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In my paper [3] I gave a simple and whole proof of the completeness of the
first-order functional calculus.

J. Slupecki gave the thought to generalize the proof method for many valued
calculi.

In [6], [7], [8] I presented different generalizations of the satisfiability definition
and generalizations of completeness theorem with generalizations of Herbrand’s theorem
but proved by means of the usual completeness theorem and therefore proved on a
semantic way.

In this paper I generalize the method given in [3] and I obtain in such way
$simul\tanus$ generalizations of G\"odel’s completeness theorem with Skolem-L\"owenheim’s
theorem which include also Herbrand’s theorem according to the above and in a syntactic

way,
They are proved also completeness of infinite many Boolean important calculus

with (finite) truncated introduction of general and existential quantifiers which approximate
the first-order functional calculus.

This paper we can divide in two parts: the first part is analogical to [6] and
in the second one it is generalized the $pr\infty f$ method of [3] with geneializations of the
above theorem.

We use notations of $[4]-[16]$ and in particular:
(01) variables; (1) free: $x_{1},$ $\cdots$ (simply $x$),

(2) apparent: $a_{1},$ $\cdots$ (simply $a$),

(02) relations signs: $f_{1}^{1},$ $\cdots$ , $f_{q}^{1},$ $\cdots$ , $f_{1}^{t},$ $\cdots$ , $f_{q}^{t}$ ,

(03) logical constants:’ $,$

$+$ , $\Pi$ ,

(04) $w(E),$ $p(E)$ -the number of different free, apparent, variables respectively which
occur in the expression $E,$

$2$ )

(05) $\{K_{m}\}$ -the sequence $K_{1},$ $\cdots$ , $K_{m}$ ; $\{K_{q}^{t}\}$ -the sequence $K_{1}^{1},$ $\cdots$ , $K_{q}^{1}$ , $\cdot$ .. , $K_{1}^{t},$ $\cdots$ , $K_{q}^{t}$ ,

(06) $\{i_{w(E)}\},$ $\{j_{w(B)}\}$ -indices of all free variables occurring in $E$,

1) The paper is connected with my lectures on J. Slupecki’s seminar in 1951-1957 years and
on meetings of Polish Mathematical Society at Wroclaw and was written several years ago; results
without proofs are published at [12].

2) An expression in which an apparent variable belongs to the scope of two quantifiers $\Pi a$

is not a formula; if $a$ does not cccur in $E$, then $\Pi aE$ is not a formula.
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(07) $i(E)=\max\{i_{w(\mathcal{B})}\}$ , $n(E)=\max\{i(E), w(E)+p(E)\}$ ,

(08) $E(u/z)$ -the expression resulting from $E$ by substitution of $u$ for each $z$ in $E$

with known conditions, $E(\{i_{j}\}/\{t_{J}\})=E(x_{i_{1}}/y_{t_{1}})\cdots(x_{i_{f}}/y_{t_{j}})$ ,

(09) $C\{E\}$ -the set of all significant parts of the formula $E$ .
(010) $M,$ $M_{1},$ $\cdots$ -models; $Q,$ $Q_{1},$ $\cdots$ -non-empty sets of models of the same power

(for finite models it is used also the word “rank“ instead of the word; power):
$Q(k)-Q$ is a set of models of the power $k$ .

(011) $A,$ $A_{1},$ $\cdots$ -sets of indecomposable formulas, $i.e$ . atomic formulas with their
negation, in which indices of individual variables are $\leq k$ , where $k$ is a given
numbber; the sets may be infinite; $S_{A}$ -the set of all free variables which occur
in elements of $A$ , therefore $S_{E}$ -the set of all free variables occurring in the
expression $E$ ; if all the elements of $S_{A}$ are all free variables with indices $\leq k$

and for each indecomposable formula $E$ , if $S_{B}\subset S_{A}$ , then $E\epsilon A$ iff $E^{\prime}\overline{\epsilon}A$ , then
$A$ is called “set of the power $k$

“ ; $B,$ $B_{1},$ $\cdots$ -families of sets $A$ ; if elements of
$B^{\prime}s$ are only sets of the power $k$ , then $B$ is called: family of the power $k$ ; for
brevity we shall assume that we only $nsiderA^{\prime}s$ and $B^{\prime}s$ of a given power,

(012) The pair $<D,$ $\{F_{q}^{t}\}>$ denote a model, $i.e$ . that the domain $D$ is an arbitrary
non-empty set and $\{F_{q}^{t}\}$ is an arbitrary finite sequence of relations such that
$F_{k}^{m}$ is $m$-ary relation on $D,$ $k=1,$ $\cdots$ , $q$ and $m=1,$ $\cdots,$

$t.$ $A$ model of the power $k$

is such model whose domain has exactly numbers 1, $\cdots$ , $k$ ($k$ may be infinite),

(013) $M\{E\}=0,$ $i.e$ . $E^{\prime}$ is true in the model $M;M\{E(\{s_{k}\})\}=0,$ $i.e$ . $\{s_{k}\}$ are
elements of the domain of $M,$ $x_{j}$ are names of $s_{f}$ and $\{s_{k}\}$ do not satisfy $E$ in
the model $M$,

(014) Let $M=<D_{k},$ $\{F_{q}^{t}\}>,$ $M,$ $A$ -have the same power and for each $m_{1},$ $\cdots,$ $m_{f}\leq k$

and $j\leq t,$ $i\leq q:F_{l}^{j}(m_{1}, \cdots,m_{f})$ iff $ f_{\ell}^{f}(x_{m_{1}}, \cdots , u_{f})\epsilon$ $A$ $and\sim F_{l}^{J}(m_{1}, \cdots,m_{f})$ iff
$f_{\ell}^{j}$ $(x_{m_{1}}, \cdots , x_{m_{j}})\epsilon A$ -such $M$ is called a description of $A$ ,

(015) For each model $M=<D,$ $\{F_{q}^{t}\}>byM/s_{1},$ $\cdots$ , $s_{k}/$ -or briefly: $M/\{s_{k}\}-we$ shall
denote a model $<D_{k},$ $\phi_{q}^{t}>$ of the power $k$ such that for each $r_{1},$ $\cdots,$ $ r\ell\leq k:\phi$}
$(r_{1}, \cdots, r_{i})$ iff $F_{j}^{\ell}(s_{r1}, \cdots , s_{ri}),$ $i=1,$ $\cdots$ , $t$ and $j=1,$ $\cdots,$ $q$ . So $M/\{s_{k}\}=<D_{k}$ ,
$\{\phi_{q}^{t}\}>$ ; if $\{s_{k}\}$ is empty, then one holds for all models; $M/\{s_{k}\}$ is a submodel
of $M$ in the meaning of homomorphism,

(016) quantifiers: $(K),$ $(\exists K),$ $(\{K_{m}\}),$ $(\exists\{K_{m}\})$ ,

(017) $E\epsilon A/s_{1},$ $\cdots$ , $\cdot$ .. , $s_{k}/iffE(\{s_{k}\}/\{k\})\epsilon A$ ,

(018) $A/\{s_{k}\}=A/s_{1},$ $\cdots,$ $s_{k}/;A/\{s_{k}\}$ is a coset of $A$ in the meaning of homomorphism.
In the following $X,$ $Y,$ $X_{1},$ $\cdots$ -denote a model $M$ or a set $A;U,$ $U_{1},$ $\cdots$ -sets
$Q$ or $B$.
If $x_{si}\overline{\epsilon}S_{A}$ or respective $s_{i}$ does not belong to the domain of the model, then we
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assume $X/s_{1},$ $\cdots,$ $s_{k}/=X/s_{1},$ $\cdots$ , $s_{i- 1},$ $s_{i+1},$ $\cdots,$ $s_{k^{\prime}}$ Of course:

