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1. Introduction: Bateman has proved that

= [ axf Jote—9 L L20 £ at

where [, (x) denotes the Bessel function of order ».

(1L.1)

A generalisation of has been given by Hardy [2], who has obtained a

formula envolving Bessel functions of order v and 1—v.

Fox [3] has obtained the following result on somewhat different lines:
Theorem| IA :
If f(s) is defined by either of the formulae

f (1) con (48) dpe,

where

[ 18t1dn

exists and —1< a < b < 1, then

fdxj [ Ju-1 x—t) J. (x— )+p](x l)u Tt (x—s ]f
forv>1cmd

fdxf [u-— A )‘],,(x—-s)—i—u,]L(ﬁc:il]v_,(x-—s):lf(t)dt,

x—1

where v is an inleger or zero.

From (1.4) and (1.5), on subtraction, we get

j dx f (6= L2020 g g B0 (emg) | £ (0 a0,

x—t

where v is any integer other than 0 and 1.

(1.5)
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Fox, at the end of his paper has stated that eqns. (1.4), (1.5) and (1.6) hold
good for a function satisfying the equation

1 f sin "— 1) dt. (1.7)

Brij Mohan [4] has further generalised this result, which runs as follows :

Theorem IB: If f(s) is defined by either of the formulae (1.2), then
[ dx [ [Joges =) Tyt (= )iy (6=) g (5= 81+ Tag (5=5) T (3=

i1 (8= 8) Jager (5= 1) | £ (1) dE =41 (s), (1.8)

where 2, 45, 45, 4, are all positive.

In this paper an attempt has been made to give a generalization of (1.4) and (1.5)
together with a more generalised theorem (IB) and to obtain some new inversion

formulae. The method employed is mainly that of Hardy.
2. Theorem 1:

If f(s) is defined by either of the formulae given in

or j é(c (S:g; p(s—c) de, (2.1)

b
where I | ¢ (1) | dp exists and —1<a<b<1,
then
f"" f (Bt 1) /oy (=) L8880 1) 7 (2

]12— (x t)

]13 (x t)
x—t x—

E A T (5—s) f_‘;c(:xi_’_)] fod, (22

+ 43 Jager (x—s) =2

where 24,725,435 and 2, are all positive.

Before proceeding to the proof of this theorem, let us note that this equation

leads to the following inversion formula.
If Fi(x)= [ 2550 s (2.3)

then
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= | L/ (=) Fupaa (5)4 Jig (1=5) Figms (%14 Jigwa (5=9)
Fig (x)+ Jay-1 (x—5) Fa, (x)] dx, (2.4)
provided that 4;,4;,43 and 4, are all positive.
Proof of (2.2):

Let the R. H. S. of (2.2)= ji+jo+ ia-- .

Then, assuming first that
) b
=I @ (c) cos p (s—c)dc,

we find that the absolute convergence of

in conjunction with the restrictions imposed on ¢ (¢) enables us to change the order of
integration in the integral

f ]‘ duf¢ cos p (u—c)dc.

Hence

o

ji= [ Jut-sax [ 0 1+1>l‘~1§g£‘-~—’- dtj 6 () cos p(t—c) de

= Jt=sidx [ plaac| a+1) ‘J,ﬁ%(ﬁl cos g (x—u—c) du,

in which, after changing the order of integration, ¢ is replaced by (x— u).

Now, on using Watson’s formula

I ]; ) sin gy dt—sm (A sin~! p/a), (2.5)

CcOos

where f<a and Re(4)>0, we obtain

= j Ty (x—3) dx f $(c) cos (px—c—A+1 sin~! ) de. (2.6)

From the asymptotic expansion of the Bessel function it is obvious that the integral

f Jay (x—s) cos (ux—c—A;+1 sin~! y) dx
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is uniformly convergentwith respect to ¢ if ¢ is such that —1<a<c<b<1. Hence, given

an ¢, we can find a 4, such that
b o
H & (c) de f oy (=) cos {gt(x—c)—(k+1) sin! 1} dx‘

<[ 161 de| [ Jila—s) cos {ule—c)~(+1 sin™ ) dx | <

whenever 1>2,. It follows that if 2 is sufficiently large, then

1 I Ja (x—5) de“ & (c) cos {p(x—c)—(2+1)sin~! p} dc

——I ¢ (c) dc f Ji, (x—s) cos {g(x—c)—(4;+1) sin™! p} dx | <e.

