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Let $X$ be a set with power set $P(X)$ . In [2] M. W. Lodato gives the following

axioms for a symmetric generalized proximity $\mathfrak{P}$ on $X$ : (where $\mathfrak{P}$ is a subset of $P(X)$

$\times P(X))$

$L_{1}$ : $(A, B)t\mathfrak{P}$ implies $(B, A)t\mathfrak{P}$ ;
$L_{2}$ : $(A, B)t\mathfrak{P}$ implies $ A\cap B=\phi$ ;

L3: $(A, B)t\mathfrak{P}$ and $(A, C)\not\in \mathfrak{P}$ implies $(A, (B\cup C))\not\in \mathfrak{P}$ ;
$L_{4}$ ; $(A, B)\in \mathfrak{P}$ implies $ A\neq\phi$ and $ B\neq\phi$ ;

L5: $(A, B)\in \mathfrak{P}$ and $(\{b\}, C)\epsilon \mathfrak{P}$ for all $b$ in $B$ implies that $(A, C)\epsilon \mathfrak{P}$ .

He also shows (in [2]) that a topology $\mathfrak{T}(\mathfrak{P})$ (called the proximity topology) on
$X$ can be defined: $x\epsilon\overline{A}$ iff $(\{x\}, A)\in \mathfrak{P}$ . Also, if $(X, \mathfrak{T})$ is a topological space then $\mathfrak{T}$ is

the proximity topology for some proximity $\mathfrak{P}$ on $X$ iff $\mathfrak{T}$ is symmetric ( $i.ex\epsilon\overline{y}$ implies
$y\epsilon\overline{x}$ for all $x,y$ in $X$ )

Let $P(X\times X)$ denote the power set of $(X\times X)$ .

Definition 1. A subset $\mathfrak{U}$ of $P(X\times X)$ is a generalized uniformity on $X$ iff for

every $U$ in $\mathfrak{U}U^{-1}\ovalbox{\tt\small REJECT} ntains$ a member of U.

Let $\mathfrak{U}$ be a generalized uniformity on $X$. Consider the following axioms:

$B_{1}$ : For every $U$ in $\mathfrak{U}U\supseteq\Delta$ ;
$B_{2}$ : For every $A$ in $P(X)$ and $U,$ $V$ in $\mathfrak{U}$ there is a $W$ in $\mathfrak{U}$ such that $ W[A]\subseteq$

$U[A$) $\cap V[A]$ ;

B3: For every $A,$ $B$ in $P(X)$ and $U$ in $\mathfrak{U}V[A]\cap B\neq\phi$ for all $V$ in $\mathfrak{U}$ implies
there exists $x$ in $B$ and there exists a $W$ in $\mathfrak{U}$ such that $W[x]\subseteq U[A]$ .

Thorem 1. Suplose $\mathfrak{P}$ and $\mathfrak{U}$ satisfy the relation: $(A, B)$ in $\mathfrak{P}$ iff for every $U$

in $\mathfrak{U}U[A$) $\cap B\neq\phi$ . Then $\mathfrak{P}$ satisfies $L_{1},$ $L_{2},$ $L_{3},$ $L_{4}$ and $L_{5}$ iff $\mathfrak{U}$ satisfies $B_{1},$ $B_{2}$ and $B_{3}$ .
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Proof. We first show that if 1I satisfies $B_{1},$ $B_{2}$ and B3, then $\mathfrak{P}$ satisfies $L_{1},$ $L_{2}$ ,

L3’ $L_{4}$ and L5.
$L_{1}$ ; Suppose $(A, B)t\mathfrak{P}$ . There exists (by hypothesis) a $U$ in $\mathfrak{U}$ such that $U[A]\cap B$

$=\phi$ . Suppose $ U^{-1}[B]\cap A\neq\phi$ . Let $x_{0}\epsilon U^{-1}[B]\cap A$ . Then $x_{0}\epsilon U^{-1}[B]$ ; so
that there exists $y_{0}\epsilon B$ such that $(y_{0}, x_{0})\in U^{-1}$ implies (by definition) that $(x_{0},y_{0})$

$\epsilon U$ ; so that $y_{0}\epsilon U[A]\cap B$ which is a $\ovalbox{\tt\small REJECT} ntradiction$ . Hence $ U^{-1}[B]\cap A=\phi$ .
But $U^{-1}\supseteq V$ where $V\epsilon \mathfrak{U}$ , and $ V[B]\cap A=\phi$ . Hence $(B, A)\not\in \mathfrak{P}$ .

