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1. Introduction. A polyhedron P wunknots in a PL (=piecewise linear) manifold
M if for any two homotopic PL-embeddings, f, g, of P into M, there is a PL-isotopy,
he,te[0,1], of M such that hy=identity and k, f=g. If P is a compact k—dimensional
polyhedron, it follows from general position that P unknots in Euclidean (2k+ 2)-space,
E®*¥2, and, in general, P knots in E?%+!, One problem in PL-topology has been to
determine conditions on P so that P unknots in E 2+,

Wu showed that a necessary and sufficient condition was the vanishing of
certain obstructions in the integral 2k-cohomology group of the reduced symmetric
product of P. Some other sufficient conditions for the unknotting of P in E2+! are

1) P is a connected closed PL-manifold (Zeeman [9]);

2) H*(P)=0 (Price [7]);

3) P is a connected homology manifold (Edwards [2]);

4) P collapses to a subpolyhedron which unknots in EZ2¢+! (Edwards) [2]).

Let K be a finite complex and let 7 be a subcomplex. Consider the complex
K/T obtained from the first derived of K by removing the first derived neighborhood
of T and adding the cone over the boundary of this neighborhood. A polyhedron P
is called reduced if it is PL-homeomorphic to the underlying polyhedron of K/T
where K is a finite complex and 7T is a maximal tree in K; i.e., 7 is a maximal
contractible subcomplex of dimension one in K. Some examples of reduced polyhedra

are closed connected PL-manifolds.

Theorem 1. Reduced k-dimensional polyhedra unknot in E2+') k>1.

It is easily seen that if K and T are as above in the definition of a reduced
polyhedron, then the underlying polyhedron of K and the underlying polyhedron of
K/T have the same simple homotopy type [6].

Corollary 1. If P is a connected k-dimensional polyhedron which knots in
E2*, then there exists a polyhedron of the same simple homotopy type of P which
unknots in E*+1 k> 1.

In proving this theorem we need a lemma which extends to give a generalization

of Zeeman’s unknotting theorem [9] for proper embeddings.
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Theorem 2. Let {M.}, i=1, -, n, be a collection of disjoint compact orientable
(2m— g+ 1)-connected PL-manifolds with nonempty boundaries, m=maximum {m.=
dimension M}, and let Q be a (2m—q+2)-connected PL-q-manifold with nonempty
boundary, 3m+4<2q. If f and g are two homotopic (relativeUbdry M) proper PL-
embeddings of U M, into Q such that f|U bdry M;=g| N bdry M; and f(U bdry
M) is contained in a single boundary component of Q, then there is a PL—isotopy
hi, te[0,1], of Q onto itself such that hy=identity and h,f=g.

Note that if we require that % be the identity on bdry @ or if we did not
require that U bdry M; be mapped into a single boundary component of @, then there
are counterexamples to the theorem.

2. Preliminaries. We shall assume familiarity with either [4] or [9]. All maps
will be assumed to be PL unless stated otherwise; hence, we shall drop the prefix PL.
In the proof of Theorem 2 we shall assume that all manifolds considered are orientable
and thus have some fixed orientation. The boundary of a manifold shall have its
orientation induced from the manifold. Hence, if N is oriented, then Nx [0,1] shall
be oriented so that the natural map N —> Nx {0} is orientation preserving. All

homeomorphisms, unless stated otherwise, shall be orientation preserving.

Cl, bdry, int will mean closure, boundary and interior respectively.

3. Proof of Theorem 2 when #n=2. By Zeeman [9; Theorem 24], there exist
isotopies ki : M;x [0,1] —Qx [0, 1],i=1,2, such that ki=f|M;, ki=g|M;, and k|
bdry M;=f for all t. Let M;=Fk!(M;x[0,1]). By general position, we may assume
that dim (M:UM;) < 2m—q+1. By the engulfing theorem [9; Theorem 20], there exist
collapsible polyhedra C; in int M; such that M;NM;=C; and dim C;<2m—q+2. Again
by the engulfing theorem, there is a collapsible polyhedron. C; in int (@ x[0,1]) such
that C;UC,CC; and dim Cs < 2m—q+3. By general position and the restriction
3m+4<2q, we may assume that CsN(M;UM3;)=C;UC,. Hence, by taking second
derived neighborhoods, there is a (g+1)—cell N in int (@ x[0,1]) such that NUM; is
a properly embedded (m;+1)<cell in N and N U M; and NUM; have disjoint
boundaries, say Si, S;, respectively. Suppose NUM; and N are oriented compatibly
with M} and @ x [0, 1], respectively.