L. 1. $X/\{s_{k}\}/\{j_{m}\}=X/\{s_{Jm}\},$ $s$ . [ $1$)

L. 2. If $M_{1}$ is the description of $A_{1}$ and $M_{2}$ is the description of $A_{2}$ , and both
models have the same power, then: $M_{1}/\{j_{m}\}=M_{2}/\{j_{m}\}$ iff $A_{1}/\{j_{m}\}=A_{2}/\{j_{m}\}$

D. 1. $X\epsilon Y[k]$ iff $(\exists\{s_{k}\})\{X=Y/\{s_{k}\}\}$

$Y[k]$ is the set of all $Y/\{s_{k}\}$ .
For an arbitrary family $Q$ of models of the same power, for an arbitrary model

$M=<D_{k},$ $\{F_{q}^{t}\}>\epsilon Q$ , for an arbitrary formula $E$ and each $\{i_{l}\}\supset\{i_{w(E)}\},$ $l+p(E)\leq k$ we
introduced in [4] the following inductive definition of the functional $V$ :

(1d) $V\{k, Q, M, \{i_{i}\},f_{j}^{m}(x_{r_{1}}, x_{r_{m}})\}=1$ iff $F_{j}^{m}(r_{1}, \cdots, r_{m})$ ,

(2d) $V\{k, Q, M, \{i_{\ell}\}, F^{\prime}\}=1iff\sim V\{k, Q, M, \{i_{\iota}\}, F\}=1$ iff {V $k,$ $Q,$ $M,$ $\{i_{l}\},$ $F$ } $=0$ ,
(3d) $V\{k, Q, M, \{i_{\ell}\}, F+G\}=1$ iff $V\{k, Q, M, \{i_{t}\}, F\}=1\vee V\{k, Q, M, \{i_{l}\}, G\}=1$ ,
(4d) $V\{k, Q, M, i_{\ell}, \Pi aF\}=1$ iff $(j)(M_{1})\{j\leq k)\wedge(M_{1}/\{i_{\ell}\}=M/\{i_{\ell}\})\rightarrow$

$V\{k, Q, M_{1}, \{i_{l}\}, j, F_{(}x_{j}/a)\}=1\}$ .
D. 2. $N(k, Q, H)$ iff $(\{i_{l}\})\{(\{i_{l}\}\supset\{i_{\Phi(H)}\})\wedge(l+l(H)<k)$

$\rightarrow(M_{1})(i)(V\{k, Q, M_{1}, \{i_{\ell}\}, H\}=1$ iff $V\{k, Q, M_{1}, \{i_{l}\}, i, H\}=1\}\}$ ,

D. 3. $F\epsilon P(k, Q, M, \{i_{l}\})$ iff $(\exists H)\{(H\epsilon C\{F\})\wedge(H=\Pi aH_{1}$ for some $H_{1})^{3)}$

$\wedge N(k, Q, H)\rightarrow V\{k, Q, M, \{i_{l}\}, F\}=1\}$ ,

D. 4. $F\epsilon P(k, Q, M)$ iff $F\epsilon P(k, Q, M, \{i_{w(F)}))$ ,

D. 5. $F\epsilon P\{k\}$ iff $(Q)(M)\{Q(k)\wedge(M\epsilon Q)\rightarrow F\epsilon P(k, Q, M)\}$

D. 6. $E\epsilon P$ iff $(\exists k)\{(k\geq n(E))\wedge(E\epsilon P\{k\})\}^{4)}$ .
We recall:

$V\{k, Q, M, \{i_{f}\}, E\}=1$ may be read: the model $M$ satis fies $E$ respectively to
$Q$ and $\{i_{\ell}\}$ .

3) Instead $F$ we may write here an estabilshed formula $E$, to consider only parts of this
formula and then we shall $r\epsilon ceive$ a relative definition of the defina: class $P$ as in (4), (6). The
reader may replace $E$ by a set of formulas.

Analogously we may define the satisfiability functional $V_{1}$ which depends also on arbitrary
sequence $\{z_{i}\}$ of elements of $D_{k}$ ; for atomic formulas, negations and alternatives the definition of
$V_{1}$ is usual, $s$ . $(3], [17], [20)$ , and analogic to the above, and for quantifiers: (d4) $V_{1}\{k,$ $Q,$ $M$

$\{i_{l}\},$ $\{z’\},$ $\Pi aF$ } $=1$ iff $(j)(z)(M_{1})$ { $(j=1,2,$ $\cdots)$ A $(x_{J}\overline{\epsilon}S_{F})\wedge(Z\epsilon D_{k})\wedge(M_{!}/Zi_{\ell}$ } $=M/\{z_{i_{l}}\}$ ) $\rightarrow V_{1}$

$\{k, Q, M_{1}, \{i_{l}\}j, \{z_{t}\}(z/z_{f}), F(X^{}/a)\}=1$ .
By means of the functional $V_{1}$ we obtain as a special case the usual $t_{1}uth$ definition and its

generalization according to the above.
4) It is easy to see $n(E)$ may be less than used here.
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If we assume $Q$ is one elementing, then $V$ is the usual satisfiability functional
in the domain of ordinary numbers $D_{k}$ , D. 2.-4. are then obviously and they create the
usual truth definition in $M$.

If $M$ is a model and $Q=M[k]$ , then elements of $Q$ are submodels of $M$ in the
meaning of homomorphism, the number $j$ in (4d) is the name of an arbitrary element
of the domain of $M$ and D. 3. says that the sequence $\{i_{l}\}$ has not influence in whole
on the introduced truncated satisfiability definition as in one elementing $Q$ ; here we
need note that the invariant relation $N(k, Q, H)$ holds for connectives of propositional
calculus and for quantifiers it is assumed in D. 3. ; D. 5.-6. are pictures of the usual
truth definition in its generalization introduced here.

In [4] and [6] it is proved that for normal formulas $E$ it suffices to consider
only $H=E$ and the implication in the left-hand side of D. 2. instead of the second
equivalence.

It is easy to prove suitable:

(d) $(H)\{(H\epsilon C\{E\}\rightarrow N(k, Q, H)\}$ iff $(H)\{(H\epsilon C\{E\})\wedge(H=\Pi aH_{1}$ for
some $H_{1}$ ) $\rightarrow N(k, Q, H)$ .

(3D) $F\epsilon P(k, Q, M, \{i_{l}\})$ iff $(\exists H)\{(H\epsilon C\{F\})\wedge(N(k, Q, H)\rightarrow V\{k, Q, M, \{i_{l}\}, F\}=1)\}$ ,

L. 3. If $M/\{i_{l}\}=M^{o}/\{i_{l}\}$ , then :

$V\{k, Q, M, \{i\iota\}, E\}=1$ iff $V\{k, Q, M^{o}, \{i_{l}\}, E\}=1$

(3d) $V\{k, Q, M, \{i_{l}\}, F+G\}=0$ iff $ V\{k, Q, M, \{i_{\ell}\}, F\}=0\wedge$

$V\{k, Q, M, \{i_{l}\}, G\}=0$ ,

(4d) $V\{k, Q, M, \{i_{l}\}, \Pi aF\}=0$ iff $(\exists j)(\exists M_{1})\{(j\leq k)\wedge(M_{1}/\{i_{l}\}-M/\{i_{\ell}\})\wedge$

$V\{k, Q, M_{1}, \{i_{\ell}\},J, F(x_{j}/a)\}=0\}$ ,

(5d) $V\{k, Q, M, \{i\iota\}, \Sigma aF\}=1$ iff $(\exists j)(\exists M_{1})\{(j\leq k)\wedge(M_{1}/\{;_{\iota}\}=M/\{i_{l}\})\wedge$

$V\{k, Q, M_{1}, \{i_{l}\}, j, F(x_{f}/a)\}=1\}$ ,

(5d) $V\{k, Q, M, \{i_{l}\}, \Sigma aF\}=0$ iff $(j)(M_{1})\{(j\leq k)\wedge(M_{1}/\{i_{l}\}=M/\{i_{l}\})\rightarrow$

$V\{k, Q, M_{1}, \{i_{l}\}J, F(x_{j}/a)\}=0\}$ .
The proof of (d) and L. 3. are inductivel on the length of the considered formulas;

(3D) follows immedately from D. 3. and (d); $s$ . L. 5. in [5] and L. 14. in [13].

