PROPOSITIONAL CALCULI AND COMPLETENESS THEOREM ${ }^{1)}$

By
Juliusz Reichbach

(Received November 19, 1968)
In my paper [3] I gave a simple and whole proof of the completeness of the first-order functional calculus.
J. Slupecki gave the thought to generalize the proof method for many valued calculi.

In [6], [7], [8] I presented different generalizations of the satisfiability definition and generalizations of completeness theorem with generalizations of Herbrand's theorem but proved by means of the usual completeness theorem and therefore proved on a semantic way.

In this paper I generalize the method given in [3] and I obtain in such way simultaneous generalizations of Gödel's completeness theorem with Skolem-Löwenheim's theorem which include also Herbrand's theorem according to the above and in a syntactic way,

They are proved also completeness of infinite many Boolean important calculus with (finite) truncated introduction of general and existential quantifiers which approximate the first-order functional calculus.

This paper we can divide in two parts: the first part is analogical to [6] and in the second one it is generalized the proof method of [3] with generalizations of the above theorem.

We use notations of [4]-[16] and in particular:
(01) variables: (1^{\prime}) free: x_{1}, \cdots (simply x),
(2^{\prime}) apparent: $a_{1}, \cdots($ simply $a)$,
(02) relations signs: $f_{1}^{1}, \cdots, f_{q}^{1}, \cdots, f_{1}^{t}, \cdots, f_{q}^{t}$,
(03) logical constants: ',,$+ \Pi$,
(04) $w(E), p(E)$-the number of different free, apparent, variables respectively which occur in the expression $E,{ }^{2}$)
(05) $\left\{K_{m}\right\}$-the sequence $K_{1}, \cdots, K_{m} ;\left\{K_{q}^{t}\right\}$-the sequence $K_{1}^{1}, \cdots, K_{q}^{1}, \cdots, K_{1}^{t}, \cdots, K_{q}^{t}$,
(06) $\left\{i_{w(E)}\right\},\left\{j_{w(B)}\right\}$-indices of all free variables occurring in E,

1) The paper is connected with my lectures on J. Slupecki's seminar in 1951-1957 years and on meetings of Polish Mathematical Society at Wroclaw and was written several years ago; results without proofs are published at [12].
2) An expression in which an apparent variable belongs to the scope of two quantifiers Πa is not a formula; if a does not cccur in E, then $\Pi a E$ is not a formula.
$i(E)=\max \left\{i_{w(E)}\right\}, n(E)=\max \{i(E), w(E)+p(E)\}$,
(08) $E(u / z)$-the expression resulting from E by substitution of u for each z in E with known conditions, $E\left(\left\{i_{j}\right\} /\left\{t_{j}\right\}\right)=E\left(x_{i_{1}} / y_{t_{1}}\right) \cdots\left(x_{i_{j}} / y_{t_{j}}\right)$,
(09) $C\{E\}$ - the set of all significant parts of the formula E.
(010) M, M_{1}, \cdots-models; Q, Q_{1}, \cdots-non-empty sets of models of the same power (for finite models it is used also the word "rank" instead of the word; power): $Q(k)-Q$ is a set of models of the power k.
(011) A, A_{1}, \cdots - sets of indecomposable formulas, i.e. atomic formulas with their negation, in which indices of individual variables are $\leqslant k$, where k is a given numbber; the sets may be infinite; S_{A}-the set of all free variables which occur in elements of A, therefore S_{E}-the set of all free variables occurring in the expression E; if all the elements of S_{A} are all free variables with indices $\leqslant k$ and for each indecomposable formula E, if $S_{E} \subset S_{A}$, then $E \in A$ iff $E^{\prime} \bar{\epsilon} A$, then A is called "set of the power k "; B, B_{1}, \cdots-families of sets A; if elements of $B^{\prime} s$ are only sets of the power k, then B is called: family of the power k; for brevity we shall assume that we only consider $A^{\prime} s$ and $B^{\prime} s$ of a given power,
(012) The pair $\left\langle D,\left\{F_{q}^{t}\right\}\right\rangle$ denote a model, i. e. that the domain D is an arbitrary non-empty set and $\left\{F_{q}^{t}\right\}$ is an arbitrary finite sequence of relations such that F_{k}^{m} is m-ary relation on $D, k=1, \cdots, q$ and $m=1, \cdots, t$. A model of the power k is such model whose domain has exactly numbers $1, \cdots, k$ (k may be infinite),
(013) $M\{E\}=0$, i. e. E^{\prime} is true in the model $M ; M\left\{E\left(\left\{s_{k}\right\}\right)\right\}=0$, i. e. $\left\{s_{k}\right\}$ are elements of the domain of M, x_{j} are names of s_{j} and $\left\{s_{k}\right\}$ do not satisfy E in the model M,
(014) Let $M=<D_{k},\left\{F_{q}^{t}\right\}>, M, A$-have the same power and for each $m_{1}, \cdots, m_{j} \leqslant k$ and $j \leqslant t, i \leqslant q: F_{i}^{j}\left(m_{1}, \cdots, m_{j}\right)$ iff $f_{i}^{j}\left(x_{m_{1}}, \cdots, x_{m_{j}}\right) \in A$ and $\sim F_{i}^{j}\left(m_{1}, \cdots, m_{j}\right)$ iff $f_{i}^{f}\left(x_{m_{1}}, \cdots, x_{m_{j}}\right) \in A$-such M is called a description of A,
(015) For each model $M=\left\langle D,\left\{F_{q}^{t}\right\}>\right.$ by $M / s_{1}, \cdots, s_{k} /$-or briefly : $M /\left\{s_{k}\right\}$-we shall denote a model $\left\langle D_{k}, \phi_{q}^{t}\right\rangle$ of the power k such that for each $r_{1}, \cdots, r_{i} \leqslant k$: ϕ_{j}^{t} $\left(r_{1}, \cdots, r_{i}\right)$ iff $F_{j}^{i}\left(s_{r_{1}}, \cdots, s_{r i}\right), i=1, \cdots, t$ and $j=1, \cdots, q$. So $M /\left\{s_{k}\right\}=<D_{k}$, $\left\{\phi_{q}^{t}\right\}>$; if $\left\{s_{k}\right\}$ is empty, then one holds for all models; $M /\left\{s_{k}\right\}$ is a submodel of M in the meaning of homomorphism,
(016) quantifiers: $(K),(\exists K),\left(\left\{K_{m}\right\}\right),\left(\exists\left\{K_{m}\right\}\right)$,
(017) $E \in A / s_{1}, \cdots, \cdots, s_{k} /$ iff $E\left(\left\{s_{k}\right\} /\{k\}\right) \in A$,
(018) $A /\left\{s_{k}\right\}=A / s_{1}, \cdots, s_{k} / ; A /\left\{s_{k}\right\}$ is a coset of A in the meaning of homomorphism.

