A CORRECT SYSTEM OF AXIOMS FOR A SYMMETRIC
GENERALIZED UNIFORM SPACE

By
C. J. MozzocH1

(Received November 19, 1968)

The present paper is based on part IV of the author’s thesis, Symmetric
generalized uniform and proximity spaces, submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in the Graduate School of Arts
and Sciences of the University of Connecticut. The author wishes to acknowledge his
indebtedness to Professor E. S. Wolk, under whose direction the thesis was written.

Let X be a set with power set P(X). In M. W. Lodato gives the following
axioms for a symmetric generalized proximity P on X: (where P is a subset of P (X)
xP(X))

Li: (A4, B)¢®P implies (B, A)¢P;

L.: (A,B)¢P implies ANB=¢;

Ly: (A,B)¢%P and (A, C)¢P implies (A4, (BUC))¢%P;

Ly: (A,B)eP implies A#¢ and B#¢;

Ls: (A,B)eP and ({b},C)eB for all b in B implies that (A, C)eP.

He also shows (in [2]) that a topology ¥ () (called the proximity topology) on
X can be defined : xeA iff ({x}, A)eP. Also, if (X,F) is a topological space then T is
the proximity topology for some proximity P on X iff T is symmetric (i.e xey implies
yex for all x,y in X)

Let P(X x X) denote the power set of (Xx X).

Definition 1. A subset Il of P(Xx X) is a generalized uniformity on X iff for

every U in I U™! contains a member of 1.

Let 11 be a generalized uniformity on X. Consider the following axioms:

B;: Forevery Uin UWU24;

B,: For every A in P(X) and U,V in U there is a W in U such that W [A]C
UAINV(A);

Bs: For every A,B in P(X) and U in U V[A)NB+¢ for all V in U implies
there exists x in B and there exists a W in U such that W [x) < U [A].

Thorem 1. Suppose B and N satisfy the relation: (A, B) in P iff for every U
in WU [A)NB+#¢. Then B satisfies Ly, Ly, Ly, Ly and Ls iff U satisfies By, B, and Bs.
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Proof. We first show that if U satisfies B;, B, and B;, then ¥ satisfies L, Lo,

L3, L4 and L5

L1Z

L22
La:

L4:

L5:

B]_:

Bz:

B3:

Suppose (A, B) ¢ B. There exists (by hypothesis) a U in U such that U [A] ﬂB
=¢. Suppose U~! (BJNA#¢. Let %eU (BIJNA. Then xeU™ [B];
that there exists yo¢ B such that (o, %) € U~! implies (by definition) that (x, yo)
eU; so that yoe U ([A)NB which is a contradiction. Hence U-! (BJNA=4¢.
But U-'2V where Vell, and V [BJN A=¢. Hence (B, A)¢P.

Suppose ANB#¢; (by By) for all U in WU [AJNB#g; so that (4, B)¢P.
Suppose (A,B)¢P and (A,C)¢P. Then there exists U,V in U such that
UCA]NB=¢, and V [A)N C=¢. There exists (by B) a W in U such that
W [A)C U[AINV [A); so that W [A1N(BUC)=9; so that (A,(BUC)) ¢B.
Immediate from the definition of P and the fact that the members of U are
are nonempty (by By).

To prove this it is sufficient to show that (A, —B)¢P and (A,C)eP implies
there exists x in C such that ({x}, —B)¢P. (4, —B)¢P implies that there
exists U in U such that U [A)N(—B)=¢; so that U [A)J<B. Since (4, C)
¢ P we have that V [AJNC#¢ for all V in U; so that (by B there exists
XeC and there exists W in U such that W (x)cU[A)< B; so that W (x]
N(—B)=¢; so that ({x}, —B)¢B.

To prove the converse we now show that if P satisfies L,,L,, L3, L, and Ls
then U satisfies B,, B;, and Bs.

Let xeX. Let Udl. {x}N{x}+#¢ implies (by Ly) that ({x}, {x})eP; so that
U{x}JNn{x}+#¢; so that (x,x)e U. Hence U24.

