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In this paper we shall present an induction principle in Bernays-Godel set theory
$(BG)$ by analogy with the weak recursion theorem in recursion theory. This will enable
one to define a spacial class or an operation (in the sense of [4]) whose implicit

definition is erpressed by a certain kind of formula. Since GOdel’s existence $th\infty rems$

$M1\sim M4$ (in [4]) have been proved for normal formulas but not in general for formulas
which is not normal, the induction principle we shall consider has of $urse$ a certain
restriction.

Proofs that all the elements of an inductively defined class have certain property,
are often carried out inductively along the definition of it. Theorem 1 justifies such
proofs for classes defined by the induction principle we shall introduce. We shall use
the notations in [4] without any reference.

First we shall prove the following theorem:

l’heorem 1. Let $\varphi(x, X)$ be a normal formula ( $i$. $e$. a formula of set theory

without class quantifiers). Assume that

(i) $\forall x\forall X\forall Y(X\subseteq Y\wedge\varphi(x, X)\supset\varphi(x, Y))$ and

(ii) $\forall x\forall X[\varphi(x, X)\supset\exists y[y\subseteq X\wedge\varphi(x,y)]]$ .
$7^{\backslash }hen$ ,

(iii) $\exists$ ! $A[\forall x[x\epsilon A\equiv\varphi(x, A))\wedge\forall X[\forall x[\varphi(x, X)\supset x\epsilon X]\supset A\subseteq X]]$ .

(More precisely, $(i)\wedge(ii)\supset(iii)$ is provable under Bernays-Godel axiom system $A,$ $B$

and $C.$ )

Proof. Assume (i) and (ii). The uniqueness of such $A$ in (iii) is trivial. To
prove the existence of such an $A$ , let

$A=$ { $a|\exists y\exists^{\alpha}\exists f$ [a $\epsilon f^{c}\alpha\wedge\forall\beta\leq\alpha_{\forall}x[x\epsilon f^{c}\beta\equiv x\epsilon y\wedge\varphi(x,$ $\mathfrak{S}(f^{e}\beta))]]$ }.

(The class $A$ exists since the formula in the above abstraction term is normal.) We
shall show that the $A$ is the desired class.

First we claim that

$(^{*})$ $\varphi(a, A)\supset a\epsilon A$ .
Suppose that $\varphi(a, A)$ . By (ii), there exists a set $u$ such that $u\subseteq A$ and $\varphi(a, u)$ .
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Henoe we have that

(1) $\forall f\epsilon u_{\exists y\exists^{\alpha}\exists}f\psi(t,y, \alpha,f)$ ,

where
$\phi(t,y, \alpha,f)\equiv t\epsilon f^{c}\alpha\wedge\forall\beta\leq\alpha\forall^{x[xrf^{c}\beta\equiv x\epsilon y\wedge\varphi(x,\mathfrak{S}(f^{Q(}\beta))]]}$ .

By the axiom of replacement, (1) implies that there exists a set $z$ such that

(2) $\forall t\epsilon u\exists y\epsilon z_{\exists^{\alpha\epsilon Z\exists}}f\epsilon z\psi(t,y, \alpha,f)$ .
Now let

$y_{0}=\mathfrak{S}(z)\cup\{a\}$ and $\alpha_{0}=\mathfrak{S}(z\cap On)+1$ .
As in the proof of 7.5 in [4), there exists an $f_{0}$ such that

(3) $f_{0}Fn\alpha_{0}+1\wedge\forall\beta\leq\alpha_{0}\forall x[x\epsilon f_{0}^{c}\beta\equiv x\epsilon y_{0}\wedge\varphi(x, \mathfrak{S}(f_{0}^{cc}\beta))]$ .
Let $b$ be an arbitrary element of $u$ . Then, by (2), there exist $y_{1},$

$\alpha_{1},f_{1}\epsilon z$ such that
$\psi(b,y_{1}, \alpha_{1},f_{1})$ . In view of the definitions of $y_{0}$ and $\alpha_{0}$ , we have that $y_{1}\subseteq y_{0}$ and $\alpha_{1}<\alpha_{0}$ .
Moreover we have that $b\epsilon f_{1}^{c}\alpha_{1}$ and that

(4) $\forall^{x\forall\beta\leq\alpha_{1}}(xrf_{1}\beta\equiv x\epsilon y_{1}\wedge\varphi(x, \mathfrak{S}(f_{1}^{c\iota}\beta))$ ].

