Q-g (bdry $(M_1 \cup M_2)$). Note that if 2m-q+1<0, then the theorem is true; hence we can suppose that Q is simply connected. Hence there is a 2-cell D in $Q \times [0, 1]$ such that bdry $D = \alpha_1 \cup \alpha_2 \cup \alpha \times \{1\} \cup \alpha_3$ where bdry $\alpha_3 = \{q_1, q_2\}$ and int $\alpha_3 \subseteq$ bdry $N-(S_1 \cup S_2)$ and such that int $D \subseteq Q \times (0, 1)-(N \cup M_1^* \cup M_2^*)$. Hence, by taking a second derived neighborhood of D, there is a (q+1)-cell N_0 in $Q \times [0, 1]$ such that

- i) $\overline{N} = N \cup N_0$ is a (q+1)-cell in $Q \times [0,1]$;
- ii) $\overline{N} \cap M_i^*$ is a properly embedded (m_i+1) -cell in \overline{N} ;
- iii) $\overline{N} \cap Q \times \{1\} = bdry \ \overline{N} \cap Q \times \{1\} = \overline{\eta}$ is a regular meighborhood of $\alpha \times \{1\}$ in $Q \times \{1\}$;
- iv) $\overline{\eta} \cap M_i^*$ is a properly embedded m_i -cell in $\overline{\eta}$;
- v) $\overline{\gamma}_0 = \overline{\eta} \cap (\text{bdry } Q \times \{1\}), \ \overline{A} = \overline{\eta} \cap (\text{bdry } g(M_i) \times \{1\}), \ \overline{B_i} = \overline{\eta} \cap (g(M_i) \times \{1\}) \text{ are regular neighborhoods of } \alpha \times \{1\}, \ p_i \times \{1\}, \ \text{respectively, in bdry } Q \times \{1\}, \ \text{bdry } g(M_i) \times \{1\}, \ g(M_i) \times \{1\}, \ \text{respectively;} \end{cases}$
- vi) the triple (bdry \overline{N} , bdry $(\overline{N} \cap M_1^*)$, bdry $(\overline{N} \cap M_2^*)$) is homeomorphic to (bdry N, S_1, S_2).
- Let $\rho: Q \times [1] \longrightarrow Q$ be the natural map defined by $\rho(x, 1) = x$ and let $\eta = \rho(\overline{\eta})$, $\eta_0 = \rho(\overline{\eta}_0), A_i = \rho(\overline{A}_i), B_i = \rho(\overline{B}_i)$. Consider the standard sphere pair (S^q, S^{m_1}) . $S^q = \mathcal{A}^q_+ \cup \mathcal{A}^q_-$ where $\mathcal{A}^q_+, \mathcal{A}^q_-$ are q-cells such that bdry $\mathcal{A}^b_+ \cap$ bdry $\mathcal{A}^q_- = \mathcal{A}^q_+ \cap \mathcal{A}^q_-$. Similarly $S^{m_1} = \mathcal{A}^{m_1}_+ \cup \mathcal{A}^{m_1}_-$ such that $(\mathcal{A}^p_+, \mathcal{A}^{m_1}_+)$ and $(\mathcal{A}^q_-, \mathcal{A}^{m_1}_-)$ are cell pairs.

There exists a homeomorphism $\lambda: (S^q, S^{m_1}) \longrightarrow (bdry (\eta \times [1, 2]), bdry (B_1 \times [1, 2]))$ such that $\lambda(\mathcal{A}^q_+, \mathcal{A}^{m_1}_+) = (\eta_0 \times [1, 2], A_1 \times [1, 2])$. By Irwin [5], [9; Theorem 23], there exists an embedding $\varphi: S^{m_2} \longrightarrow S^q - S^{m_1}$ such that $\varphi(S^{m_2})$ represents any element of $\pi_{m_2}(S^q - S^{m_1})$. We'll make our choice of the element of this group later; suppose that some choice has been made.

We may assume that

- vii) the m_2 -cell $\widetilde{B} = \lambda^{-1} (B_2 \times \{1, 2\} \cup Cl (bdry \ B_2 A_2) \times [1, 2]) \subseteq \varphi(S^{m_2});$
- viii) $Cl(\varphi(S^{m_2}) \tilde{B})$ is properly embedded in \mathcal{A}^q_+ ;
- ix) there exists a homeomorphism $\beta_0: A_2 \times [1, 2] \longrightarrow Cl(\varphi(S^{m_2}) B)$ such that $\lambda \beta_0: A_2 \times [1, 2] \longrightarrow Q \times [1, 2]$ is a concordance and hence may be assumed to be an isotopy [3] such that $\lambda \beta_0(x, t) = (g(x), t)$ for t = 1, 2.

