AN INDUCTION PRINCIPLE IN SET THEORY I.

By

Мото-о Таканазні

(Received April 30, 1969)

In this paper we shall present an induction principle in *Bernays–Gödel* set theory (BG) by analogy with the weak recursion theorem in recursion theory. This will enable one to define a spacial class or an operation (in the sense of [4]) whose implicit definition is erpressed by a certain kind of formula. Since Gödel's existence theorems $M1\sim M4$ (in [4]) have been proved for normal formulas but not in general for formulas which is not normal, the induction principle we shall consider has of course a certain restriction.

Proofs that all the elements of an inductively defined class have certain property, are often carried out inductively along the definition of it. Theorem 1 justifies such proofs for classes defined by the induction principle we shall introduce. We shall use the notations in [4] without any reference.

First we shall prove the following theorem:

Theorem 1. Let $\varphi(x, X)$ be a normal formula (i. e. a formula of set theory without class quantifiers). Assume that

- (i) $\forall x \forall X \forall Y [X \subseteq Y \land \varphi(x, X) \supset \varphi(x, Y)]$ and
- (ii) $\forall x \, \forall X \, [\varphi(x, X) \supset \exists y \, [y \subseteq X \land \varphi(x, y)]].$ Then,
- (iii) $\exists ! A \ [\forall x \ [x \in A \equiv \varphi \ (x, A)] \land \forall X \ [\forall x \ [\varphi \ (x, X) \supset x \in X] \supset A \subseteq X]].$

(More precisely, $(i) \land (ii) \supset (iii)$ is provable under Bernays-Gödel axiom system A, B and C.)

Proof. Assume (i) and (ii). The uniqueness of such A in (iii) is trivial. To prove the existence of such an A, let

$$A = \{a \mid \exists y \exists \alpha \exists f [a \in f' \alpha \land \forall \beta \leq \alpha \forall x [x \in f' \beta \equiv x \in y \land \varphi (x, \mathfrak{S}(f'' \beta))]\}\}.$$

(The class A exists since the formula in the above abstraction term is normal.) We shall show that the A is the desired class.

First we claim that

(*)
$$\varphi(a, A) \supset a \in A$$
.

Suppose that $\varphi(a, A)$. By (ii), there exists a set u such that $u \subseteq A$ and $\varphi(a, u)$.

Hence we have that

(1)
$$\forall t \in u \exists y \exists \alpha \exists f \psi(t, y, \alpha, f),$$

where

$$\psi(t, y, \alpha, f) \equiv t \epsilon f' \alpha \wedge \forall \beta \leq \alpha \forall x \left[x \epsilon f' \beta \equiv x \epsilon y \wedge \varphi(x, \mathfrak{S}(f'' \beta)) \right].$$

By the axiom of replacement, (1) implies that there exists a set z such that

$$(2) \qquad \forall t \in u \ni y \in z \ni \alpha \in z \ni f \in z \psi(t, y, \alpha, f).$$

Now let

$$y_0 = \mathfrak{S}(z) \cup \{a\} \text{ and } \alpha_0 = \mathfrak{S}(z \cap 0n) + 1.$$

As in the proof of 7.5 in [4], there exists an f_0 such that

$$(3) f_0 \operatorname{Fn} \alpha_0 + 1 \wedge \forall \beta \leq \alpha_0 \, \forall x \, (x \in f_0 \, \beta) \equiv x \in y_0 \wedge \varphi(x, \mathfrak{S}(f_0 \, \beta)).$$

Let b be an arbitrary element of u. Then, by (2), there exist $y_1, \alpha_1, f_1 \in z$ such that $\psi(b, y_1, \alpha_1, f_1)$. In view of the definitions of y_0 and α_0 , we have that $y_1 \subseteq y_0$ and $\alpha_1 < \alpha_0$. Moreover we have that $b \in f_1 \circ \alpha_1$ and that

$$(4) \qquad \forall x \forall \beta \leq \alpha_1 \left[x \in f_1 \ \beta \equiv x \in y_1 \land \varphi \left(x, \mathfrak{S} \left(f_1 \ \beta \right) \right) \right].$$