Now we shall prove

(5) $\forall\beta\leq\alpha_{1}[f_{1}^{c}\beta\subseteq f_{0}^{c}\beta]$

by the indnction on $\beta$ . Assume that $\beta\leq\alpha_{1}$ and $\forall\gamma<\beta[f_{1}^{e}\gamma\subseteq f_{0}^{c}\gamma J$ . Then $\mathfrak{S}(f_{1}{}^{t}\beta)$

$\subseteq \mathfrak{S}(f_{0}\backslash \beta)$ . Let $ x\epsilon f_{1}\beta$ . Then, by (4), $x\epsilon y_{1}$ and $\varphi(x, \mathfrak{S}(f_{1}^{cc}\beta))$ . So, by (i), $ x\epsilon y_{0}\wedge$

$\varphi(x, \mathfrak{S}(f_{0}\beta))$ . Hence $ x\epsilon f_{0}^{c}\beta$ by (3). We have proved $ f_{1}\beta\subseteq f_{0}^{c}\beta$ . Now the induction
is $mplete$ and we have (5). In particular, $b\epsilon f_{1}^{c}\alpha_{1}\subseteq f_{0}{}^{t}\alpha_{1}\subseteq \mathfrak{S}(f_{0}^{cc}\alpha_{0})$ since $\alpha_{1}<\alpha_{0}$ .
Hence we have shown that $u\subseteq \mathfrak{S}(f_{0}^{cc}\alpha_{0})$ . Therefore $\varphi(a, \mathfrak{S}(f_{0}^{cc}\alpha_{0}))$ , since $\varphi(a, u)$ .
Hence by (3), a $\epsilon f_{0}{}^{t}\alpha_{0}$ . Hence $\psi(a,y_{0}, \alpha_{0},f_{0})$ , which implies a $\epsilon A$ . Hence $(^{*})$ is proved.
Next we claim that

$(^{**})$ $\forall X[\forall x[\varphi(x, X)\supset x\epsilon X]\supset A\subseteq X]$ .
Assume that $\forall x[\varphi(x, X)\supset x\in X]$ and $a\epsilon A$ . We have to show that $a\epsilon X$. By definition
of $A$ , there exist $y,$ $\alpha$ and $f$ such that $ a\epsilon f^{C}\alpha$ and such that

$\forall\beta\leq\alpha\forall x[x\epsilon f^{c}\beta\equiv X\epsilon y\wedge\varphi(x, \mathfrak{S}(f^{c}\beta))J$ .
Now we propose to show that $f^{t}\beta\subseteq X$ for every $\beta\leq\alpha$ . We prove this by the induction
on $\beta$ . Suppose that $\forall\gamma<\beta[f^{c}\gamma\subseteq X]$ . Then $\mathfrak{S}(f^{cc}\beta)\subseteq X$. Let $ t\epsilon f^{e}\beta$ . Then tcy
and $\varphi(t, \mathfrak{S}(f^{ce}\beta)^{1}$ . From this and (i) it follows that $\varphi(t, X)$ , from which follows that
$trX$ using the assumption. Hence $f^{C}\beta\subseteq X$ and the induction is $mplete$ . In particular
we have $a^{r}f^{C}\alpha\subseteq X$, as was to be shown. Hence we have $(^{**})$ . Finally we claim that

$(^{***})$ a $\epsilon A\equiv\varphi(a,A)$ .
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Let $B=\{x|\varphi(x, A)\}$ . By $(^{*}),$ $B\subseteq A$ . Hence, by (i), $\forall^{x}[\varphi(x, B)\supset\varphi(x, A)]$ , that is,