In the following the rank of $X,$ $U,$ $\cdots$ we denote by $v(X),$ $v(U),$ $\ldots$ For brevity
of considerations we shall assume that the sequence $(B)A_{1},$ $A_{2},$ $\cdots$

includes all elements of $B,$ $i.e$ . we assume we enumerated all elements of $B$.
Let $v(B)=k$ ; then:

For an arbitrary $A\epsilon B$, for an arbitrary formula $E$ such that $n(E)\leq k$ we
introduce the symbol $A,$ $B\vdash E$ which we read” $E$ is a thesis of $A$ respectively to $B^{\prime\prime}$ ;
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(11) $A,$ $B\vdash F$, for each $F\epsilon A$ ,

(12) $A,$ $B\vdash F+F^{\prime}$ , for each $F$,

(13) If $A,$ $B\vdash F_{1}+\cdots\cdots+F_{m}$ and $k_{1},$ $\cdots$ , $k_{m}$ is an arbitrary permutation of number
$\leq m$ , then $A,$ $B\vdash F_{k1}+\cdots+F_{k}m^{5)}$

’

(14) If $A,$ $B\vdash F$ and $G$ is a formula, then $A,$ $B\vdash F+G$ ,

(15) If $A,$ $B\vdash F+G$ and 6) $A,$ $B\vdash F+G^{\prime},$ $G^{\prime}\epsilon C\{F\}$ then $A,$ $B\vdash F$,

(16) If $A,$ $B\vdash F+G,$ $x_{r}\overline{\epsilon}S_{F},$ $x_{r}\epsilon S_{G}$ and
If there exists such $\{i_{l}\}\supset\{i_{i\ovalbox{\tt\small REJECT}(E+G(a/x_{r}))}\},$ $l+p(F+G(a/x_{r}))\leq k$ , then:

(1) for each $j\leq k$ we have $A,$ $B\vdash F+G(x_{f}/x_{r})$ ,

(2) for each A $\epsilon B$, if $A^{o}/\{i_{l}\}=A/\{i_{\ell}\}$ , then for each $j\overline{\epsilon}\{i_{l}\}:A^{o},B\vdash F+G(x_{f}/x_{r})^{7)}$

then $A,$ $B\vdash F+\Pi aG(a/x_{r})$ ,

(17) If $A,$ $B\vdash F+\Pi aG,$ $\Pi aG\epsilon C\{F\}$ , then for each $\{i_{l}\}\supset\{i_{w(F+G)}\},$ $l+p(F+G)\leq k$ ,
for each A $\epsilon B$, if $A^{o}/\{i_{l}\}=A/\{i_{l}\}$ , then $A^{o},$ $B\vdash F+G(x_{f}/a)$ (it suffices to take
here only $t=w(F+G))$ ,

(18) If there exists such $\{i_{l}\}\supset\{i_{w(F+G)}\},$ $l+p(F+G)\leq k$ and there exist such $j\leq k$ and
$A^{o}\epsilon B,$ $A^{0}/\{i_{\ell}\}=A/\{i,\}$ that A, $B\vdash F+G(x_{f}/a)$ , then $A,$ $B\vdash E+\Sigma aG$ .

(19) If $A,$ $B\vdash F+\Sigma aG,$ $\Sigma aGE\epsilon C\{F\}$ , then for each $\{i_{l}\}\supset\{i_{sv(F+G)}\},$ $ l+p(F+G)\leq$

there exist such $j\leq k$ and $A^{0}\epsilon B$ that $A^{0}/\{i_{\ell}\}=A/\{i_{l}\}$ and A, $B\vdash F+G(x_{j}/a)^{8)}$ .
(From the following $nsiderations$ follows that (18), (19) follows from (11) $-(17)$ . )

Of $urse$ (12)$-(15)$ are proof rules of the propositional calculus and (12)$-(17)$ -of
the first-order functional calculus; the last fact is obviously for $B$ -empty.

The following $nsideration$ hold also by replacing $j\leq k$ in (16), $(1^{o})$ by means
$j\leq k-p(F+G(a/x_{r}))$ analogic to [6] ; then we modify (4d) according to [6].

Let

$Cl(U)$ iff (X) ( $ m_{1}1\cdots(m_{k})\{(X\epsilon U)\wedge$ ( $m_{1},$ $\cdots$ , $m_{k}$ is a permutation of numbers $\leq k$) $\rightarrow$

$(X/m_{1}, \cdots, m_{k}/\epsilon U)\}$ .

If $Cl(B)$ , then $B$ is not one-elementing and in this $ndition$ all following

5) Of course, the rule may be replaced by usual associative and commutative laws.
6) For theses we may assume also $\{i_{u(F+O^{\prime})}\}=\{i_{w(F)}\}$ .
7) If considered sets of formulas are closed under substitutions regarded in (1) and (2),

then it suffices to assume $ j=\gamma$ .
8) If we consider a relative definition of the class $P$ respectively to $E,$ $s$ . $[4],$ [ $6$), then in

proof rules we must assume all considered formulas are composed of significant parts of $E$ and then
assuInptions about parts in proof rules are in general less, $s$ . footnote 3).
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considerations hold by assuming in (16) only: $j\epsilon\{i_{l}\}$ in $(1^{o}),$ $j=r$ ; if permutations are

also with reiterations, then it suffices only: $j\epsilon\{i_{w(G(a/x_{r}))}\}$ in $(1^{o})$ , and in $(2^{o})$ as above

$j=r$. Then (16) will receive a from of usual quantification rule but we must here use

more strong lemma than L. 3., namely:

L. 3’. If $E^{o}=E(\{j_{1}\}/\{i_{l}\},$ $\{i_{l}\}\supset\{i_{w(E)}\},$ $\{j_{\ell}\}\supset\{j_{w(E^{O})}\},$ $M/\{i_{l}\}=M^{o}/\{i_{\ell}\}$ and

$Cl(Q)$ , then:

$V\{k, Q, M, \{i_{l}\}, E\}=1$ iff $V\{k, Q, M^{o}, \{j_{i}\}, E^{o}\}=1,$ $s$ . L. 12’. in [9].

If $B$ is non-determined, one-elementing and $v(B)$ infinite, then we also will speak

that it is closed under the $nsidered$ permutations.

Other form of proof rules are regarded in $[4J, [6],$ $[14]$ and will be also a topic

of my future papers.

