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In this paper we shall present an induction principle in Bernays-Godel set theory
(BG) by analogy with the weak recursion theorem in recursion theory. This will enable
one to define a spacial class or an operation (in the sense of [4]) whose implicit
definition is erpressed by a certain kind of formula. Since Godel’s existence theorems
M1~M4 (in [4]) have been proved for normal formulas but not in general for formulas
which is not normal, the induction principle we shall consider has of course a certain
restriction.

Proofs that all the elements of an inductively defined class have certain property,
are often carried out inductively along the definition of it. Theorem 1 justifies such
proofs for classes defined by the induction principle we shall introduce. We shall use
the notations in without any reference.

First we shall prove the following theorem :

Theorem 1. Let ¢ (x, X) be a normal formula (i.e. a formula of set theory
without class quantifiers). Assume that

(i) VaVXVY (XS YAo(x, X)De(x, Y)] and

(ii) VaVX o, X) D3y [y S X A @(x,3)]].
Then,

(i) 3'A (Va (xeA=ox, AJAVX (Vx (¢ (x, X)DxeX] DA € X]].

(More precisely, (i) A (ii) D (i1) is provable under Bernays-Godel axiom system A, B .
and C.)

Proof. Assume (i) and (ii). The uniqueness of such A in (iii) is trivial. To
prove the existence of such an A, let

A={al3ydaaflaef'a AVB< ayx(xef'f=xey Ao & (fB))1]}.

(The class A exists since the formula in the above abstraction term is ndrmal.) We
shall show that the A is the desired class.

First we claim that
(*) v(a, A) D ae A.

Suppose that ¢ (a, A). By (ii), there exists a set # such that # € A and ¢(a, «).
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Hence we have that

(1) Vteuyzaifo .y, a,f),

where

¢ty f)=tefaNvyp<ayxxcf B=xey Ao S(fB)].
By the axiom of replacement, (1) implies that there exists a set z such that
(2) Vieuiyezyaczifezg(t,y, o f).
Now let
Yo =6 (2 U {a} and ay = S(zN On) + 1.
As in the proof of 7.5 in [4], there exists an f; such that
(3) foFnay+1AVB< avx(xefo F=xey, A olx, S(fp“B))].

Let b be an arbitrary element of #u. Then, by (2), there exist y,,a,,f; €2z such that
¢ (b, y1, a4, f1). In view of the definitions of y, and a,, we have that y, € y, and a;<a.
Moreover we have that be f; ‘a; and that

(4) vx V< ay (xefi B=xeyi Ag (x, S (/i £)) 1.
Now we shall prove
(5) VB< a, [/i'B S fo'F)

by the indnction on 8. Assume that 8 < a; and vy < 8 (fi'r S /o *7). Then S(fi“p
C&(fo“B). Let xefi‘S. Then, by (4), xey, and ¢ (x,&(f;1“5)). So, by (i), xeyA
¢ (x,&(f, “P)). Hence xefy ‘B by (3). We have proved f, ‘B S fu ‘5. Now the induction
is complete and we have (5). In particular, be f; ‘a; S fo'ay © S (fy “ap) since a; < ay.
Hence we have shown that u © & (f) “ap). Therefore ¢ (a, & (fy “ap)), since ¢ (a, u).
Hence by (3), a¢fy ‘ay. Hence ¢(a, yo, o, f3), which implies @ e A. Hence (*) is proved.
Next we claim that

(**) VX (Vx(olr, X)DxeX)D A C X).

Assume that yx (¢ (x, X) Dxe X] and ac A. We have to show that a¢X. By definition
of A, there exist y,« and f such that aef‘a and such that

VB<avxxefB=xcy Ao{x,&S(f“B)).
Now we propose to show that f‘8 € X for every 8 < a. We prove this by the induction
on f. Suppose that vy < B[(fy<X). Then S(f“B)< X. Let tef 5. Then tey
and ¢ (f,S(f“B)". From this and (i) it follows that ¢ (¢, X), from which follows that
t e X using the assumption. Hence f* 8 € X and the induction is complete. In particular

we have arf‘a & X, as was to be shown. Hence we have (**). Finally we claim that

(¥*¥) ae A = ¢(a,A)
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Let B= {x|¢(x, A)}. By (*) BC A. Hence, by (i), vx (¢ (x, B)D ¢(x, A)], thatis,
vx (¢ (x, B) D x¢ B)). From this and (**) it follows that A < B. Therefore A = B,
which means (***). This completes the proof of theorem. g.e.d.

We refer to the A in the theorem as the class inductively defined by the formula
¢ and denote it as

ind

aecA=o¢pla A
or
i

AT {a]pla, A)).

Now let y(a) be a normal formula. We think of it as a property of a set a.
Let G={a|y (a)}. Then, in order to prove

(6) Va (ae A D y(a)],

it suffices to prove

(7) Va (¢(a,G)DaeG),
in view of theorem 1. A proof of (7) may be considered as a proof of (6) along the
inductive definition of A. Actually, instead of (7),

(8) ValeaGn ADaeG)

suffices to conclude (6), For, (8) implies
Valela,GNA DacGn A),

which, in turn, implies A € G N A € G. Some examples of such proofs will be given
in the subsequent paper.

Next we shall examine what formulas satisfy the conditions (1) and (ii). Theorem
2 will give a sufficient condition for it.

Definition. Let ¢ be a formula in set theory (class variables and special classes
may occur in it).

1. ¢ is called a bounded formula? iff no class quantifiers (yvX, 3X) occur in it
and each set quantifier in it is of the type Y x(xey D -] or Jx[xey A +--] (which
we abbreviate as v xey [---] or 3xey [---] respectively).