L. S. HUSCH

 $\lambda \varphi(S^{m_2})$ bounds a properly embedded (m_2+1) -cell D_0 in $\eta \times [1,2]$. Again we find a homeomorphism $\beta_1: B_2 \times [1,2] \longrightarrow D_0$ for which $\lambda \beta_1: B_2 \times [1,2]$ is a concordance such that

and 3

x) $\lambda \beta_1(x, t) = (g(x), t), t = 1, 2;$

xi) $\lambda \beta_1(x, t) = (g(x), t), t \in [1, 2], x \in Cl(bdry, B_2 - A_2);$

xii) $\lambda\beta_1 | A_2 \times [1, 2] = \lambda\beta_0.$

Define $H: M_2 \times [1, 2] \longrightarrow Q \times [1, 2]$ by

$$\begin{array}{rcl} H(x,t) &=& (g(x),t) & x \in Cl(M_2-B_2) \\ &=& \lambda \beta_1(x,t) & x \in B_2. \end{array}$$

Note that H is a concordance such that $H(x, 2) = (g(x), 2), x \in M_2$,

Consider $M_{1}^{**} = M_{1}^{*} \cup g(M_{1}) \times [1, 2]$ and

 $M_2^{**} = M_2^* \cup H(M_2 \times [1, 2])$ in $M \times [0, 2]$. $M_1^{**} \cap M_2^{**} = \operatorname{Int} M_1^{**} \cap \operatorname{int} M_2^{**} = [(\overline{N} \cap M_1^*) \cup B_1 \times [1, 2])] \cap [(\widehat{N} \cap M_2^*) \cup D_0]$, the intersection of a (m_1+1) -cell and a (m_2+1) -cell, both of which are properly embedded in the (q+1)-cell $N \cup [\eta \times [1, 2])$. By choosing φ correctly above, the inclusion bdry $[(\overline{N} \cap M_2^*) \cup D_0] \longrightarrow \operatorname{bdry} [\overline{N} \cup (\eta \times [1, 2])] - \operatorname{bdry} [(\overline{N} \cap M_1^*) \cup (B_1 \times [1, 2])]$ will be null-homotopic and we can proceed as before after the Proposition.

4. Proof of Theorem 2 when n>2. There exist isotopies $k^i: M_i \times [0, 1] \longrightarrow Q$ $\times [0,1], i=1, \dots, n$, such that $k_0^i = f | M_i, k_1^i = g | M_i$. Consider the following statement I(j): There exist isotopies $\overline{k}^i: M_i \times [0, p] \longrightarrow Q \times [0, p], i=1, \dots, n$, such that $\overline{k}_0^i = f | M_i, \overline{k}_p^i = g | M_i, \overline{k}_i^r$ (bdry M_r) $\cap \overline{k}_i^s$ (bdry M_s) = ϕ for $r, s \in \{1, \dots, n\}, t \in [0, p]$ and $\overline{k^r}(M_r \times [0, p]) \cap \overline{k^s}(M_s \times [0, p]) = \phi$ for $r, s \in \{1, \dots, j\}$.

By § 3, I(2) is true. Suppose that I(j) is true and that $\overline{k}^1(M_1 \times [0, p]) \cap \overline{k}^{j+1}(M_{j+1} \times [0, p]) \neq \phi$. We shall attempt to move $\overline{k}^{j+1}(M_{j+1} \times [0, p])$ off $\overline{k}^1(M_1 \times [0, p])$ so that $k^r(M_r \times [0, p]) \cap \overline{k}^s(M_t \times [0, p]) = \phi$ for $r, s \in \{1, \dots, j\}$. Consider the proof in § 3. In the first part of the proof, we worked in the interior of the cell N, where N is a regular neighborhood of C_3 . Note that since $3m+4 \leq 2q C_3$ can be chosen so that $C_3 \cap \overline{k}^r(M_r \times [0, p]) = \phi$ for $r \in \{2, \dots, j\}$ and hence N can be chosen so that $N \cap \overline{k}^r(M_r \times [0, p]) = \phi$.