We point out that in order to approximate the first-order functional calculus by

the above calculi it suffices to consider only $B$ and $Q$ with the above permutation

property, $s$ . also [8], $[9J, [15],$ $[16]$ .
D. 7. The double sequence $E_{i1},$ $\cdots$ , $E_{\ell n_{i}},$ $i=1,2,$ $\cdots$ is a formal proof of the

formula $E$ in $A_{f}$ respectively to $B$ iff $E=E_{jn_{j}}$ and for each $i=1,2,$ $\cdots$ and $t=1,$ $\cdots$ , $n$

one of following conditions holds:

1. $E_{it}$ is an element of $A_{i},$ $s.(B)$ , or $E_{it}=F+F^{\prime}$ , for some $F$ ,

2. there exists $d<t$ such that $E_{it}$ results from $E_{i}a$ by means of rules (13) or (14),

3. there exist $d,$ $m<t$ such that $E_{it}$ results from $E_{il}$ and $E_{im}$ by means of the rule

(15),

4. $E_{it}$ results from the double sequence $E_{d1}$ , $\cdot$ .. , $E_{a\iota-1},$ $d=1,2,$ $\cdots$ by means of the

rule (16),

5. there exist $d<t$ and $m$ such that $E_{it}$ results from $E_{m1}$ by means of rules (17) or

(18), or (19),

D. 8 The formula $E$ is a thesis of $A_{j}$ respectively to $B$-in symbols: $A_{j},$ $ B\vdash$

E-iff there exists a formal proof of $E$ in $A_{j}$ respectively to $B$.
$A,$ $B\vdash E$ we read: $E$ is not a thesis of $A$ respectively of $B$ .

D. 9. $B\vdash E$ iff $(A)\{(A\epsilon B)\rightarrow(A, B\vdash E)\}$ $B\vdash E$ may be read: $E$ is a thesis

respectively to B.

$D10$ . $k\vdash E$ iff $(B)\{(v(B)=k)\rightarrow(B\vdash E)\}$ .
$D11$ . $+E$ iff $(\exists k)\{k\vdash E)\wedge(k\geq n(E))\}$ .
$\vdash E$ may be read: $E$ is a $B$-thesis.
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Of course:

If $B$ is not determined and $B\vdash E$, then $k\vdash E$.
The converse implication follows from generalization of $G\text{"\""{o}"} del-Skolem-L\ddot{o}venheim’ s$

theorem, p. 14.

T. 1. If $E$ is a thesis, then $\vdash E$ .
T. 2. If $Q$ is the family of all description of elements of $B,$ $k=v(B)=v(Q),$ $M$

is the description of $A_{t},$ $E_{i1},$ $\cdots$ , $E_{in_{i}}$ is a formal proof of $E$ in $A_{t}$ respectively to $B$,
$k\geq n(E_{is}),$ $s=1,$ $\cdots,$ $n_{i}$ , and $i=1,2,$ $\cdots,thenE_{ts}\epsilon P(K, Q, M)$ .

Proof. Let the assumption of T. 2. hold.

We shall prove T. 2. by induction on $s=n_{t}simul\tan\infty usly$ for all $ t=1,2,\cdots$

Of couse, if $E_{ts}=F+F^{\prime}$ or $E_{ts}\epsilon A_{t}$ , then in view of the assumption T. 2. holds;
therefore T. 2. holds for $s=1$ .

Let T. 2. holds for all $m<s$ ; we shall prove it for $s$ .
If $E_{ts}$ results from $E_{tm},$ $m<s$ , by means of rules (11) $\dashv 14)$ , then T. 2. also holds

obviously for $E_{ts}$ ; in (14) we use D. 2.

If $E_{ts}$ results from $E_{tm}$ and $E_{td},$ $d,$ $m<s$ , by means of the rule (15), then in view
of the assumption and D. 2. we obtain that T. 2. also holds for $E_{ts}$ .

If $E_{ts}$ results from the double sequence $E_{a1},$ $\cdots$ , $E_{d\epsilon-1},$ $d=1,2,$ $\cdots$ , by means of
the rule (16), then $E_{ts}=F+\Pi aG(a/x_{r}),$ $x_{r}\overline{\epsilon}S_{F},$ $x_{r}\epsilon S_{G}$ , for each $j\leq k$ formulas $F+G$
$(x_{j}/x_{r})$ occur in the sequence $E_{t1},$ $\cdots$ , $E_{cs-1}$ , and there exists such $\{i_{l}\}\supset\{\dot{t}_{w(’+G(a/x_{f}))}\}$ ,
$l+p(F+G(a/x_{r}))\leq k$ , if $A_{t}/\{i_{l}\}=A_{c}/\{i_{\ell}\}$ , then for each $j\overline{\epsilon}(i_{l}$ } there exists $m<s$ such
that $E_{cm}=F+G(x_{j}/x,)$ .

Let $E_{t\iota}\overline{\epsilon}P(k, Q, M)$ ; therefore in view of D. 3.-4., (d), for each $H\epsilon C\{E_{t\iota}\}$ we
have $N(k, Q, H)$ and $V\{k, Q, M, \{i_{l’}\}, E_{i\theta}\}=0,$ $l^{\prime}=w(E_{t\iota})$ , and we may assume by
D. 2. $l^{\prime}=l$ given above; therefore by $(3d^{\prime})$ and the above $V\{k, Q, M, \{i_{\ell}\}, F\}=0$ and
$V\{k, Q, M, \{i_{l}\}, \Pi aG(a/x,)\}=0$ . Hence by virtue of $(4d^{\prime})$ there exist $j\leq k$ and $M_{1}\epsilon Q$

such that $M_{1}/\{i_{\ell}\}=M/\{i_{l}\}$ and $V\{k, Q, M_{1}, \{i_{l}\},j, G(x_{j}/x_{r})\}=0$ ;

We consider two cases:

(1) $j\epsilon\{i_{\ell}\}$

(2) $j\overline{\epsilon}\{i_{l}\}$

In the case $(1^{o})$ in view of L. 3. and the above we also have $V\{k,$ $Q,$ $M,$ $\{i_{\ell}\}$ ,
$G(x_{j}/x_{r})\}=0$ and thus $V\{k, Q, M, \{i_{\ell}\}, F+G(x_{j}/x_{r})\}=0$ what according to the above
and $C\{E_{t*}\}\supset C\{F+G(x_{j}/x_{r})\}$ gives a contradiction.
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In the case $(2^{o})$ in view of $M_{1}/\{i_{l}\}=M/\{i_{l}\}$ we also have $V\{k,$ $Q,$ $M_{1},$ $\{i_{l}\}$ ,

$F\}=0$ . Because from the assumption $l+p(F)<k$ , therefore in view of $N(k, Q, H)$ for

each $H\epsilon C\{F+G(x_{j}/x_{r})\}$ , the assumption and $(3d^{\prime})$ we have $V\{k, Q, M_{1}, \{i_{\ell}\},j, F\}=0$

and $V\{k, Q, M_{1}, \{i_{\ell}\}j, F+G(x_{j}/x_{r})\}=0$ what as above gives a $ntradiction$ .

If $B$ is closed under permutations considered on p. 7 $8$ ) $-15$ ) then $Q$ is also closed

under the same permutations ; then we regard simpler rules described on p. 7 $8$ ) $-15$ ) and

the same two cases. The case $(1^{o})$ is as above and in the second case we permute $j$ to

$r$, : afterwards we use L. 3’. instead of L. 3. and we enlarge the sequence $\{i_{l}\}$ , to the

sequence $\{i_{l}\},$ $r$ as above, $s.e.g$ . $[13]$ .

If $B$ is closed under permutations with reiterations considered on p. 7 $8$) $-15$ ) then

we regard two simpler cases:

(1) $j\epsilon\{i_{w(G(a/x_{r}))}\}$ ,

(2’) $j\epsilon\{i_{w(G(a/x_{r}))}\}$ .

The case $(1^{\prime})$ is here as $(1^{o})$ above.

In the case (2) we permute $j$ to $r$ with reiteration and act as in the case $(2^{o})$

for $B$ closed only on permutations without reiteration, $s.e$ . $g$ . [9].

The above proves T. 2. in the case of the rule (16).

