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Let (X, d) be a metric space. A mapping $T:X\rightarrow X$ is called a contraction
mapping if there is a real number $k,$ $0<k<1$ , such that

$d(Tx, Ty)\leq kd(x, y)$ for all $x,y\epsilon X$.
The well-known Banach contraction principle states that a contration mapping of a
complete metric space $X$ into itself has a unique fixed point. This theorem has been
extensively used in proving existence and uniqueness of solutions to various functional
equations, particularly differential and integral equations. Because of its widespread
applicability there has been a search for generalizations of the Banach contraction principle.
The works of Chu and Diaz [2] and Edelstein [3], [4], are worth mentioning.

Recently Kannan [5] proved the following result.

Theorem $A$ : If $T$ is a map of the complete metric space $X$ into itself such that

$d(Tx, Ty)\leq\alpha\{d(x, Tx)+dUTy)\}$ ,

for $x,$ $y$ in $X$ and $0<\alpha<\frac{1}{2}$ , then $T$ has a unique fixed point in $X$.

The aim of this paper is to give some more general results. The result given by
Kannan [5] may be taken as a corollary to our result.

Theorem 1: If $T$ is a map of the complete metric space $X$ into itself and if
$T^{n}$ ( $n$ is a positive integer) satisfies the condition

$d(T^{n}x, T^{n}y)\leq\alpha\{d(x, T^{n}x)+d(y, T^{n}y)\}$

for $x,$ $y$ in $X$ and $0<\alpha<\frac{1}{2}$ , then $T$ has a unique fixed point in $X$.

Proof: Since $T^{n}$ satisfies the condition given in Theorem $A$ , therefore $T^{n}$ has
a unique fixed point. Let $x_{0}$ be a unique fixed point of $T^{n}$ . Then $T^{n}x_{0}=x_{0}$ . We know
that

$T(T^{n}x_{0})=T^{n}(Tx_{0})$ .

*This work was done while the author was a fellow of the Summer Research Institute, McGill
University, Montreal, 1969.
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Thus $Tx_{0}$ is a fixed point of $T^{n}$ . But $T^{n}$ has a unique fixed point $x_{0}$ therefore $Tx_{0}=x_{0}$ .
Hence $x_{0}$ is a unique fixed point of $T$. Corollary: In case $n=1$ , we get a $th\infty rem$ given
by Kannan [5].

In order to illustrate the theorem the following examples are worth mentioning.

Example 1: Let $X=[0,1$), and let

$T:X\rightarrow X$ be defined by

$Tx=\frac{x}{3}$ for all $x\epsilon[0,1]$ .

Then $T$ does not satisfy the condition

$d(Tx, Ty)\leq\alpha\{d(x, Tx)+d(y, Ty)\}$ ,

for $x,$ $y\epsilon[0,1]$ and $0<\alpha<\frac{1}{2}$ ; as one can easily see by taking $x=\frac{1}{3}$ and $y=0$ . But

$T^{2}$ satisfies the condition and therefore $T^{2}$ has a unique Pxed point. It then follows
that $T$ has a unique fixed point.

Example 2: Let $X=[0,1]$ and let

$T:X\rightarrow X$ be defined by

$Tx=\frac{9}{10}x$ for all $x\epsilon[0,1]$ .
Then $T,$ $T^{2},$ $T^{3},$ $\cdots$ , $T^{9}$ and $T^{10}$ do not satisfy the condition,

but $T^{11}$ does satisfy and $theref_{01}eT^{11}$ has a unique fixed point.
Hence $T$ has a unique fixed point.

Remark: $lfX$ is simply a metric space not necessarily a complete metric space
and $T:X\rightarrow X$ is a map such that $T^{n}$ has a unique fixed point, then $T$ has a
unique fixed point.

Theorem 2: Let $X$ be a complete metric space and let $T$ be any map of $X$

onto itself. If there exists a mapling $K$ of $X$ into itself which has a right inverse
( $i$ . $e$. $KK^{-1}=I$, identity mapping) and which makes $K^{-1}TK$ to satisfy the condition

$d(K^{-1}TKx, K^{-1}TKy)\leq\alpha\{d(x, K^{-1}TKx)+d(y, K^{-1}TKy)\}$ for $x,$ $y\epsilon X$

and $0<\alpha<\frac{1}{2}$ , then $T$ has a unique fixed point.

Proof: Since $K^{-1}TK$ satisfies condition of Theorem A and $X$ is a complete
metric space therefore $K^{-1}TK$ has a unique fixed point. Let us assume that $x_{0}$ be a
unique fixed $po$int of $K^{-1}TK$.

Then $K^{-1}TKx_{0}=x_{0}$ ,

or $KK^{-1}TKx_{0}=Kx_{0}$

or $TKx_{0}=Kx_{0}$ .
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Therefore $T$ has a unique fixed point.
In the end we prove a theorem on sequence of mappings. If a sequence of

mappings $T_{n}$ with fixed points $U_{n}$ converges to $T$ then does the sequence of corresponding
fixed points converge to the fixed point of $T$ ? Some work on this line has been
done by Bonsall [1] and Nadler Jr. [6]. Nadler Jr. has shown that if the sequence
of contraction mappings with different Lipschitz constants converges pointwise to a
conraction mapping $T$ then sequence of their fixed points does not converge to the
fixed point of $T$. He also proved the following theorem:

If $T_{n}$ : $X\rightarrow X$ is a map for $n=1,2,$ $\cdots$ , with fixed point $U_{n}$ $(n=1,2, \cdots , )$ and
if $T_{n}$ converges to $T$ uniformly, where $T$ is a contraction map with fixed point $U$, then
$U_{n}$ converges to $U$.

We prove the following theorem. Since the contraction mapping and the mapping
given in $Threm$ A are independent therefore this theorem is different from that given
by Nadler Jr.

Theorem 3: Let

(1) $T_{n}$ : $X-X$ be a map with fixed point $U_{n}$ for $n=1,2,$ $\cdots$ , and

(2) $T_{n}$ converges uniformly to $T$ where $T:X\rightarrow X$ is a map such that

$d(Tx, \mathcal{T}y)\leq\alpha\{d(x, Tx)+d(y, Ty)\}$

for $x,$ $y$ in $X$ and $0<\alpha<\frac{1}{2}$ , with fixed point U. Then $U_{n}$ converges to $U$.

Proof: By uniform convergence we get that for given $\epsilon>0$ there exists a
positive integer $N$ such that $n\geq N$ implies

$d(T_{n}x, Tx)<\frac{\epsilon}{1+\alpha}$ for all $x\epsilon X$.

Hence for $n\geq N$,

$d(U_{n}, U)=d(T_{n}U_{n}, TU)$

$\leq d(T_{n}U_{n}, TU_{n})+d(TU_{n}, TU)$

$\leq d(T_{n}U_{n}, TU_{n})+\alpha\{d(U_{n}, TU_{n})+d(U, TU)\}$

$\leq d(T_{n}U_{n}, TU_{n})+\alpha d(U_{n}, T_{n}U_{n})+\alpha d(T_{n}U_{n}, TU_{n})$

[$d(U,$ $TU)=0$ since $U$ is a fixed point of $T.$ ]

$=(1+\alpha)d(T_{n}U_{n}, TU_{n})+0$

$<\epsilon$ ,

so that $U_{n}$ converges to $U$.
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