$\forall^{x}[\varphi(x, B)\supset x\epsilon B)]$ . From this and $(^{**})$ it follows that $A\subseteq B$. Therefore $A=B$ ,

which means $(^{**\#})$ . This completes the $pr\infty f$ of $th\infty rem$ . $q.e$. $d$.
We refer to the $A$ in the theorem as the class inductively defined by the formula

$\varphi$ and denote it as

a $\epsilon$ A $\equiv\varphi(a, A)$

or
$A=\{a|\varphi(a, A)\}\ell nd$

Now let $\chi(a)$ be a normal formula. We think of it as a property of a set $a$ .
Let $G=\{a|\chi(a)\}$ . Then, in order to prove

(6) $\forall a$ [a $\epsilon A\supset\chi(a)$],

it suffices to prove

(7) $\forall a[\varphi(a, G)\supset a\epsilon G]$ ,

in view of theorem 1. $A$ proof of (7) may be considered as a $pr\infty f$ of (6) along the
inductive definition of $A$ . Actually, instead of (7),

(8) $\forall a[\varphi(a, G\cap A)\supset a\in G]$

suffices to conclude (6), For, (8) implies

$\forall a[\varphi(a, G\cap A)\supset a\in G\cap A]$ ,

which, in turn, implies $A\subseteq G\cap A\subseteq G$ . Some examples of such proofs will be given

in the subsequent paper.

Next we shall examine what formulas satisfy the conditions (i) and (ii). Theorem

2 will give a sufficient condition for it.

Deflnition. Let $\varphi$ be a formula in set theory (class variables and special classes
may occur in it).

1. $\varphi$ is called a bounded formula 1) iff no class quantifiers $(\forall^{X}, \exists^{X})$ occur in it

and each set quantifier in it is of the type $\forall x(x\epsilon y\supset$ ] or $\exists x(x\in y\wedge$ ] (which

we abbreviate as $\forall x\epsilon y[\cdots]$ or $\exists^{x\epsilon y}[\cdots]$ respectively).

2. $\varphi$ is called a quasi-bounded formula iff no class quantifiers occur in it and
each set quantifier in it is of the type $\forall x[x\epsilon y\supset\cdots],$ $\exists x[X^{\Gamma}y\wedge\cdots]$ . $\forall x[x\subseteq y\supset\cdots]$ or $\exists x$

$[x\subseteq y\wedge\cdots]$ . (The last two types of quantifiers are abbreviated by $\forall x\subseteq y[\cdots]$ or
$\exists x\subseteq y[\cdots].)$

1) This definition is essentially due to A. L\’evy [1].
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3. $\Sigma_{1}=$ { $\exists x[\psi]|\phi$ is a bounded formula}.
4. $\Sigma_{1}^{\sim}=$ { $\exists x(\psi]|\psi$ is a quasi-bounded formula}.
5. Similarly, $\Pi_{1},$ $\Sigma_{2},$ $\Pi_{2},$ $\cdots$ , $\tilde{\Pi}_{1},\tilde{\Sigma}_{2},\tilde{\Pi}_{2},$

$\cdots$ , are defined.

6. $\Sigma_{1}BG=$ { $\varphi|BG\vdash\varphi\equiv\psi$ and $\psi\epsilon\Sigma_{1}$ },
$ 2_{1^{BG}}^{\prime}=\sim$ { $\varphi|BG\vdash\varphi\equiv\psi$ and $\psi\epsilon\Sigma_{1}^{\sim}$ },

etc.

Lemma. Suppose that $\varphi(X)$ is a quasi-bounded formula and that it has no
occurrences of the form $X\in Z$ or $X\epsilon a$ . Then,

(1) if each occurrence of the form $u\epsilon X$ (or $Y\epsilon X$ ) in $\varphi(X)$ lies in a positjve part
(in this case, briefly, we say $\varphi(X)$ is positive), then

(1.1) $BG\vdash\varphi(X)\supset\exists y[y\subseteq X\wedge\varphi(y)]$ and

(2) if each $oc$currence of the form $u\epsilon X$ (or $Y\epsilon X$ ) in $\varphi(X)$ lies in a negative
part (in this case, briefly, we say $\varphi(X)$ is negative), then

(2.1) $BG\vdash\forall \mathcal{Y}[y\subseteq X\supset\varphi(y)]\supset\varphi(X)$ .
Proof. We shall prove (1) and (2) simultaneously by the induction on the

number of logical symbols in $\varphi$ .
Case 1. $\varphi(X)\equiv a\in X$ or $Y\epsilon X$.