In the second part of the proof, we worked in $\eta \times [1, 2]$. η can be chosen so that $\eta \cap g(M_r) = \phi$ for $r \neq 1, j+1$, Hence from the proof of § 3, we can find isotopies $\overline{k}^i : M_i \times [0, p+1] \longrightarrow Q \times [0, p+1], i=1, j+1$, such that $\overline{k}_0^i = f | M_i, \overline{k}_{p+1}^i = g | M_i, \overline{k}^i (M_1 \times [0, p+1]) \cap \overline{k}^{j+1} (M_{j+1} \times [0, p+1]) = \phi$. For $i=2, \dots, j$, define $\overline{k}^i (x, t) = (g(x), t)$ for $t \in [p, p+1]$. Now separate $\overline{k}^2 (M_2 \times [0, p+1])$ and $\overline{k}^{j+1} (M_{j+1} \times [0, p+1])$ as above, using the interval [p+1, p+2] if necessary. By induction, I(j+1) is true, hence, by induction,

90

the theorem is true.

Note by choosing carefully the required $\eta' s$ in the two proofs above, we have the following.

Corollary 2. Let M_i , Q, f and g be as in Theorem 2 except suppose that there exists a connected nonempty open subset V of bdry Q such that $f(bdry M_i) \cap V \neq \phi$ for each i. The isotopy h_i can be chosen so that $h_i \mid bdry Q - V$ is the identity for all t and i.

4. Proof of Theorem 1. Suppose P = |K/T| where K and T are given in the definition that P is reduced. Let a be the cone point and let $p: |K| \longrightarrow P$ be the usual projection map. (Note that, in general, p is not PL.) Let \overline{R} be the second derived neighborhood of the (k-1)-skeleton of K in K and let $R = p(\overline{R})$. Note that $Cl(|K| - \overline{R}) = Cl(P-R) = \bigcup D_i$ where $\{D_i\}$ is a collection of disjoint k-cells. Let f and g be two embeddings of P into E^{2k+1} . By either [2] or [7], there is an isotopy k_t of E^{2k+1} onto itself such that k_0 =identity and $k_1 f |R = g|R$. Let N_0 be a regular neighborhood of $g(|st(a, K/T)|) \mod f(Cl(P-|st(a, K/T)|)) \cup g(Cl(P-|st(a, K/T)|)) \mod f(\cup D_i) \cup g(\cup D_i) \inf Cl(E^{2k+1} - N_0)$. Let $Q = Cl(E^{2k+1} - N)$, $V = int (bdry <math>N_0 \cap bdry N$). Hence $k_1 f | \cup D_i$ and $g | \cup D_i$ are two embeddings of $\cup D_i$ into Q which satisfy the hypotheses of Corollary 2. Hence there is an isotopy \overline{h}_t of Q onto itself such that $\overline{h}_0 = identity and \overline{h}_1 k_1 f | \cup D_i = g | \cup D_i$. Define an isotopy h_t of E^{2k+1} onto itself by

where j_t is an isotopy of N_0 onto itself which is the conical extension of $h_t | bdry N_0 \cap bdry N$ and the identity on bdry N_0 -bdry N. The composition $h_t k_t$ gives the desired isotopy.

L. S. HUSCH

REFERENCES

- [1] M. M. Cohen. A general theory of relative regular neighborhoods. Trans. Amer. Math. Soc. 136 (1969), 189-229.
- [2] C. H. Edwards, Jr. Unknotting polyhedral homology manifolds. Michigan Math. J. 15 (1968), 81-95.
- [3] J. F. P. Hudson. Concordance and isotopy of PL embeddings. Bull. Amer. Math. Soc. 72 (1966), 534-535.
- [4] J. F. P. Hudson. Piecewise Linear Topology. W. A. Benjamin, Inc., New York, 1969.
- [5] M. C. Irwin. Embeddings of polyhedral manifolds. Ann. of Math. 82 (1965), 1-14.
- [6] J. Milnor, Whitehead torsion. Bull. Amer. Math. Soc. 72 (1966), 358-426.
- [7] T. M. Price. Equivalence of embeddings of k-complexes in E^n for $n \le 2k+1$. Michigan Math. J. 13 (1966), 65-69.
- [8] W. Wu. On the isotopy of complexes in a euclidean space, I. Sci. Sinica 9 (1960), 21-46.
- [9] E. C. Zeeman. Seminar on Combinatorial Topology. I. H. E. S., Paris, 1963.

reader pare to design as a contract of the second

and the second secon

in et de groß gant dat de soorte

[10] E. C. Zeeman. Unknotting Combinatorial balls. Ann. of Math. 78 (1963), 501-526.

Virginia Polytechnic Institute Blacksburg, Virginia

الأجري المستند المتحد أجتري المراج

- Set 1. มี สุราช 1. อนได้ 66

7

92