Now using (2.6), replacing (x—s) in the second integral inside the modulus sign by «

and making A—oco0, we obtain

jjll (x—s) dx f () cos {p(x—c)—(4+1) sin~t p} de

=f é (¢) de f]ll (#) cos {p(s+u—c)—(Ay+1) sin™? ¢} du.

But we know that

J pitat- 30 dt:?/?&éé‘ﬁﬁ)“ S (2 sin” p/a) R Y

v

where 8 < a and Re (4)>0.

Hence, we get

= f 7(19?;(%2‘)‘ cos {pt(s—c)—sin! i} de.

Similarly, we obtain

¢ (c)

— e -— in~1
]g—a v =) cos {p(s—c)+sin~t u} dc
j3=J‘ \7%__(%;)—— cos {p¢(s—c)+sin~! u} de

and j4=;[ :/__(i?‘—ﬁ(c/)ﬁ)— cos {u(s—c)—sin~! p} de.
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Adding these we arrive at: i1

Jitjatjstji=2 J‘ 7—(12__(6*%2)—— [cos {p(s—c)+sin~t p}+

cos {p(s—c)—sint p}] dc
‘=4f & (c). cos {u(s—c)} de=4f(s),

which proves (2.2).

Proceeding on parallel lines the theorem could have been proved for the other
three formulae. Furthermore, the theorem may also be proved for all integral values
of 2's. The truth of (2.2), however, for negative integral values of 1's (zero and one
excluded) follows from the usual definition of the Bessel function, namely,

Jon(x)=(=1)" Jn(x), (2.8)
where % is a positive integer. The case when 2's take the value 0 or 1 are somewhat
difficult. When all the 4’ s are zero, the two terms on the R. H.S. become the products
of zero and a divergent integral. The other term, however, is the same as the integral
on the left of Bateman’s result In view of the reason given above, the theorem
also fails to hold good for 1,=1=1,. And so we may say, in a sense, that (2.2) is a
generalisation of for all values of 2's other than zero and unity.

Theorem| IA :

In the above theorvem if the function ¢ (p) is such that (1—p)* ¢ (1) is monotonic
near u=1, where 0<n<$%, then the theovem still holds good provided that it holds
Jor —1<a<b<l1.

This may easily be shown to be true on proceeding exactly as in the corresponding

result given by Fox [3].

Particular Cases of (2.2):

(i) Putting A4 +1=2=23+1=4,=v we obtain

2£(9= [ dx [ [Joste—s) v L= 4 f sy o) Lt B0 0 (29)

x—1t

which is a result due to Fox [3]. The inversion formula which it leads to, as stated by

Fox, is
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o I
276)= [ [ =) Fos ()4]o-1 (x—3) F. (%) | d,

where F,(x)= f Z.x_(gﬂ £(t) dt. (2.10)
(ii) On taking A4;+1=24;—1=24=4,=v, we get
fo= [ v LBms) an [ LU=t iy at, (2.11)

a result given by Brij Mohan [4]. It leads to the inversion formula :
S AT
fisi=s [ SIS Pl

where F,(x) is given by (2.10).