2. ¢ is called a quasi-bounded formula iff no class quantifiers occur in it and
each set quantifier in it is of the type vx (xeyD---),3x [xsyA---]. Vx (xS y D---] or 3x
xSy A--). (The last two types of quantifiers are abbreviated by Vx <y (-] or
Jx <y )

1) This definition is essentially due to A. Lévy [1].
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21={3x(¢)|¢ is a bounded formula}.
5i={32(¢) |¢ is a quasi-bounded formula}.
Similarly, T, 35, Iy, -+, 0l , 35, [T, -+ , are defined.

e g~ w

2, 86={p|BG I ¢ =¢ and ¢ €3},
):'IBG—':{MBGI—-QDE ¢ and gbefl},
etc.

Lemma. Suppose that ¢ (X) is a quasi-bounded formula and that it has no
occurrences of the form XeZ or Xea. Then,

(1) i#f each occurrence of the form ue X (or Ye X) in ¢(X) liesin a positive part
(tn this case, briefly, we say ¢ (X) is positive), then

(1.1) BGHo(X)D3y (WS XA0(¥)) and

(2) if each occurrence of the form ueX (or YeX) in ¢(X) lies in a negative
part (in this case, briefly, we say ¢ (X) is negative), then

(2.1) BGHvy [y S XD o(y)] Doe(X)

Proof. We shall prove (1) and (2) simultaneously by the induction on the
number of logical symbols in ¢.

Case 1. ¢(X)=aeX or YeX.
If it is the latter case, then Y is a set. So we only prove the lemma for the former
case. ¢ (X)) is positive but not negative.

Now suppose that ¢ (X) holds. Let y = {a}. Then, y € X and ¢(y). Hence we have
(1.1).

Case 2. ¢(X) is an atomic formula which is not of the form in the case 1.

Then ¢ (X) does not contain X. So, ¢(X) is positive and at the same time negative,
(1.1) and trivially hold.

Case 3. ¢(X)=- ¢(X).
Suppose that ¢ (X) is positive. Then ¢ (X) is clearly negative. So, by the induction
hypothesis, we have

vy s X2¢(y)] D¢ (X)
By contraposing it,

¢X)D3y ¥y S X AP(X),
which is (1.1). Similarly if ¢ (X) is negative, we have
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Case 4. ¢(X) = ¢(X) A 2 (X).
Suppose first that ¢ (X) is positive. Then, both ¢ (X) and yx(X) are positive. By the
induction hypothesis, '

PX)D3yyS X AP (¥)]
and

1 X)o3ylys XA x(y).
Now assume that ¢ (X). Then ¢ (X) and x(X). Hence by the above, there exist y;,
y; € X such that ¢ (y,) and x (yz). Let y=y; U .. Since ¢ (X) and % (X) are positive,
we easily have that ¢ (y) and % (y). Hence ;

3y WS X Aoy
This proves (1.1). Next suppose that ¢ (X) is negative. Then both ¢ (X) and x(X) are
negative. By the induction hypothesis,

vylyc X2 ¢ () 2 ¢(X)
and
| vy (y s X2z o (X)
Now assume that vy [y € X D ¢(3)]. Then,

vy S Xo9N AvyycS XDyl
From the above it follows that ¢ (X) A x(X). This proves [2.I}
Case 5. ¢(X)=vxea (¢ (X, x)).
Suppose that ¢ (X) is positive. Then ¢ (X, x) is positive. Hence, by the induction
hypothesis, we have
¢$(X,9>3y (S XAy
Assume that ¢ (X). Then ¢ (X, x) for every xe¢a.

Hence

vxeady (y € X A ¢ (9, x)].

Using the axiom of replacement, we have

Jzyxeajyez(y S X A ¢(y,x)].
Let 2, be such that yvxeagyez, (y S XA ¢(y,x)]. Let y=6S(2) N X. Let xea.
Then there exists yz €2, such that y. € X A ¢ (yz,%). Clearly y. € y. Hence ¢ (y, x).
y is independent of x. Therefore we have 3y [y S X A Vxea [¢(y,x)])]), thatis, 3y
(yS X A ¢(y)). This proves (1.1). Next suppose that ¢ (X) is negative. Then ¢ (X, x)
is also negative. By the induction hypothesis,
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_ vy S XD¢(yx] D¢(X,2)
Assume that vy [y € X D ¢(y)]. Then
Vxeavyy(y<S XD¢(yx)].
By the above, we have V xea ¢ (X, %), that is, ¢ (X). This proves
Case 6. ¢o(X)=VxZa¢ (X, x).
Similar to the case 5. g.e. d.

Theorem 2. If o(x, X) is in 3.3¢, it has no occurrences of the form XeZ
or Xea and each occurrence of the form yeX (or YeX) in it lies in a positive
part in ¢, then ¢ (x, X) satisfies (i) and (ii) (in theorem 1).

Proof. (i) easily follows from the last two assumptions. To prove (ii), suppose
that

BGHox X)=3u ¢(u,x, X),

where ¢ (u,x, X) is a quasi-bounded formula. Assume that ¢ (¥, X). Then there exists
a set u such that ¢ (u,x, X). ¢ (4, x, X) does not contain a subformula XeZ or Xea
but is positive. Hence by the lemma, there exists a ¥y € X such that ¢ (. x,y). Hence
Ju ¢ (u,xy), that is, ¢ (x,y). This proves (ii). g. e. d.

Now suppose that ¢ (x, X) satisfies (1) and (ii).
Let
G={<x%3>]¢ ()}
Since ¢ (x. X) is normal, G exists. We can readily prove that
ox X)=3y [y S X A <x,y>eG).
Since y€ X =Vtey[teX), the right-hand side formula of the equivalence is in

~, and positive. Moreover it has no occurrences of the form Xe Z or X ea. Hence the

condition of theorem 2 is also necessary in the sense of equivalence.
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