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1. Introduction.
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and let the coefficients {¥{ (x)|#=0,1,2, ---} be generated by
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where (v), is the usual Pochhammer symbol defined by
Ma=v+1)(v+2)--v+n—1),n =1, (¥)=1,
M (x) #0,Q(x) + 0 are real functions, and m,r are positive integers.
In an earlier paper [87] the present author has proved, amongst other results,
the following '

Theorem. If the coefficients {¥P (x)|n=0,1,2, } be generated by (1.2), then
Jor arbitrary parameter v,
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It may be of interest to recall that the fundamental importance of this theorem
in the theory of generating functions lies in the following fact. Suppose that G [2) is

a specified hypergeometric function. Then, since v is an arbirtary parameter, the theorem
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readily gives for ¥ (x) a class of generating functions involving a hypergeometric

function of superior order. For instance, if we set
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then our theorem yields
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where v is an arbitrary parameter, m=1,2,3,-.-, and for convenience, 4 (m;4) is

taken to abbreviate the sequence of m paramaters

2 A+l 2tm—1

> m= 1.
m m m

Various special cases of the formulas (1.6) and (1.7) appear in the literature. To
quote but a few such instances, we note that the formula (1.7) reduces to the generating
function (25), p. 62 of Chaundy ‘when M(x)=1,Q(x)=—x and m=1. For
M(x)=1 and Q (x)=(—m) ™ x, (1.6) corresponds to the formula (28), p. 947 of Brafman
[2], while (1.7) gives us the relatively recent formula ([37, p. 187(55)) which, in
turn, yields his earlier result (24), p. 947 in [2] when m=2. For an alternative
derivation of the aforementioned result of Chaundy, using certain operational techniques,
see formula (4.15), p. 24 in [7]. Note also that several generalizations of the results of
Brafman, Chaundy, and others, have appeared in our earlier papers [ 9] and [10].
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Now we return to the generating relation (1.3). For »=1, it evidently has the

elegant form

(18) (=M= 8~ J(QUa1=pr 2] )= 5, iy B (=)
where

(L9) J@= 2 (s gn 2" (£0)
and

(110 RO(x)= 3 W [Q ()] (M (0],
for positive integral values of m, and #=0,1,2, ------ .

~ Starting from our main object in the present paper is to prove a generali~
zation of (1.8) in the following form : -
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where, for the sake of brevity, [a,] denotes the sequence of p parameters
Ay, Ay, *** am

([a,])» has the interpretation

1 (a;)n,

J=1

with (a;), defined above, and so on.

2. Proof of the Generating Relation (1.11).

On substituting for the coefficients {R¥ (x)|7=0,1,2,---} from (1.10), we notice

that
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since
(V)n+mk = (V)ml: (V + mk)n,

and the formula (1.11) follows immediately.

3. Particular Cases.
When p—1=0=0 and a;=v, the hypergeometric function on the right-hand side
of (1.11) reduces to

which of course is the binomial
(1—-M(x)t]™™",
and the formula (1.11) leads us at once to the generating relation (1. 8].
For p=¢ and a;=by, j=1, 2, 3, ,p (or ¢), (1.11) would readily yield the

generating function

" N N n
(3.1) né‘om R® (x)=E [M(x)t] G [Q(x)t™],

which can naturally be recovered from on setting r=1.

Next we consider, for the sake of simplicity, the special case of (1.11) when G [2]

takes the hypergeometric form, i.e., when

I (o)
(3.2) gn=-3t — 57=0,1,2,
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From and (1.11) we shall then have
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where the S—function on the right-hand side is the generalized Kampé de Fériet function
in two variables defined by (see [11], p. 199, eqn. (2.1))
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it being understood, in order to be in complete agreement with our earlier notation in
[11], that the m;, are all equal to .

In particular, when m=1 the double hypergeometric function can be expressed
as an ordinary Kampé de Fériet’s function. Following the notation of Burchnall and
Chaundy [4, p.112] in preference, for the sake of generality and elegance, to the
earlier one introduced by Kampé de Fériet himself (see [1], p. 150), we thus have

5 ,ﬁ: (@) . _n,a,,---,a,,g;.— Q(x) | [M(x)t]
S| g A |
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The special case p—1=0=1 of the last formula is worthy of note. On expressing
the hypergeometric function on the right-hand side as an infinite series of Gauss’s ,F},

if we make use of Euler’s transformation [6, p.64]




70 H. M. SRIVASTAVA

a, b a, c—b;
(3.6) oI z |=(1—2) ,F, Z_1,

we at once get

Aip 0y, ,0p3v— ;5

o . ()t _ M(x)t
=[1-M(x)t]* F s . I-M(x)t’ 1-M(x)¢

For M (x)=1 and Q(x)=—x, the formula (3.7) leads us to our earlier generating
function (18) in which, in turn, has several interesting special forms involving
Jacobi and Laguerre polynomials (see [12], §§ 2 and 3).

Finally, we observe that when g — v, the double series in (3.7) reduces to a single

one of the generalized hypérgeometric . F, function, and we thus have
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which follows immediately from our earlier generating function (1.7) if we set m=1.
Notice also that by letting M (x)=1 and @Q(x)=—x in (3.8) we shall again arrive at
the well-known formula (25), p. 62 of Chaundy [5].
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