If $E_{ts}$ results from $E_{m},$ $m<s$ , by means of the rule (17), then $E_{tg}=F+G(x_{j}/a)$ ,

$E_{cm}=F+\Pi aG,$ $\Pi aG\epsilon C\{F\},$ $m<s$ , and $A_{c}/\{i_{l}\}=A_{t}/\{i_{l}\},$ $\{i_{l}\}\supset\{i_{w(F+G)}\},$ $l+p(F+G)\leq k$ .
Let $E_{t*}\overline{\epsilon}P(k, Q, M)$ ; therefore in view of D. 3.-4., (d), for each $H\epsilon C\{E_{t\iota}\}$ we

have $N(k, Q, H)$ and $V\{k, Q, M, \{i_{l^{\prime}}\}, E_{ts}\}=0,$ $l^{\prime}=w(E_{ts})$ , and by $(3d‘)$ and above
$V\{k, Q, M, \{i_{l^{\prime}}\}, F\}=0$ and $V\{k, Q, M, \{i_{i^{\prime}}\}, G(x_{f}/a)\}=0$ . Hence in view of D. 2.
$V\{k, Q, M, \{i_{l}\}, F\}=0$ and $V\{k, Q, M, \{i_{l}\}, j, G(x_{f}/a)\}=0$ ; therefore by $(4d^{\prime})$ also
$V\{k, Q, M, \{i_{l}\}, \Pi aG\}=0$ and by $(3d^{\prime})V\{k, Q, M, \{i_{\ell}\}, F+\Pi aG\}=0$ .

Let $M_{1}$ be the description of $A_{c}$ ; then in view of the above and L. 2. we have

also $M/\{i_{l}\}=M_{1}/\{i_{l}\}$ and by virtue of L. 3. $V\{k, Q, M_{1}, \{i_{l}\}, F+\Pi aG\}=0$ and thus
$V\{k, Q, M_{1}, \{i_{l}\}, E_{cm}\}=0$ .

Because by assumption $C\{E_{cm}\}=C\{E_{ts}\}$ , therefore in view of D. 2. and the above

we may assume here $l=w(E_{cm})$ what gives a contradiction with the inductive assumption.

Thus T. 2. is also true in the case of the rule (17).

Let $E_{ts}$ results from $E_{cm},$ $m<s$ , by means of the rules (18) or (19), then we need

consider two cases according to two rules:

(1) $E_{ts}=F+\Sigma aG$ ,

(2) $E_{ts}=F+G(x_{j}/a),$ $\Sigma aG\epsilon C\{F\}$ .
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In the first case $E_{cm}=F+G(x_{j}/a),$ $m<s$ , and for some $\{i_{l}\}\supset\{i_{w(F+G)}\},$ $l+p(F+G)$

$\leq k,$ $A_{t}/\{i_{l}\}=A_{c}/\{i_{\ell}\}$ .
Let $M_{1}$ be the description of $A_{c}$ ; therefore in view of the above and L. 2. we

have $M/\{i_{i}\}=M_{1}/\{i_{i}\}$ . By the inductive assumption $F+G(x_{j}/a)\epsilon P(k, Q, M_{1})$ .
If $F+\Sigma aG\overline{\epsilon}P(k, Q, M)$ , then in view of D. 3.-4., (d), for each $H\epsilon C\{F+\Sigma aG\}$

we have $N(k, Q, H)$ and $V\{k, Q, M, \{i_{l_{O}}\}, F+\Sigma aG\}=0$ , and by $(3d^{\prime})$ also $V\{k,$ $Q,$ $M$,
$\{i_{l_{O}}\},$ $F$ } $=0,$ $V\{k, Q, M, \{i_{l_{O}}\}, \Sigma aG\}=0,$ $l^{o}=w(F+\Sigma aG)$ . Hence in view of D. 2. we
may assume $l^{o}=1$ and therefore by L. 3. and $(3d^{\prime})$ also $V\{k, Q, M_{1}, \{i_{l}\}, F+\Sigma aG\}=0$ .

Because $C\{F+G(x_{j}/a)\}\subset C\{F+\Sigma aG\}$ , therefore from the above $V\{k,$ $Q,$ $M_{1}$ ,
$\{i_{i^{\prime}}\},$ $F+G(x_{f}/a)$ } $=1,$ $l^{\prime}=w(F+G(x_{f}/a))$ ; therefore by (3d) and (5d) also $V\{k,$ $Q,$ $M_{1}$ ,
$\{i_{l^{\prime}}\},$ $F+\Sigma aG$ } $=1$ and analogical by D. 2. we may replace here $l^{\prime}$ by $l$ what gives a
$ntradi\alpha ion$ with the above.

In the case $(2^{o})E_{cm}=F+\Sigma aG,$ $m<s$ , and let $M_{1}$ be the description of $A_{c}$ . By

the inductive assumption $F+\Sigma aG\epsilon P(k, Q, M_{1})$ .
If for some $\{i_{l}\}\supset\{l_{w(F+O)}\},$ $\iota+p(F+G)\leq k$ , for each $j\leq k$ and each $M\epsilon Q$ such that

$M/\{i_{\ell}\}=M_{1}/\{i_{l}\}$ we have $F+G(x_{j}/a)\overline{\epsilon}P(k, Q, M)$ , then in view of the above, D. 3.-4.,
(d), for each $H\epsilon C\{F+G(x_{j}/a)\}=C\{F+\Sigma aG\}$ wehave $N(k, Q, H)$ and $V\{k,$ $Q,$ $M,$ $\{i_{l^{\prime}}\}$ ,

$F+G(x_{j}/a)\}=0,$ $l^{\prime}=w(F+G(x_{j}/a))$ ; hence by $(3d^{\prime})$ , D. 2. we receive $V\{k,$ $Q,$ $M,$ $\{i_{\ell}\}$ ,

$F\}=0$ and $V\{k, Q, M, \{i_{l}\}, j, G(x_{j}/a)\}=0$ . Therefore by L. 3, and $(5d^{\prime})$ also $V\{k,$ $Q$ ,
$M_{1},$ $\{i_{l}\},$ $F$ } $=0$ and $V\{k, Q, M_{1}, \{i_{l}\}, \Sigma aG\}=0$ ; thus by $(3d^{\prime})V\{k,$ $Q,$ $M_{1},$ $\{i_{i}\},$ $F+$

$\Sigma aG\}=0$ , what in view of the above D. 2. gives a $ntradiction$ .
Therefore for each $\{i_{l}\}\supset\{i_{w(F+O)}\},$ $l+p(F+G)\leq k$ , for some $j\leq k$ and for some

$M\epsilon Q,$ $M/\{i_{l}\}=M_{1}/\{i_{l}\}$ : $F+G(x_{j}/a)\epsilon P(k, Q, M)$ . This $M$ is the description of the
needed $A_{t}$ , what proves T. 2. in the case $(2^{o})$ .

The above closed the inductive proof of T. 2.

From T. 1. and T. 2. follows:

T. 3. If $E$ is a thesis, then $E\epsilon P$.
D. 12. $A$ set $U$ of formulas of the first-order functional calculus is consistent

respectively to $B$ and $A\epsilon B$ iff there exists at least one formula $E$ such that $A\cup U$,
$Bp_{\nabla}E$, where $A\cup U$ means that we assume the proof rule (11) also for elements of $U$

and $k\geq n(F)$ for $F\epsilon U$.
The reader may define more general notion than in D. 12. by adding to each

element of $B$ a set of considered formulas.

In the same way as T. 2. we may prove the generalization of it:
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T. 4. If $Q$ is the family of all description of elements of $B,$ $k=v(B)=v(Q),$ $M$

is the description of $A_{t}$ and for each $E\epsilon U,$ $F\epsilon E(k, Q, M),E_{i1},$ $\cdots,E_{in_{i}}$ is a formal proof

of $E$ in $A_{t}\cup U$ respectively to $B,$ $k\geq n(E_{ts}),$ $s=1,$ $\cdots,$ $n_{i}$ , and $i=1,2,$ $\cdots$ , then $E_{t\iota}\epsilon P$

$(k, Q, M),$ $s$ . foot note 3).