Propostion. If the inclusion i: S, —> bdry N—S; represents the trivial
element of nm, (bdry N—S;), then there is an isotopy ki, te[0,1], of N such that
ko= identity, k. |bdry N=identity and k (M:NN)N(MiNN)=4¢.

This proposition is well known. By Irwin [9; Theorem 23], S; bounds a
(my+1)—cell C in N—M;; now apply Zeeman’s unknotting theorem for codimension
three cell pairs [9; Cor. 1 to Theorem 9].
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Hence, if the inclusion ¢ represents the trivial element of Tmy (bdry "N—S;), we

can move M; off of M; and the theorem would follow from [3]- Therefore, suppose
that 7 represents a non-trivial element of Tmy (bdry N—S;).

Let pseg(bdry M,), qi€S;, i=1,2. There exist arcs @; in M} such that bdry
a;={p: % {1}, ¢;} and int a; C int M;—N. Let a be an arc in bdry @ such that bdry
a={py, p:} and int a € bdry Q—g (bdry (M;UM,;)). Note that if i2m—g+1<0, then
the theorem is true; hence we can suppose that @ is simply connected. Hence there is
a 2—ell D in @x[0,1] such that bdry D=a; Ua;Ua x {1} Ua; where bdry ay= {q1, 2}
and int @3 € bdry N—(S;US;) and such that int DS@Qx(0, 1)—(NUM;UM:;). Hence,
by taking a second derived neighborhood of D, there is a (g+1)—<ell N, in @x[0,1]
such that

i) N=NUN, is a (g+1)—<ell in Qx[0,1];

ii') NNM; is a properly embedded (mi+1)<ell in N;

iii) Nan{1}=bqry NN@Qx{1}=7 is a regular meighborhood of ax {1} in
Qx{1};

iv) 7NM; is a properly embedded ;—cell in 7;

v) e=yN(bdry @x{1}), A=7Nn(bdry g (M;)x {1}), Bi=7N(g(M:)x {1}) are
regular neighborhoods of a x {1}, p; X {1}, respectively, in bdry @x {1}, bdry
& (M;)x {1}, g(M:)x {1}, respectively ;

vi) the triple (bdry N, bdry (NNMj}), bdry (NN M3)) is homeomorphic to (bdry
N, S1, Se).

Let p: @x[1] —> @ be the natural map defined by p (x, 1)=x and let p=p (3),
no=p (70), Ai=p(A:), Bi=p(B;). Consider the standard sphere pair (S, S™).
Se=42U4e where 42,4% are g—cells such that bdry 42Nbdry de=4¢n4s.
Similarly S™1= 471 4™1 such that (42, 47!) and (42, 4™1) are cell pairs.

There exists a homeomorphism 2:(S¢, S™1) — (bdry (yx[1,2]), bdry (B;x[1,
2])) such that A(d4¢,dm1)=(nyx [1,2], A;%x[1,2]). By Irwin [5], [9; Theorem 23],
there exists an embedding ¢: S™2 ——> S9—S™ such that ¢ (S™2) represents any
element of 7m, (S7—S™1). We’ll make our choice of the element of this gfoup later ;

suppose that some choice has been made.

We may assume that ‘

vii) the my—cell B=1"1(Byx {1,2} UC!(bdry By— As)x [1, 2])S¢ (S™2);

viii) Cl(¢(S™2)—B) is properly embedded in 4¢;

ix) there exists a homeomorphism gy : Az % [1,2] —> Cl (¢ (S™2)—B) such that
ABo: Azx[1,2] —> @x[1,2] is a concordance and hence may be assumed
to be an isotopy [3] such that 25, (x, {)=(g (%), {) for t=1, 2.
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29 (S™2) bounds a properly embedded (m;+1)—cell Dy in 7x[1,2]. Again we
find a homeomorphiﬁm Bi: Bax[1,2]—> D, for which 48, : B;x [1, 2] is a concordance
such that

X) ABi(x, t)=(g(x), t),t=1,2; ‘
xi) ABi(x t)=(g(x),8),2te[1,2], xe Cl(bdry B;—As);
xii) 2By A% [1, 2]=2B,. ‘