$L_{2}$ : Suppose $ A\cap B\neq\phi$ ; (by $B_{1}$ ) for all $U$ in $\mathfrak{U}U[A]\cap B\neq\phi$ ; so that $(A, B)_{C}\mathfrak{P}$ .
L3: Suppose $(A, B)\not\in \mathfrak{P}$ and $(A, C)\not\in \mathfrak{P}$ . Then there exists $U,$ $V$ in $\mathfrak{U}$ such that

$ U[A]\cap B=\phi$ , and $ V[A]\cap C=\phi$ . There exists (by $B_{2}$ ) a $W$ in $\mathfrak{U}$ such that
$W[A]\subseteqq U[A]\cap V[A]$ ; so that $ W[A]\cap(B\cup C)=\phi$ ; so that $(A, (B\cup C))t\mathfrak{P}$ .

$L_{4}$ : Immediate from the definition of $\mathfrak{P}$ and the fact that the members of $U$ are

are nonempty (by $B_{1}$).

L5: To prove this it is sufficient to show that $(A, -B)f\mathfrak{P}$ and $(A, C)\epsilon \mathfrak{P}$ implies

there exists $x$ in $C$ such that $(\{x\}, -B)\not\in \mathfrak{P}\cdot(A, -B)\not\in \mathfrak{P}$ implies that there

exists $U$ in $\mathfrak{U}$ such that $ U[A]\cap(-B)=\phi$ ; so that $U[A]\subseteq B$. Since $(A, C)$

$\epsilon \mathfrak{P}$ we have that $ V[A]\cap C\neq\phi$ for all $V$ in $\mathfrak{U}$ ; so that (by $B_{3}$ ) there exists
$X\epsilon C$ and there exists $W$ in 1I such that $W[x]\subseteq U[A]\subseteq B$ ; so that $W[x]$

$\cap(-B)=\phi$ ; so that $(\{x\}, -B)t\mathfrak{P}$ .
To prove the $\infty nverse$ we now show that if $\mathfrak{P}$ satisfies $L_{1},$ $L_{2},$ $L_{3},$ $L_{4}$ and L5
then $\mathfrak{U}$ satisfies $B_{1},$ $B_{2}$ , and B3.

$B_{1}$ : Let $x\epsilon X$. Let $U\epsilon \mathfrak{U}$ . $\{x\}\cap\{x\}\neq\phi$ implies (by $L_{2}$ ) that $(\{x\}, \{x\})\epsilon \mathfrak{P}$ : so that
$ U[\{x\}]\cap\{x\}\neq\phi$ ; so that $(x, x)\in U$. Hence $ U\supseteq\Delta$ .

$B_{2}$ : Suppose not true. Then there exists $A$ in $P(X)$ and $U$ and $V$ in $U$ such that

for every $W$ in $\mathfrak{U}$ there exists $x\epsilon W[A]$ such that $xtU[A]\cap V[A]$ . For each
$W$ we define $M_{W}=$ { $x|x\epsilon W[A]$ and $x\not\in U[A]\cap V[A]$ }. Let $M$ be the union

of all $M_{W}$ . Suppose there exists $U_{1}$ such that $ U_{1}[A]\cap M=\phi$ Then $ U_{1}[A]\subseteq$

$U[A]\cap V[A]$ ; but by assumption this is not possible. Hence (by definition)

$(A, M)\epsilon \mathfrak{P}$ . Put $ M_{W_{1}}=\cup$ { $x|x\epsilon W[A)$ and $x\not\in U[A]$ }, $M_{W_{2}}=U\{x|x\epsilon W[A]$ and

$x\not\in V[A]\},$ $M_{1}=\cup M_{W_{1}}$ and $M_{2}=\cup M_{W_{2}}$ . Then $M=M_{1}\cup M_{2}$ (possible that $ M_{1}\cap$

$M_{2}\neq\phi)$ and $ U[A]\cap M_{1}=\phi$ and $ V[A]\cap M_{2}=\phi$ ; so that $(A, M)t\mathfrak{P}$ which is

a contradiction.
$B_{3}$ : L5 is equivalent to the statement: $(A, -B)t\mathfrak{P}$ and $(A, C)\epsilon \mathfrak{P}$ implies there

exists $x$ in $C$ such that $(x, -B)\not\in \mathfrak{P}\cdot U[A]\cap(-U[A])=\phi$ implies $(A,$ $-U$