T. 4. is especially,an interesting generalization of the known $thoem$ that if
$M$ is a model for axioms of a given $thry$ , then $M$ is a model for their $nclusions$ .

To each $A\epsilon B,$ $k=v(B)$ , we correspond a set $J_{A}$ and to $B$ we correspond the
family $B_{J}$ of all $J_{A}^{\prime}s$ in the following way:

D. 13. $A$ family $B_{J}$ is called a family of generalized proper prime ideals respec-
tively to $B$ iff there exists such double sequence of formulas $E_{1}^{A_{1}},$ $E_{2}^{A_{1}},$ $\cdots$ that $J_{A_{1}}$ is

the set of all elements of the sequence $E_{1}^{A_{1}},$ $E_{2}^{A_{2}},$ $\cdots A_{1}=A\cup U$ or $A_{1}\epsilon B,$ $B_{J}$ is the family
of all $J_{A_{1}}$ and the following $nditions$ are satisfied: 9)

1. If for some $d$ and certain formulas $F$ and $G$ we have $E_{a^{1}}^{A}=F+G$ , then there
exist $i,j<d$ such that $E_{\ell^{1}}^{A}=F$ and $E_{j}^{A_{1}}=G$ ,

2. For each $d=1,2,$ $\cdots$ there exists $A_{2}\epsilon B$ such that: $A_{2}$ , BN $E_{1}^{A_{1}}+\cdots+E_{a^{1}}^{A}$ ,

3. If a formula $E\overline{\epsilon}J_{A_{1}}$ , then there exists $d$ such that for each $A_{2}\epsilon B,$ $A_{2},$ $B\vdash E_{1}^{A_{1}}+$

$...+E_{a^{1}}^{A}+E$ and if $E=\Pi aF$, then $E_{a^{1}}^{A}=(\Pi aF)^{\prime}$ ,

4. If $E_{a^{1}}^{A}=\Pi aE$ , then $(\{i_{l}\})(\exists^{A_{2}})(\exists 1)\{(\{i_{l}\}\supset\{i_{w(E)}\})\wedge(l+p(E)\leq k)\rightarrow(A_{2}\epsilon B)\wedge(j\leq k)\wedge$

$(A_{2}/\{i_{l}\}=A_{1}/\{i_{l}\})\wedge(E(x_{j}/a)\epsilon J_{A_{2}})\}$ ,

If $E_{a}^{A1}=(\Pi aF)^{\prime}$ , then $(\{i_{l}\})(A_{2})(j)\{(A_{2}\epsilon B)\wedge(\{j_{l}\}\supset\{i_{w(E)}\})\wedge(l+p(E)\leq k)\wedge(j\leq k)$

$\wedge(A_{2}/\{i\iota\}=A_{1}/\{i_{l}\})\rightarrow(E(x_{j}/a)\overline{\epsilon}J_{A_{2}})\}$ . $10$ )

5. If $A_{1}/\{i_{l}\}=A_{2}/\{i_{l}\},$ $\{i_{w(E)}\}\subset\{i_{l}\}$ , then: $E\epsilon J_{A_{1}}$ iff $E\epsilon J_{A_{2}}$ .
In the following we $nsider$ only $B$ closed under suitable permutations described

on p. 7 $8$) $-15$) $i.e$ . we $nsider$ only described there rules; we assume also:

$(^{*})$ if $k$ is finite, then for each different $\{i_{l}\},$ $j$ and each $A_{1}\epsilon B$ there exists $A_{2}\epsilon B$

such that $A_{1}/\{i_{\ell}\}=A_{2}/\{i_{\ell}\}$ and $A_{1}/\{i_{l}\},j\neq A_{2}/\{i_{l}\},j/$ .
T. 5’. If $A_{1}=A\cup U,$ $A_{1},$ $BP_{\nabla}E_{0^{\prime\prime}}$ and $k\geq n(E_{0}+F_{1}+\cdots+F_{n})^{n}$ for all $F_{1},$

$\cdots,$
$F_{n}\epsilon U$,

then there exists a family $B_{J}$ of generalized proper prime ideals respectively to $B$ such

that $E_{0}^{\prime\prime}\epsilon J_{A_{1}}$ .

9) We leave for readers the modification of D. 13. in which does not oecur the double
sequence; the property 1. may be also omitted, $s$ . [ $3$).

10) We may assume also that $j$ satisfies conditions formulated in T. 5. The reader may
formulate analogical properties for the existential quantifier.

11) From the proof follows that $k$ may be less than given above.
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Proof: Because we have a denumerable number of all significant parts of

considered formulas, therefore we may order them in a double sequence

(1) $G_{1}^{A2},$ $G_{a^{2}}^{A},$ $\cdots$

in such way that it satisfies the following $nditions$ :

(1a) all formulas of each sequence of (1) are different,

(2a) $G_{1}^{A_{1}}=E_{0}$ , for $A_{1}=A\cup U$,

(3a) if for some $d$ and certain formulas $F$ and $G$ we have $G_{a^{2}}^{A}=F+G$ , then there

exist $i,j<d$ such that $G_{\ell^{2}}^{A}=F$ and $G_{J^{2}}^{A}=G$ ,

(4a) if for some $d$ and some formula $E$ we have $G_{a^{2}}^{A}=lIaE$ , then $G_{a+1}^{A_{3}^{0}}’=E^{\prime\prime}(x_{j}/a)$

and $j\overline{\epsilon}\{i_{l}\}$ , where:

(1) if $k$ is infinite, then $A_{3}^{0}=A_{2},$ $G_{a+1}^{A_{2}},$ $\cdots$ , $G_{a^{\prime}}^{A2}$ are all substitutions $E^{\prime\prime}(x_{f}/a)$ ,

for $j\epsilon\{i_{l}\}$ and we enlarge all lines to the length $d^{\prime}e.g$ . as below in $(2^{o})$

and $l=W(G_{t^{2}}^{A}+\cdots+G_{a’}^{A}z)$ ,

(2) if $k$ is finite, then for each $\{i_{l}\}\supset\{i_{w(E)}\},$ $l+p(E)\leq k$ , we choose $Ai\epsilon B$ as
at $(^{*}),$ $i.e$ . a new line, such that $A_{3}/\{i_{l}\}=A_{2}/\{i_{l}\}$ and we assume that
$G_{1^{3}}^{A},$ $\cdots$ , $G_{a’}^{A_{3}}a\iota e$ only such formulas belonging to $G_{1}^{A_{2}},$ $\cdots$ , $G_{a^{2}}^{A}$ in which
occur indices of $\{i_{l}\}$ and afterwards all substitutions $E^{\prime\prime}(x_{j}/a)$ , for $j\epsilon\{i_{w(\ell)}\}$

and we enlarge all lines to the length $d^{\prime}$ by adding to them $e.g$ . $Ea$ with
an even number of negations,

(5a) if non (4a), then $G_{a+1}^{A_{2}}$ is the first formula which is not included into $G_{1}^{A_{2}},$ $\cdots$ , $G_{a^{2}}^{A}$ ,

Let

(2) $E_{1}^{A_{2}},$ $E_{2}^{A_{2}},$ $\cdots$

be a subsequence of the sequence (1) defined in the following way:

(1b) $E_{1}^{A1}=G_{1}^{A1}=E_{0}^{\prime\prime}$ , for $A_{1}=A\cup U$,

(2b) $E_{a}^{A}\dotplus 1$ is the first element after $E_{a^{2}}^{A}$ of the double sequence (1) such that for some
$A_{2}^{0}\epsilon B:A_{2}^{0},$ $Bp_{\nabla}E_{1}^{A_{2}}+\cdots+E_{a+1}^{A_{2}}$ and if there exists $d$ such that for each $A_{2}^{0}\epsilon B$ :
$A_{2},$ $B\vdash E_{1}^{A_{2}}+\cdots+E_{a^{2}}^{A}+\Pi aF$, then in (4a) $(1^{o}),$ $(2^{o})$ we add $E_{d^{\prime}}=(\Pi aF)^{\prime}$

(3b) If $A_{2}/\{i_{l}\}=A_{\theta}/\{i_{\ell}\},$ $\{i_{w(E)}\}\subset\{i_{\ell}\}$ , then ahead: $E=E_{J^{2}}^{A}$ iff $E=E_{J^{3}}^{A}$ . Here we
restrict ourself to formulas with a finite length of significant parts; if we do
not restrict ourself to such formulas we need use all finite sequences of formulas
belonging to ideals as in [3], $s$ . footnote 9).