If it is the latter case, then $Y$ is a set. So we only prove the lemma for the former
case. $\varphi(X)$ is positive but not negative.

Now suppose that $\varphi(X)$ holds. Let $y=\{a\}$ . Then, $y\subseteq X$ and $\varphi(y)$ . Hence we have
(1.1).

Case 2. $\varphi(X)$ is an atomic formula which is not of the $f_{01}m$ in the case 1.
Then $\varphi(X)$ does not contain $X$. So, $\varphi(X)$ is positive and at the same time negative.
(1.1) and (2.1) trivially hold.

Case 3. $\varphi(X)\equiv-’\psi(X)$ .
Suppose that $\varphi(X)$ is positive. Then $\psi(X)$ is clearly negative. So, by the induction
hypothesis, we have

$\forall y[y\subseteq X\supset\psi(y)]\supset\psi(X)$ .
By $\infty ntraposing$ it,

$\psi(X)\supset\exists y[y\subseteq X\wedge\psi(X)]$ ,

which is (1.1). Similarly if $\varphi(X)$ is negative, we have (2.1).
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Case 4. $\varphi(X)\equiv\psi(X)\wedge\chi(X)$ .
Suppose first that $\varphi(X)$ is positive. Then, both $\psi(X)$ and $\chi(X)$ are positive. By the
induction hypothesis,

$\psi(X)\supset\exists y[y\subseteq X\wedge\psi(y)]$

and
$\chi(X)\supset\exists y(y\subseteq X\wedge\chi(y)]$ .

Now assume that $\varphi(X)$ . Then $\psi(X)$ and $\chi(X)$ . Hence by the above, there exist $y_{1}$ ,
$y_{2}\subseteq X$ such that $\psi(y_{1})$ and $\chi(y_{2})$ . Let $y=y_{1}\cup y_{2}$ . Since $\psi(X)$ and $\chi(X)$ are positive,
we easily have that $\phi(y)$ and $\chi(y)$ . Hence

$\exists y[y\subseteq X\wedge\varphi(y)]$ .
This proves (1.1). Next suppose that $\varphi(X)$ is negative. Then both $\phi(X)$ and $\chi(X)$ are
negative. By the induction hypothesis,

$\forall y[y\subseteq X\supset\psi(y)]\supset\psi(X)$

and
$\forall y[y\subseteq X\supset\chi(y)]\supset\chi(X)$ .

Now assume that $\forall y[y\subseteq X\supset\varphi(y)]$ . Then,

$\forall y[y\subseteq X\supset\psi(y)]\wedge\forall y[y\subseteq X\supset\chi(y)]$ .
From the above it follows that $\psi(X)\wedge\chi(X)$ . This proves (2.1).

Case 5. $\varphi(X)\equiv\forall^{x\in a}[\psi(X, x)]$ .

Suppose that $\varphi(X)$ is positive. Then $\psi(X, x)$ is positive. Hence, by the induction
hypothesis, we have

$\psi(X, x)\supset\exists y[y\subseteq X\wedge\psi(y, x)]$ .

Assume that $\varphi(X)$ . Then $\psi(X, x)$ for every $x\epsilon a$ .
Hence

$\forall x\epsilon a\exists y[y\subseteq X\wedge\psi(y, x)]$ .