$[A])\not\in \mathfrak{P}$ . But $ V[A]\cap B\neq\phi$ for all $V$ in $\mathfrak{U}$ implies that $(A, B)\epsilon \mathfrak{P}$ ; so that

(by L5) there exists $x\epsilon B$ such that $(x, \sim U[A])t\mathfrak{P}$ implies there exists $W\epsilon \mathfrak{U}$

such that $ W[x]\cap(\sim U[A])=\phi$ ; so that $W[x]\subseteq U[A]$ .
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Definition 2. A non-void subset $\mathfrak{U}0$ $P(X\times X)$ is a symmetric generalized
uniformity on $X$ iff the following axioms are satisfied;

$M_{1}$ : For every $U$ in $\mathfrak{U}U\supseteq\Delta$ ;
$M_{2}$ : If $U$ in $\mathfrak{U}$ , then $U=U^{-1}$ ;

M3: For every $A$ in $P(X)$ and $U,$ $V$ in $\mathfrak{U}$ there exists a $W$ in $\mathfrak{U}$ such that $W[A]$

$\subseteq U[A]\cap V(A$] ;
$M_{4}$ : For every $A,$ $B$ in $P$ (X) and $U$ in $\mathfrak{U}:V[A]\cap B\neq\phi$ for all $V$ in $\mathfrak{U}$ implies

there exists an $x$ in $B$ and there exists a $W$ in $\mathfrak{U}$ such that $W[x]\subseteq U[A]$ ;

M5: If $U$ in $\mathfrak{U}$ and $U\subseteq V(symmetric)\subseteq(X\times X)$ then $V$ is in U.

Clearly (by theorem 1) corresponding to any symmetric generalized uniform space
(X, $\mathfrak{U}$ ) there exists a symmetric generalized proximity space (X, $\mathfrak{P}(\mathfrak{U})$ ) where $(A, B)\epsilon \mathfrak{P}$

(U) iff $ U[A]\cap B\neq\phi$ for all $U$ in $\mathfrak{U}$ .
Theorem 2. Let (X, $\mathfrak{U}$ ) be a symmetric generalized uniform space. The function

$g:P(X)$ into $P(X)$ defined by $x\epsilon g(A)$ iff $ U[x]\cap A\neq\phi$ for all $U$ in $\mathfrak{U}$ is a
Kuratowski closure furction.

The proof is straightforward.

Definition 3. The topology induced on $X$ by the Kuratowski closure function
$g$ in theorem 2 is called the uniform topology on $X$ induced by $\mathfrak{U}$ (notation: $\mathfrak{T}(\mathfrak{U})$ ).

Theorem. 3. Let (X, $\mathfrak{U}$ ) be a symmetric generalized uniform space. Then $\mathfrak{T}(\mathfrak{U})$

$=\mathfrak{T}(\mathfrak{P}(\mathfrak{U}))$ .
Proof. $ U[x]\cap A\neq\phi$ for every $U$ in $\mathfrak{U}$ iff $(\{x\}, A)\epsilon \mathfrak{P}(\mathfrak{U})$ (by definition)

Theorem 4. Let (X, 1I) be a symmetric generalized uniform space. Then

1. $A$ is in $\mathfrak{T}(\mathfrak{U})$ iff for every $x$ in $A$ there exists $U$ in $\mathfrak{U}$ such that $U(x$] $\subseteq A$ ;

2. For cvery $A$ in $P(X)$ we have that A $=$ { $x|U\{x\}\subseteq A$ for some $U$ in $\mathfrak{U}$ } ;

3. For every $A$ in $P(X)$ we have that $\overline{A}=\cap\{U[A]|U\epsilon \mathfrak{U}\}$ ;
4. $\mathfrak{T}(\mathfrak{U})$ is $ T_{0}iff\cap\{U|U\epsilon \mathfrak{U}\}=\Delta$ ;

5. (X, U) has a closed base implies $\mathfrak{T}(\mathfrak{U})$ is regular.

The proof is straightforward.