We shall prove the family $B_{J}$ of all $J_{A_{2}},$ $A_{2}\epsilon B$ or $A_{2}=A_{1}$ , where $J_{A_{2}}$ is the
set of all elements of the sequence $E_{1}^{A_{2}},$ $E_{2}^{A_{2}},$ $\cdots$ , –is a family of proper prime ideals
respectively to $B$ ; in this purpose it suffices to prove conditions $1.-5$ . of D. 13.
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Immediately $nclusions$ from the definition of the sequence (2) are $1.-3.,$ $5$ . $s$ .
[3], [11].

We prove 4. :

(1) let $E_{a^{2}}^{A}=\Pi aE$ , for some $E$,

(2) for each $d$ there exists $A_{2}\epsilon B:A_{2},$ $BbE_{1}^{A_{2}}+\cdots+E_{a^{2}}^{A}$

(3) there exists such $m$ that $G_{m^{2}}^{A}=E_{a^{2}}^{A}=\Pi aE$.
(4) Gafi $=E^{\prime\prime}(x_{j}/a)$ and $j\overline{\epsilon}\{i_{l}\}$ , where:

(1) if $k$ is infinite, then $A_{3}^{0}=A_{2}$ and $l=w(G_{1}^{A_{2}}\cdots G_{a^{2}}^{A}),$ $s$ . $(4a)(1^{o})$ ,

(2) if $k$ is finite, then for cach $\{j_{\iota}\}\supset\{i_{w(E)}\},$ $l+p(E)\leq k$ we choose $A_{3}^{0}\epsilon B$,

determined in (4a), $(2^{o}),$ $i.e$ . a new line, such that $A_{3}/\{i_{l}\}=A_{2}/\{i_{i}\}$ and
we assume that $G_{1}^{A}$ \S , $\cdots$ , $G_{d}^{A_{3}}$ are only such formulas belonging to $G_{1}^{A_{2}},$ $\cdots$ ,
$G_{a}^{A2}$ [or with two negations] in which occur indices of $\{i_{\ell}\},$ $s$ . footnote 7),

(5) for some $\{i_{l}\}\supset\{i_{w(E)}\},$ $l+p(E)\leq k$ , for each $A_{3}\epsilon B$ and $j\leq k$ if $A_{3}/\{i_{l}\}=A_{2}$

$/\{i_{i}\}$ , then $E(x_{j}/a)\overline{\epsilon}J_{A_{3}}-a$ contrary assumption,

(6) for some $\{i_{l}\}\supset\{i_{w(E)}\},$ $l+p(E)\leq k$ , for each $A_{3}\epsilon B$ and $j\leq k$ if $A_{3}/\{i_{l}\}=A_{2}$

$/\{i_{l}\}$ , then there exists $c$ such that for each $A_{4}\epsilon B:A_{4},$ $B\vdash E_{1}^{A}s+\cdots+E_{c}^{A3}+$

$E(x_{j}/a)$ ,

(7) In the case (4) $(1^{o})$ we take $A_{3}=A_{2}$ and thus: for each $A_{4}\epsilon B:A_{4},$ $ B\vdash$

$E_{1}^{A_{2}}+\cdots+E_{c^{2}}^{A}+E(x_{j}/a),$ $c=d,j\epsilon\{i_{l}\}$ and some $j\overline{\epsilon}\{i_{w(E_{1c}^{A_{2\cdots E}A2}},\}$ ,

(8) for each $A_{4}\epsilon B:A_{4},$ $B\vdash E_{1}^{A_{2}}+\cdots+E_{a^{2}}^{A}+\Pi aE$ -rule (16),

(9’) for each $A_{4}\epsilon B:A_{4},$ $B\vdash E_{1}^{A_{2}}+\cdots+E_{a^{2}}^{A}$ -contradiction,

(10) in the case (4), $(2^{o})$ , we take $A_{3}=A_{3}^{0}$ and thus; for earch $ A_{4}\epsilon B;A_{4}.B\vdash$

$E_{1}^{A_{3}}+\cdots+E_{\iota}^{A_{3}}+E(x_{j}/a),$ $c=d,j\epsilon\{i_{l}\}$ and some $j\overline{\epsilon}\{i\epsilon w(E_{1}^{A^{o}}+\cdots+E_{0}^{A_{3}})\}$ ,

(11) for each $A_{4}\epsilon B:A_{4},$ $B\vdash E_{1}^{A_{3}}+\cdots+E_{a^{3}}^{A}+\Pi aE$ -rule (16)

(12) for each $A_{4}\epsilon B:A_{4},$ $B\vdash E_{1}^{A}\$+\cdots+E_{a^{3}}^{A}$ -contradiction

The $aend$ sentence of 4. follows immediately from (17) $\infty nsidering$ the line
described in (4a) $(2^{o});q.e.d$ .

According to the above T. 5’. also holds with $Bmposed$ of one non-determined
element $A$ and $k$ infinite; thus it also holds for usual theses.

D. 14 $A^{0}\epsilon B[r]$ iff ( $\{r\}$ is a permutation of $k$ upon $r$ ) $\wedge(r\leq k)\wedge$

$(\exists A)\{(A\epsilon B)\wedge(A^{o}=A/\{r\})\}\wedge$ ( $r$ is a finite number)

Let $B_{J}^{0}$ be the set of all $J_{A}|\{i_{r}\}$ , for a given $r$ and $A_{1}\epsilon B$ or $A_{1}=A\cup U$.
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The set $B_{J}^{0}$ we enlarge to a family $B_{J}^{r}$ of proper prime ideals respectively to $B^{r}$

where $B^{r}$ results from $B[r]$ by adding to the last set lines described in (4a), $(2^{o})$ and
(4), $(2^{o})$ of T. 5’ ; of course, the fullfiling of $B[r]$ is according to T. 5’.

First of all we must note that if $A/\{i_{r}\}=A^{o}$ and A, $B^{r}\vdash H(\{r\}/\{i_{r}\})$ then
$A,$ $B\vdash H$.

The proof of the above sentence is inductive according to the length of the
formal proof of the $nsidered$ formula.

By virtue of the above, if we establish $r\geq n(E)$ for all $nsidered$ formulas, then
the following lemmas hold for $B,$ $B^{r},$ $B_{J},$ $B_{J}^{r},$ $U|\{i_{r}\}$ respectively; proofs are almost
identical with ones given in [3], [11).