Using the axiom of replacement, we have

$\exists^{z}\forall^{x\epsilon a_{\exists y\epsilon z[y\subseteq X\wedge\psi(y,x)]}}$ .
Let $z_{0}$ be such that $\forall^{x\epsilon a_{\exists y\epsilon z_{0}}}[y\subseteq X\wedge\psi(\gamma, x)]$ . Let $y=\mathfrak{S}(z_{0})\cap X$. Let $x\in a$ .
Then there exists $y_{x}\in z_{0}$ such that $y_{x}\subseteq X\wedge\psi(y_{x}, x)$ . Clearly $y_{x}\subseteq y$ . Hence $\psi(y, x)$ .
$y$ is independent of $x$. Therefore we have $\exists y[y\subseteq X\wedge\forall x\in a[\psi(y, x)]]$ , that is, $\exists y$

$[y\subseteq X\wedge\varphi(y)]$ . This proves (1.1). Next suppose that $\psi(X)$ is negative. Then $\psi(X, x)$

is also negative. By the induction hypothesis,



$c_{t}^{;}$

58 MOTO-O TAKAHASHI

$\forall y[y\subseteq X\supset\psi(y, x)]\supset\phi(X, x)$ .
Assume that $\forall y[y\subseteq X\supset\varphi(y)]$ . Then

$\forall x\epsilon a\forall y[y\subseteq X\supset\psi(y, x)]$ .
By the above, we have $\forall x\in a\psi(X, x)$ , that is, $\varphi(X)$ . This proves (2.1).

Case 6. $\varphi(X)\equiv\forall x\subseteq a\phi(X, x)$ .
Similar to the case 5. $q$ . $e$. $d$.

Theorem 2. If $\varphi(x, X)$ is in $\tilde{\Sigma}_{1}BG$ it has no occurrences of the form $X\epsilon Z$

or $X\in a$ and each occurrence of the form $y\epsilon X$ (or $Y\epsilon X$ ) in it lies in a positjve
part in $\varphi$ , then $\varphi(x, X)$ satisfies (i) and (ii) (in theorem 1).

Proof. (i) easily follows from the last two assumptions. To prove (ii), suppose
that

$BG\vdash\varphi(x, X)\equiv\exists^{u}\psi(u, x, X)$ ,

where $\psi(u, x, X)$ is a quasi-bounded formula. Assume that $\varphi(x, X)$ . Then there exists
a set $u$ such that $\psi(u, x, X)$ . $\phi(u, x, X)$ does not $\infty ntain$ a subformula $X\in Z$ or $X\epsilon a$

but is positive. Hence by the lemma, there exists a $y\subseteq X$ such that $\psi(u.x,y)$ . Hence
$\exists u\psi(u, x,y)$ , that is, $\psi(x,y)$ . This proves (ii). $q$ . $e.d$.

Now suppose that $\varphi(x, X)$ satisfies (i) and (ii).

Let

$G=\{<x,y>|\varphi(x,y)\}$ .
Since $\varphi(x.X)$ is normal, $G$ exists. We can readily prove that

$\varphi(x, X)\equiv\exists y[y\subseteq X\wedge<x,y>\epsilon G]$ .
Since $y\subseteq X\equiv\forall t\epsilon y[t\epsilon X$), the right-hand side formula of the equivalence is in
$\Sigma_{1}$ and positive. Moreover it has no occurrences of the form $X\in Z$ or $X\in a$ . Hence the
condition of theorem 2 is also necessary in the sense of equivalence.



AN INDUCTION PRINCIPLE IN SET THEORY I.

REFERENCES

[1] A. L\’evy, A hierarchy of formulas in set theory, Memoirs of the American Mathematical
Society 57.

[2] – Axiom schemata of strong infinity in axiomatic set theory, Pacific Journal of

Mathematics, vol. 10 (1960), 223-238.
[3] A. Mostowski, Some impredicative definitions in the axiomatic set-theory. Fundamenta

Mathematicae, vol. 37 (1950), 111-124.
[4] K. G\"odel, The consistency of the axiom of choice and of the generalized continuum-

hypothesis with the axioms of set theory, Annals of mathematics studies, 3 (1940).

[5] M. Takahashi, Recursive functions of ordinal numbers and L\’evy’s hierarchy, Commentari-

orum Mathematicorum Universitatis Sanciti Pauli, vol. 17 (1968), 21-29.

Department of Mathematics
Rikkyo University (St. Paul’s University)

Ikebukuro, Tokyo, Japan


	REFERENCES