Definition. 4. $\mathfrak{B}$ is a base for some symmetric generalized uniformity on $X$ ffl

1. $V$ in $\mathfrak{B}$ implies $V=V^{-1}$

2. $\mathfrak{U}=$ { $U|U=U^{-1}$ and $U\supseteq V$ for some $V$ in $\mathfrak{P}$ } is a symmetric generalized
uniformity on $X$.
Theorem 5. $\mathfrak{B}$ is a base for some symmetric generalized uniformity on $X$ iff

$\mathfrak{B}$ satisfies $M_{1},$ $M_{2},$ $M_{3}$ and $M_{4}$ .
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The proof is straightforward.

Theorem 6. A top0l0gy $\mathfrak{T}$ on $X$ is the uniform topolOgy for some symmetric
generaliezed unzformity on $X$ iff $\mathfrak{T}$ is symmetric ( $i.e$. $x\epsilon\overline{y}$ implies $y\epsilon\overline{x}$ for all $x,y$ in $X$ ).

Proof. Suppose $\mathfrak{T}=\mathfrak{T}(\mathfrak{U})$ where $\mathfrak{U}$ is some symmetric generalized uniformity
on $X$. Let $x\epsilon\overline{y}$ . Then $ U[x]\cap\{y\}\neq\phi$ for all $U$ in $\mathfrak{U}$ . But since $U$ is symmetric,
we have that $ U[y]\cap\{x\}\neq\phi$ for all $U$ in $\mathfrak{U}$ ; so that $y\epsilon\overline{x}$ .

By $th\ovalbox{\tt\small REJECT} rem2.3$ in [1] page 418 and by $th\ovalbox{\tt\small REJECT} rem3$ to prove the converse it is
sufficient to prove the following

Lemma For every symmetric generalized proximity space, (X, $\mathfrak{P}$) there exists
$a\cdot symmetric$ generalized uniform space, $(X, \mathfrak{U}(\mathfrak{P})_{1})$ , such that $\mathfrak{P}(\mathfrak{U}(\mathfrak{P})_{1})=\mathfrak{P}$ .

Proof. Let $X$ be a set with power set $P(X)$ . For every $A,$ $B$ in $P(X)$ let $U_{A,B}$

equal $(X\times X)-((A\times B)\cup(B\times A))$ . Let $\mathfrak{B}=\{U_{A,B}|(A, B)\not\in \mathfrak{P}\}$ . Clearly, $\mathfrak{B}$ satisfies $M_{2}$ .
Suppose $A\overline{\mathfrak{P}}B$. Then $ U_{A.B}[A]\cap B=\phi$ . Conversely suppose there exists $C,$ $D$ such that
$c\overline{\mathfrak{P}}^{D}$ and $ U_{C,D}[A]\cap B=\phi$ . Then it is easily shown that ($A\subseteq C$ and $B\subseteq D$) or $(A\subseteq D$

and $B\subseteq C$ ). Hence $A\overline{\mathfrak{P}}B$. So that by $th\ovalbox{\tt\small REJECT} rem1$ we have that $\mathfrak{B}$ satisfies $M_{1},$ $M_{3}$ , and
$M_{4}$ . Let II $(\mathfrak{P})_{1}=$ { $U|U=U^{-1}$ and $U\supseteq V$ for some $V$ in $\mathfrak{B}$ } . $\mathfrak{U}(\mathfrak{P})_{1}$ (by $th\ovalbox{\tt\small REJECT} rem5$ ) is a
symmetric generalized uniformity on $X$. It is easy to show that $\mathfrak{P}(\mathfrak{U}(\mathfrak{P})_{1})=\mathfrak{P}\cdot(c.f$ . [5]

page 194).

REFERENCES

[1] M. W. Lodato, On topologically induced generalized pr0ximity relations, Proc. Amer. Math.
Soc., 15, No. 3 (1964), 417-422.

[2] M. W. Lodato, On topol0gically induced generalized proximity relations $\Pi$ Pacific Journal
of Mathematics, 17, No. 1 (1966), 131-135.

[3] M. W. Lodato, Generalized pr0ximity spaces: A generalization of topology, (private commu.
nication).

[4] A. G. Mordkovic, Test for correctness of a uniform space, Soviet Math. Dokl., 7 (1966),

915-917.
[5] W. J. Pervin, Founaations of General Topology, Academic Press, New York. (1964).

Trinity College
Hartford 6, Connecticut 06106

U. S. A.


	Theorem. 3. ...
	Theorem 4. ...
	Theorem 6. ...
	REFERENCES