Now we shall prove

$$(5) \qquad \forall \beta \leq \alpha_1 \left[f_1 \, \beta \subseteq f_0 \, \beta \right]$$

by the induction on β . Assume that $\beta \leq \alpha_1$ and $\forall \gamma < \beta \ [f_1 \ \gamma \subseteq f_0 \ \gamma]$. Then $\mathfrak{S}(f_1 \ \beta)$ $\subseteq \mathfrak{S}(f_0 \ \beta)$. Let $x \in f_1 \ \beta$. Then, by (4), $x \in y_1$ and $\varphi(x, \mathfrak{S}(f_1 \ \beta))$. So, by (i), $x \in y_0 \land \varphi(x, \mathfrak{S}(f_0 \ \beta))$. Hence $x \in f_0 \ \beta$ by (3). We have proved $f_1 \ \beta \subseteq f_0 \ \beta$. Now the induction is complete and we have (5). In particular, $b \in f_1 \ \alpha_1 \subseteq f_0 \ \alpha_1 \subseteq \mathfrak{S}(f_0 \ \alpha_0)$ since $\alpha_1 < \alpha_0$. Hence we have shown that $u \subseteq \mathfrak{S}(f_0 \ \alpha_0)$. Therefore $\varphi(a, \mathfrak{S}(f_0 \ \alpha_0))$, since $\varphi(a, u)$. Hence by (3), $a \in f_0 \ \alpha_0$. Hence $\varphi(a, y_0, \alpha_0, f_0)$, which implies $a \in A$. Hence (*) is proved. Next we claim that

(**)
$$\forall X \ [\forall x \ [\varphi(x, X) \supset x \in X] \supset A \subseteq X].$$

Assume that $\forall x \ [\varphi(x, X) \supset x \in X]$ and $a \in A$. We have to show that $a \in X$. By definition of A, there exist y, α and f such that $a \in f'\alpha$ and such that

$$\forall \beta \leq \alpha \ \forall \ x \ (x \in f \ \beta \equiv x \in y \land \varphi (x, \mathfrak{S}(f \ \beta))).$$

Now we propose to show that $f'\beta \subseteq X$ for every $\beta \leq \alpha$. We prove this by the induction on β . Suppose that $\forall \gamma < \beta \ [f'\gamma \subseteq X]$. Then $\mathfrak{S}(f''\beta) \subseteq X$. Let $t \in f' \in \beta$. Then $t \in y$ and $\varphi(t, \mathfrak{S}(f''\beta))$. From this and (i) it follows that $\varphi(t, X)$, from which follows that $t \in X$ using the assumption. Hence $f' \in X$ and the induction is complete. In particular we have $a \in f' \in X$, as was to be shown. Hence we have (**). Finally we claim that

(***)
$$a \in A \equiv \varphi(a,A).$$

Let $B = \{x \mid \varphi(x, A)\}$. By (*), $B \subseteq A$. Hence, by (i), $\forall x [\varphi(x, B) \supset \varphi(x, A)]$, that is, $\forall x [\varphi(x, B) \supset x \in B)]$. From this and (**) it follows that $A \subseteq B$. Therefore A = B, which means (***). This completes the proof of theorem. q. e. d.

We refer to the A in the theorem as the class inductively defined by the formula φ and denote it as

$$a \in A \stackrel{ind}{\equiv} \varphi(a, A)$$

or

$$A \stackrel{ind}{=} \{a \mid \varphi(a, A)\}.$$

Now let $\chi(a)$ be a normal formula. We think of it as a property of a set a. Let $G = \{a \mid \chi(a)\}$. Then, in order to prove

(6)
$$\forall a \ [a \in A \supset \chi(a)],$$

it suffices to prove

$$\forall a \ [\varphi(a,G) \supset a \in G],$$

in view of theorem 1. A proof of (7) may be considered as a proof of (6) along the inductive definition of A. Actually, instead of (7),

(8)
$$\forall a [\varphi(a, G \cap A) \supset a \in G]$$

suffices to conclude (6), For, (8) implies

$$\forall a [\varphi(a, G \cap A) \supset a \in G \cap A],$$

which, in turn, implies $A \subseteq G \cap A \subseteq G$. Some examples of such proofs will be given in the subsequent paper.

Next we shall examine what formulas satisfy the conditions (i) and (ii). Theorem 2 will give a sufficient condition for it.

Definition. Let φ be a formula in set theory (class variables and special classes may occur in it).

- 1. φ is called a bounded formula 1) iff no class quantifiers $(\forall X, \exists X)$ occur in it and each set quantifier in it is of the type $\forall x (x \in y \supset \cdots)$ or $\exists x [x \in y \land \cdots]$ (which we abbreviate as $\forall x \in y [\cdots]$ or $\exists x \in y [\cdots]$ respectively).
- 2. φ is called a quasi-bounded formula iff no class quantifiers occur in it and each set quantifier in it is of the type $\forall x \ (x \in y \supset \cdots)$, $\exists x \ (x \in y \land \cdots)$. $\forall x \ (x \subseteq y \supset \cdots)$ or $\exists x \ (x \subseteq y \land \cdots)$. (The last two types of quantifiers are abbreviated by $\forall x \subseteq y \ (\cdots)$ or $\exists x \subseteq y \ (\cdots)$.)