Suppose not true. Then there exists A in P(X) and U and V in U such that
for every W in U there exists xeW [A] such that U [(AJNV [A). For each
W we define My ={x|xW [(A] and xU [AINV [A]}. Let M be the union
of all M,. Suppose there exists U; such that U; [AJNM=¢. Then U, (A]C
U [A)NV [A]; but by assumption this is not possible. Hence (by definition)
(A, M)eB. Put My, =U {x|xW [A) and x¢U [A}}, My,=U {x|xeW [A) and
wV [(A)}, My= UMy, and My=UMy,. Then M=M;UM, (possible that M, N
M,+#¢) and U [AINM,=¢ and V (A)NM.=¢; so that (A, M) ¢P which is
a contradiction.

Ls is equivalent to the statement: (A, —B)¢®P and (4,C)eP implies there
exists x in C such that (x, —B)¢P. UA)N(—U [A))=¢ implies (A, —U
(A))¢P. But V(AINB+#¢ forall V in U implies that (A, B)eP; so that
(by L;) there exists xeB such that (x, ~U [(A))¢P implies there exists Well
such that W (x)N(~U [A))=¢; so that W [x1<U [A4].
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Definition 2. A non-void subset I o P(XxX) is a symmetric generalized

uniformity on X iff the following axioms are satisfied ;

M1:
Mz:
Mg:
M4:

M5:

For every U in U U24;

If Uin U, then U=U"!;

For every A in P(X) and U,V in U there exists a W in U such that W [A]
CUAINV [A]; 1
Forevery A,Bin P (X) and U in W: V ([AJNB#¢ forall V in U implies
there exists an x in B and there exists a W in U such that W (xJcU (4] ;
If Uin U and UCV (symmetric) € (Xx X) then V is in U.

Clearly (by theorem 1) corresponding to any symmetric generalized uniform space

(X, 1) there exists a symmetric generalized proximity space (X, B (1)) where (A, B)eP
W) iff U(AJNB#¢ for all U in 1.

Theorem 2. Let (X, 1) be a symmetric generalized uniform space. The function

g: P(X) into P(X) defined by xeg (A) iff UlxINA+¢ for all U in W is a
Kuratowski closure furction.

The proof is straightforward.

Definition 3. The topology induced on X by the Kuratowski closure function

g in theorem 2 is called the uniform topology on X induced by U (notation: ¥ (11)).

Theorem. 3. Let (X, 1) be a symmetric generalized uniform space. Then T (1)

=Z(PW)).

Proof. U (x)NA+¢ for every U in U iff ({x}, A)e P ) (by definition)
Theorem 4. Let (X,W) be a symmetric generalized uniform space. Then

A is in T(N) iff for every x in A there exists U in W such that U (x) S A
For cvery A in P(X) we have that A°={x|U {x} € A for some U in N} ;
For every A in P(X) we have that A=n {U (A) | Uell} ;

TM) is To if N (U] Uell} =4

(X, 1) has a closed base implies T (W) is regular.

The proof is straightforward.

Definition. 4. B is a base for some symmetric generalized uniformity on X iff
V in B implies V=V"!

U={U|U=U"1 and U2V for some V in P} is a symmetric generalized

uniformity on X.

Theorem 5. B is a base for some symmetric generalized uniformity on X iff

B SatiSﬁeS Ml, Mg, Ms and M4.
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The proof is straightforward.

Theorem 6. A topology I on X is the uniform topology for some symmetric
generaliezed uniformity on X iff I is symmetric (i. e. xey implies ye% for all x,y in X).

Proof. Suppose T=3 (1) where U1 is some symmetric generalized uniformity
on X. Let xey. Then U (x)N{y}#¢ for all U in U. But since U is symmetric,
we have that U [y ] N{x}+#¢ for all U in U; so that yeZ%.

By theorem 2.3 in page 418 and by theorem 3 to prove the converse it is
sufficient to prove the following

Lemma For every symmetric generalized proximity space, (X,P) there exists
a symmetric generalized uniform space, (X, U (R)), such that B (U (P))=2.

Proof. Let X be a set with power set P(X). For every A,B in P(X) let U,3
equal (XxX)—((AxB)U(BxA)). Let 8={U,5|(A,B)¢P}. Clearly, B satisfies M,.
Suppose APBB. Then U, (Al NB=¢. Conversely suppose there exists C, D such that
CPD and Uy, (A)NB=¢. Then it is easily shown that (ACC and B&D) or (ASD
and BCC). Hence APB. So that by theorem 1 we have that B satisfies M;, M;, and
M, Let UPRy={U|U=U"" and U2V for some V in B}. U(P); (by theorem 5) is a
symmetric generalized uniformity on X. It is easy to show that P (U (B))=2. (c.f. [5]
page 194).
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