Define H: M, x [1,2] —@Q x [1,2] by

H(x,t) = (g(x)1?) Xe Cl(Mz""Bz‘) '
= 2B (x 1) xeB,. o
Note that H is a concordance such that H (x, 2)=(g(x), 2), xcMo,
Consider M'=MiUg(M;)x[1,2] and o
=M, U HM;x[1,2]) in Mx[0,2]. MynMy=Int M} N int My=/KNNMHU
By x[1,2)1NNNM3:)UD,], the intersection of a (m,+1)cell and a (m,+1)—<ell, both
of which are properly embedded in the (g+1)—<ell NU (’;}’x [1, 2]). By chodbing* ¢
correctly above, the inclusion bdry [(NNM;UD,] —> bdry [NU (3% [1,2])] - bdry
[(INNM3)U(B;x[1,2])] will be null-homotopic and we can proceed as before after the

it

4. Proof of Theorem 2 when 7n>2. There exist isotopies &' : M x [0, 1]—>@
%x [0,1], =1, ---,n, such thft ki=f| M, ki=g|\M§-:. .Conside: the following statemeat
I(j): There exist isotopies k' : M;x[0,p] —> Qx [0, p], i=1,---,n, such that ki=

| M., Fi=g| M., % (bdry M,) 0 & (bdry My)=¢ for 7,s¢ (1, -, n},te[0,p] and & (M,
x [0, p1)NE* (M, x [0, p])=¢ for 7,s€{1,---,]}. '

By §3, I(2) is true. Suppose that I(j) is true and that &t (M, x [0, p])N ks
(Mys1 % [0, p])% . We shall attempt to move B+t (Mysx [0,]) off &t (Myx[0,5]) so
that & (M,x [0, p])N % (M. x [0, p])=¢ for' 7,se {1, -,j}. Consider the proof in §3.
In the first part of the proof, we worked in the inte;"i'br of the cell N, where N is a -
regular neighborhood of C;. Note that since 3m+4<2g C; can be chosen so that CsN
k" (M,x[0,p])=¢ for 7e¢{2,---,j} and hence N can be chosen so that NNk (M, x
[0, p])=¢.

In the second part of the proof, we worked in 7x[1,2]. 7 can be chosen so
that pNg(M,)=¢ for r+1,j+1, Hence from the proof of §3, we can find isotopies
ki: Mix[0,p+1] —> Qx [0, p+1],i=1, j+1, such that Ki=f|M, k\.a=g| M, kX (M,
x [0, p+11) N &+t (Myyy % [0, p+1])=¢. For i=2,..-,j, define &i(x, #)=(g(x),?) for te
[p, p+1]. Now separate k2(M,x [0, p+1]) and k/+!'(M;.1x [0, p+1]) as above, using
the interval [p+1.p+2] if necessary. By induction, 7(j+1) is true, hence, by induction,
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the theorem is true.

Note by choosing carefully the required 7’s in the two proofs above, we have
the following.

‘Corollary 2. Let M, Q,f and g be as in Theorem 2 except suppose that there
exists a connectted nonempty open subset V of bdry Q such that f(bdry M)NV+#¢
Jor each 1. The isotopy h: can be chosen so that h.|bdry Q—V is the identity for
all t and 1.

4. Proof of Theorem 1. Suppose P=|K/T| where K and T are given in the
definition that P is reduced. Let a be the cone point and let p: |K|—> P be the
usual projection map. (Note that, in general, p is not PL.) Let R be the second derived
neighborhood of the (k—1)-skeleton of K in K and let R=p (R). Note that CI(| K|—R)
=Cl{P—R)=UD; where {D;} is a collection of disjoint k—cells. Let f and g be two
embeddings of P into E?*!, By either or [7], there is an isotopy k. of E?2x+!
onto itself such that ky=identity and &, f|R=g|R. Let N, be a regular neighborhood
of g(|st(a,K/T)|) mod f(Cl(P-|st(a,K/T)|))U g(Cl(P-|st(a, K/T)|)) in E2+
and let N be a regular neighborhood of g(Cl(R-|st(a, K/T)|)) mod f(U D:)Ug
(UDy) in Cl(E**'—N,). Let Q=Cl(E?*'—N), V=int (bdry NoNbdry N). Hence
ki f| U D; and g| UD; are two embeddings of UD; into @ which satisfy the hypotheses
of Hence there is an isotopy % of @ onto itself such that ko=identity,
helbdry Q—V is the identity and &,k fl U D;=g| UD;. Define an isotopy h, of
E?+1 onto itself by n

he (x)=he (%) xeQ
=x xe CI(N—N,)
i =]z(x) xe Ny

where j; is an isotopy of NN, onto itself which is the conical extension of A;|bdry N,

Nbdry N and the identity on bdry Ny-bdry N. The composition %, &, gives the desired
isotopy.
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