L. 4. $E\epsilon J_{A_{1}}$ iff $E^{\prime}\overline{\epsilon}J_{A_{1}}$ .
L. 5. $E,$ $F\epsilon J_{A_{1}}$ iff $E+F\epsilon J_{A_{1}}$ .
T. 5. If $A_{1}=A\cup U,$ $A\epsilon B$ and $A_{1},$ $B\vdash E_{0}$ , then there exists a family $B_{J}$ of

generalized proper prime ideals respectively to $B$ such that $E_{0}\epsilon J_{A_{1}}$ .
T. 6. If $A_{1}=A\cup U,$ $A\epsilon B$ , then for each family $B_{J}$ of generalized proper prime

ideals respectively to $B$ there exists such family $Q$ of models of the power $k=v(B)$ that
for each $A_{2}=A_{1}$ or $A_{2}\epsilon B$ and the description $M$ (which create the set $Q$ ) of negations
of atomic formulas belonging $J_{A_{2}}$ and each formula $E$ of considered formulas, $i.e$ . $n(E)$

$\leq k$ :

(1) If $E\overline{\epsilon}J_{A_{2}}$ , then $(\{j_{\iota}\})\{(\{i_{l}\}\supset\{i_{w(E)}\})\wedge(l+p(E)\leq k)\rightarrow V\{k, Q, M, \{i_{l}\}, E\}=1\}$ .
(2) If $E\epsilon J_{A_{2}}$ , then $(\{i_{l}\})\{(\{i_{l}\}\supset\{i_{w(E)}\})\wedge(l+p(E)\leq k)\rightarrow V\{k, Q, M, \{i_{l}\}, E\}=0$ .
(3) $E\overline{\epsilon}J_{A_{2}}$ iff $E\epsilon P(k, Q, M)$ .

Proof: We prove implications (1), (2) together by induction on the length of the
formula $E$.

In view of the assumptions, if $E$ is an indecomposable formula, then (1), (2) hold.
Let (1) and (2) hold for formulas of the length $<m$ ; we shall prove it for $m$ .
We $nsider$ three cases;

$(1^{\prime})$ $E=F^{\prime}$ , (2) $E=F+G$ , $(3^{\prime})$ $E=\Pi aF$.
In the cases $(1^{\prime})$ and $(2^{\prime})$ we obtain immediately (1) and (2) in view of the

inductive assumptions, L. 4., L. 5., (2d) and $(3d)$ ; the strict proof is almost identical with
[3], [11].

In the case $(3^{\prime})$ in view of the definition of $Q$ , the inductive assumption (4d),
D. 13. 4.-5. and L. 4. we obtain in both cases:
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$E\overline{\epsilon}J_{A_{2}}$ iff $\Pi aF\overline{\epsilon}J_{A_{2}}\rightarrow(\{i_{l}\})(A_{2}^{0})(j)\{(A_{2}^{0}\epsilon B)$ A $(\{i_{l}\}\supset\{i_{w(F)}\})\wedge(l+p(F)\leq k)\wedge(j\leq k)$

A $(A_{2}^{0}/\{i_{\ell}\}=A_{2}/\{i_{\ell}\})\rightarrow(F(x_{f}/a)\overline{\epsilon}J_{A2}^{0})\}\rightarrow(\{i_{\ell}\})(M_{1})(j)\{(M_{1}\epsilon Q)\wedge(\{i_{l}\}\supset\{i_{w(F)}\})\wedge(l+p(F)\leq k)$

A $(j\leq k)\wedge M_{1}/\{i_{l}\}=M/\{t_{l}\})\rightarrow V\{k, Q, M_{1}, \{i_{l}\},j, F(x_{j}/a)\}=1\}\rightarrow(\{i_{l}\})\{(\{i_{l}\}\supset\{i_{w(F)}\})\wedge$

$(l+l(F)\leq k)\rightarrow V\{k, Q, M, \{i_{\iota}\}, \Pi aF\}=1\}\rightarrow(\{i_{l}\})\{(\{i_{l}\}\supset\{i_{w(E)}\})\wedge(l+lE)\leq k)\rightarrow V\{k,$ $Q$ ,

$M,$ $\{i_{l}\},$ $E$ } $=1$ }.

$E\epsilon J_{A_{2}}$ iff $\Pi aF\epsilon J_{A_{2}}\rightarrow(\{i_{l}\})(\exists A_{2}^{0})(\exists j)(\{i_{l}\}\supset\{i_{w(F)}\})\wedge(l+p(F)\leq k)\rightarrow(j\leq k)\wedge(A_{l}^{0}/\{i_{l}\}=$

$A_{2}/\{j_{\iota}\})\wedge(F(x_{j}/a)\epsilon J_{A_{2}})\}\rightarrow(\{i_{l}\})(\exists^{M_{1}})(\exists j)\{(i_{l}\}\supset\{i_{w(F)}\})\wedge(l+p(F)\leq k)\rightarrow(j\leq k)\wedge(M_{1}/\{i_{l}\}$

$=M/\{i_{\ell}\})$ A $V\{k, Q, M_{1}, \{i_{l}\}, j, F(x_{j}/a)\}=0\}\rightarrow(\{i_{\ell}\})\{(\{i_{l}\}\supset\{i_{w(F)}\})A(l+p(F)\leq k)\rightarrow V\{k$ ,

$Q,$ $M,$ $\{i_{\ell}\},$ $\Pi aF$ } $=0$ } $\rightarrow(\{i_{l}\})\{(\{j_{\iota}\}\supset\{i_{w(E)}\})\wedge(l+p(E)\leq k)-- V\{k, Q, M, \{i\iota\}, E\}=0\}$ ,

what proves (1) and (2).

Therefore we proved also $N(k, Q, M)$ for each $nsidered$ formulas $H$. Hence by
(1) and (2) we obtain (3); $q.e.d$ .

Of course, T. 6. may be proved in a similar way for other truncated satisfiability
definition considered in my papers [4], $[6]-(9J$ , [13], [14].

From T. 1., T. 3., T. 4., T. 5. and T. 6. follows:

Genralization of $G\ddot{o}del-Skolem-L\ddot{o}wenheim’ s$ therem:-If $U$ is a consistent set

of formulas respectively to $B$ and $A_{1}=A\cup U,$ $A\epsilon B,$ $A_{1},$ $Bp_{\nabla}E_{0}$ then there exists such
family $Q$ of models of the power $k=v(B)$ and a correspondenoe between $A\epsilon B$ and
$M^{A}\epsilon Q$ such that for each $A_{2}$ ($A_{2}=A_{1}$ else):

1. If $A_{2},$ $B\vdash E$, then $E\epsilon P(k, Q, M^{A_{2}})$ ,

2. $V\{k, Q, M^{A_{1}}, E\}=0,$ $k\vdash E$ iff $E\epsilon P\{k\}$ ,

3. In $1.-2$ . we mey only assume $v(Q)\geq n(E_{0})$

If $B$ is not determind and $k$ infinite, then in $1$ . $-2$ . we may assume $Q$ one-
elementing.

Generalizations of Godel-Herbrand’s theorem: 12) $E$ ia a thesis iff $E\epsilon P$ iff $+E$.
Completenese theorem: All considered Boolean calculi $(k\vdash E)$ with finite truncated

general and existential quantifiers are $mplete$ . (According to the above $th\infty r_{\backslash }em$ they
approximate the first-order functional calculus), $s$ . [15], [16].

The same $th\infty rems$ may be proved by analogical generalizations to methods used
in $[2J, [21]$ and others.

Generalizations of Gentzen’s sequent proof rules according to the above are given
in [7], [8], $s$ . also [18].

12) A homogeny formulation of both above theorems is given at (12]
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Including of the above theorems in Tarski’s systems theory will be an interesting
topic of [10] ; in such way will be presented the above generalized theorem in the
systems $thry,$ $s$ . [12]. [19]. According to $1-0-Bernoullie’ s$ sequences at [16] there are
given finite and asymptotic infinite probabilistic models of regarded here generalized
models with the generalizations of satisfiability definition.
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