¹⁾ This definition is essentially due to A. Lévy [1].

- 3. $\Sigma_1 = \{ \exists x [\phi] | \phi \text{ is a bounded formula} \}.$
- 4. $\tilde{\Sigma}_1 = \{ \exists x [\phi] | \phi \text{ is a quasi-bounded formula} \}.$
- 5. Similarly, $\Pi_1, \Sigma_2, \Pi_2, \cdots, \widetilde{\Pi}_1, \widetilde{\Sigma}_2, \widetilde{\Pi}_2, \cdots$, are defined.
- 6. $\Sigma_1^{BG} = \{ \varphi \mid BG \vdash \varphi \equiv \psi \text{ and } \psi \in \Sigma_1 \},$ $\widetilde{\Sigma}_1^{BG} = \{ \varphi \mid BG \vdash \varphi \equiv \psi \text{ and } \psi \in \widetilde{\Sigma}_1 \},$

etc.

Lemma. Suppose that $\varphi(X)$ is a quasi-bounded formula and that it has no occurrences of the form $X \in Z$ or $X \in a$. Then,

- (1) if each occurrence of the form $u \in X$ (or $Y \in X$) in $\varphi(X)$ lies in a positive part (in this case, briefly, we say $\varphi(X)$ is positive), then
 - $(1.1) BG \vdash \varphi(X) \supset \exists y [y \subseteq X \land \varphi(y)] \text{ and}$
- (2) if each occurrence of the form $u \in X$ (or $Y \in X$) in $\varphi(X)$ lies in a negative part (in this case, briefly, we say $\varphi(X)$ is negative), then

$$(2.1) \quad \text{BG} \vdash \forall y \ [y \subseteq X \supset \varphi(y)] \supset \varphi(X).$$

Proof. We shall prove (1) and (2) simultaneously by the induction on the number of logical symbols in φ .

Case 1.
$$\varphi(X) \equiv a \in X$$
 or $Y \in X$.

If it is the latter case, then Y is a set. So we only prove the lemma for the former case. $\varphi(X)$ is positive but not negative.

Now suppose that $\varphi(X)$ holds. Let $y = \{a\}$. Then, $y \subseteq X$ and $\varphi(y)$. Hence we have (1.1).

Case 2. $\varphi(X)$ is an atomic formula which is not of the form in the case 1. Then $\varphi(X)$ does not contain X. So, $\varphi(X)$ is positive and at the same time negative. (1.1) and (2.1) trivially hold.

Case 3.
$$\varphi(X) \equiv \neg \psi(X)$$
.

Suppose that $\varphi(X)$ is positive. Then $\psi(X)$ is clearly negative. So, by the induction hypothesis, we have

$$\forall y [y \subseteq X \supset \psi(y)] \supset \psi(X).$$

By contraposing it,

$$\phi(X) \supset \exists y [y \subseteq X \land \phi(X)],$$

which is (1.1). Similarly if $\varphi(X)$ is negative, we have (2.1).

Case 4.
$$\varphi(X) \equiv \psi(X) \wedge \chi(X)$$
.

Suppose first that $\varphi(X)$ is positive. Then, both $\psi(X)$ and $\chi(X)$ are positive. By the induction hypothesis,

$$\phi(X) \supset \exists y [y \subseteq X \land \phi(y)]$$

and

$$\chi(X) \supset \exists y [y \subseteq X \land \chi(y)].$$

Now assume that $\varphi(X)$. Then $\psi(X)$ and $\chi(X)$. Hence by the above, there exist y_1 , $y_2 \subseteq X$ such that $\psi(y_1)$ and $\chi(y_2)$. Let $y=y_1 \cup y_2$. Since $\psi(X)$ and $\chi(X)$ are positive, we easily have that $\psi(y)$ and $\chi(y)$. Hence

$$\exists y [y \subseteq X \land \varphi(y)].$$

This proves (1.1). Next suppose that $\varphi(X)$ is negative. Then both $\psi(X)$ and $\chi(X)$ are negative. By the induction hypothesis,

$$\forall y [y \subseteq X \supset \phi(y)] \supset \phi(X)$$

and

$$\forall y \ [y \subseteq X \supset \chi(y)] \supset \chi(X).$$

Now assume that $\forall y \ [y \subseteq X \supset \varphi(y)]$. Then,

$$\forall y [y \subseteq X \supset \phi(y)] \land \forall y [y \subseteq X \supset \chi(y)].$$

From the above it follows that $\psi(X) \wedge \chi(X)$. This proves (2.1).