(iii) Another known result due to Brij Mohan [4], namely

x—1

2f(s)=_[ dxf J.ta=s)[ 1) J_vtl—(x:ih(v-—l)iv-;%*_’)] fdt, (2.12)

is arrived at when the substitutions,
Ay=A,=23+1=2,—1=v are made in (2.2).
This leads to the inversion formula:
: _(, L=t
if F,(x)—L v LD fiat,
then
Fs)=4 [ Jo(x=3) (ot (94 Fraa (2] di. (2.13)
(iv) Making the substitutions 2;+2=4,=v=23=4, in (2.2) we obtain
(i Topm1p JoaB=9 s 5=t) | g0 J,(x=5)], (x=1)
4f(s)—;[ de [20-1p ( +2 ]

x—Ss) (x—1) (x—s) (x—1t)
f(t) dt, (2.14)

which leads to the inversion formula
27(9)= [ [o-1) L2E=) B ()40 2529 F(x) Jar
where

F,(x)= j v ix(f‘_;t’) £t dt. (2.15)
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Rewriting (2.14) in the form

= de (=1 L=t E=S) (], vy ]s (a0 L5

X—S
(Jors (x—= 4] (e—2)} | fO) At (2.16)

and subtracting from it the following result

fdxf[ L&=9) § ety (»—1)L-L(£ﬁj,(x—t)]f<t)dt

x—s
due to Brij Mohan [4, p. (iii)] , we obtain

fdxf[ Jo(x=3) =)+ (1) x( (=] fi)dr. 217)

S

It leads to the inversion formula

(s)=%;f [6—0) L=tE=8) F )4y B9 R () i,

where

= [ Ja—nrwat

The rigorous proof of (2.17) follows exactly on the lines of the proof of the
main theorem.

(v) Substituting v for each of 4,+2, ,—2, 4;—1 and 4,+1, we obtain
A Joms (2—1) Jovs (5=5) Josr (x—2)
9= dx{ (=1 s (et B8 g () Lo ]

x—1

f(t)adt. (2.18)

The inversion formula which it leads to is

9=+ [/t (=9) Gura () s (5=9) G ) ] (219)
where G, (x)=:[ v Lfoit‘L) £(8) dt. (2.20)
(vi) Putting v for each of the numbers 4,42, 45, 43,—1 and 4,—1 in (2.2), we get
_ x—S)] Lx=t) e Jole—s)
f de [—1p S Hr1p Sl

+1 (r— t]f 1) dt (2.21)
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which leads to. the inversion formula

fo=t [ [o=0 L=2E=s) g 4y L9 gL @] dn o 222)

where

H(x)= [ L&=8 s a. | (223

—_

Writing . (5= 8)+ Jos (s—2) for 26=1)L=1 070 i 229

and thereafter subtracting from it another result due to Brij Mohan [4], namely

X—S

2£)= [ dx [ [o—1) L= g (mg o4 1) 1 B8) g oy ]
fd  (224)

we arrive at

276)= [ ax [ [0=1) L2029 f o)) L2 g ey

X—S X—S
Fl)dt, (2.25)

which leads to the inversion formula

2 F(s)= f [—1) J_;T(:"';‘_SL Gz 1)+ v+ 1)Jv_+;c<_xs;s) Gurs (%) |,

where

G, (x)= f T (x—8) £(8) dt.

Similar cases may be arrived at on particularizing the parameters in the above

manner.

3. Theorem 2 :

If f(s) be defined by either of the formulae given in theorem 1, then

af={ s [ [y 22089 g gy Lt 629 gy
w2, D00 gt S e o 31)

provided that
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b

f | (1) du

a

exists for —1<a<b<l and 2y, 23,23 and 2, are all positive.

In addition, if the function ¢ (yn) is such that (1—p)* ¢(y) is monotonic near
r=1, where 0<a<}, then the theovem still holds provided that it holds for
—1<a<b<1.

Obviously leads to the inversion formula

f [21+1 ]11:“_(_"_5)_* G, (0)+(2—1) -1 (8—5)

+13j23(x—_s)613+1( )+ Z—J—Ziﬁx——s)—Gu—( ):]f(t)dt’

X—S X—S

= [ nw-nrd

The proof of this theorem may be given in a manner similar to that of theorem 1.

where
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