Case 5.
$$\varphi(X) \equiv \forall x \in a [\varphi(X, x)].$$

Suppose that $\varphi(X)$ is positive. Then $\psi(X, x)$ is positive. Hence, by the induction hypothesis, we have

$$\psi(X, x) \supset \exists y [y \subseteq X \land \psi(y, x)].$$

Assume that $\varphi(X)$. Then $\psi(X, x)$ for every $x \in a$.

Hence

$$\forall x \in a \exists y \ [y \subseteq X \land \phi(y, x)].$$

Using the axiom of replacement, we have

$$\exists z \forall x \in a \exists y \in z [y \subseteq X \land \psi(y, x)].$$

Let z_0 be such that $\forall x \in a \ni y \in z_0 \ [y \subseteq X \land \psi(y, x)]$. Let $y = \mathfrak{S}(z_0) \cap X$. Let $x \in a$. Then there exists $y_x \in z_0$ such that $y_x \subseteq X \land \psi(y_x, x)$. Clearly $y_x \subseteq y$. Hence $\psi(y, x)$. y is independent of x. Therefore we have $\exists y \ [y \subseteq X \land \forall x \in a \ [\psi(y, x)]]$, that is, $\exists y \ [y \subseteq X \land \varphi(y)]$. This proves (1.1). Next suppose that $\psi(X)$ is negative. Then $\psi(X, x)$ is also negative. By the induction hypothesis,

$$\forall y [y \subseteq X \supset \phi(y, x)] \supset \phi(X, x).$$

Assume that $\forall y \ (y \subseteq X \supset \varphi(y))$. Then

$$\forall x \in a \forall y [y \subseteq X \supset \phi(y, x)].$$

By the above, we have $\forall x \in a \ \psi(X, x)$, that is, $\varphi(X)$. This proves (2.1).

Case 6.
$$\varphi(X) \equiv \forall x \subseteq a \psi(X, x)$$
.

Similar to the case 5. q. e. d.

Theorem 2. If $\varphi(x, X)$ is in $\tilde{\Sigma}_1^{BG}$, it has no occurrences of the form $X \in \mathbb{Z}$ or $X \in a$ and each occurrence of the form $y \in X$ (or $Y \in X$) in it lies in a positive part in φ , then $\varphi(x, X)$ satisfies (i) and (ii) (in theorem 1).

 ${f Proof.}$ (i) easily follows from the last two assumptions. To prove (ii), suppose that

$$BG \vdash \varphi(x, X) \equiv \exists u \ \phi(u, x, X),$$

where $\psi(u, x, X)$ is a quasi-bounded formula. Assume that $\varphi(x, X)$. Then there exists a set u such that $\psi(u, x, X)$. $\psi(u, x, X)$ does not contain a subformula $X \in Z$ or $X \in a$ but is positive. Hence by the lemma, there exists a $y \subseteq X$ such that $\psi(u, x, y)$. Hence $\exists u \psi(u, x, y)$, that is, $\psi(x, y)$. This proves (ii). $q \in A$.

Now suppose that $\varphi(x, X)$ satisfies (i) and (ii).

Let

$$G = \{ \langle x, y \rangle \mid \varphi(x, y) \}.$$

Since $\varphi(x, X)$ is normal, G exists. We can readily prove that

$$\varphi(x, X) \equiv \exists y \ [y \subseteq X \land \langle x, y \rangle \in G].$$

Since $y \subseteq X \equiv \forall t \in y \ [t \in X]$, the right-hand side formula of the equivalence is in Σ_1 and positive. Moreover it has no occurrences of the form $X \in Z$ or $X \in a$. Hence the condition of theorem 2 is also necessary in the sense of equivalence.

REFERENCES

- [1] A. Lévy, A hierarchy of formulas in set theory, Memoirs of the American Mathematical Society 57.
- [2] , Axiom schemata of strong infinity in axiomatic set theory, Pacific Journal of Mathematics, vol. 10 (1960), 223-238.
- [3] A. Mostowski, Some impredicative definitions in the axiomatic set-theory. Fundamenta Mathematicae, vol. 37 (1950), 111-124.
- [4] K. Gödel, The consistency of the axiom of choice and of the generalized continuum-hypothesis with the axioms of set theory, Annals of mathematics studies, 3 (1940).
- [5] M. Takahashi, Recursive functions of ordinal numbers and Lévy's hierarchy, Commentariorum Mathematicorum Universitatis Sanciti Pauli, vol. 17 (1968), 21-29.

Department of Mathematics Rikkyo University (St. Paul's University) Ikebukuro, Tokyo, Japan