In the following X, Y, X_{1}, \cdots-denote a model M or a set $A ; U, U_{1}, \cdots$-sets Q or B.
If $x_{s i} \bar{\epsilon} S_{A}$ or respective s_{i} does not belong to the domain of the model, then we
assume $X / s_{1}, \cdots, s_{k} /=X / s_{1}, \cdots, s_{i-1}, s_{i+1}, \cdots, s_{k}$, Of course :
L. 1. $X /\left\{s_{k}\right\} /\left\{j_{m}\right\}=X /\left\{s_{j_{m}}\right\}$, s. $[1]$
L. 2. If M_{1} is the description of A_{1} and M_{2} is the description of A_{2}, and both models have the same power, then : $M_{1} /\left\{j_{m}\right\}=M_{2} /\left\{j_{m}\right\}$ iff $A_{1} /\left\{j_{m}\right\}=A_{2} /\left\{j_{m}\right\}$
D. 1. $X \in Y[k]$ iff $\left(\exists\left\{s_{k}\right\}\right)\left\{X=Y /\left\{s_{k}\right\}\right\}$
$Y[k]$ is the set of all $Y /\left\{s_{k}\right\}$.
For an arbitrary family Q of models of the same power, for an arbitrary model $M=<D_{k},\left\{F_{q}^{t}\right\}>\epsilon Q$, for an arbitrary formula E and each $\left\{i_{l}\right\} \supset\left\{i_{w(E)}\right\}, l+p(E) \leqslant k$ we introduced in [4] the following inductive definition of the functional V :
(1d) $V\left\{k, Q, M,\left\{i_{i}\right\}, f_{j}^{m}\left(x_{r_{1}}, \cdots, x_{r_{m}}\right)\right\}=1$ iff $F_{j}^{m}\left(r_{1}, \cdots, r_{m}\right)$,
(2d) $V\left\{k, Q, M,\left\{i_{l}\right\}, F^{\prime}\right\}=1$ iff $\sim V\left\{k, Q, M,\left\{i_{l}\right\}, F\right\}=1$ iff $\left\{V k, Q, M,\left\{i_{l}\right\}, F\right\}=0$,
(3d) $V\left\{k, Q, M,\left\{i_{l}\right\}, F+G\right\}=1$ iff $V\left\{k, Q, M,\left\{i_{l}\right\}, F\right\}=1 \vee V\left\{k, Q, M,\left\{i_{l}\right\}, G\right\}=1$,
(4d) $V\left\{k, Q, M, i_{l}, \Pi a F\right\}=1$ iff $(j)\left(M_{1}\right)\{j \leqslant k) \wedge\left(M_{1} /\left\{i_{l}\right\}=M /\left\{i_{l}\right\}\right) \rightarrow$ $\left.V\left\{k, Q, M_{1},\left\{i_{l}\right\}, j, F\left(x_{j} / a\right)\right\}=1\right\}$.
D. 2. $N(k, Q, H)$ iff $\left(\left\{i_{l}\right\}\right)\left\{\left(\left\{i_{l}\right\} \supset\left\{i_{w(H)}\right\}\right) \wedge(l+p(H)<k)\right.$
$\rightarrow\left(M_{1}\right)(i)\left(V\left\{k, Q, M_{1},\left\{i_{l}\right\}, H\right\}=1\right.$ iff $\left.\left.V\left\{k, Q, M_{1},\left\{i_{l}\right\}, i, H\right\}=1\right\}\right\}$,
D. 3. $F_{\epsilon} P\left(k, Q, M,\left\{i_{l}\right\}\right)$ iff $(\exists H)\left\{(H \epsilon C\{F\}) \wedge\left(H=\Pi a H_{1} \text { for some } H_{1}\right)^{3)}\right.$ $\left.\wedge N(k, Q, H) \rightarrow V\left\{k, Q, M,\left\{i_{l}\right\}, F\right\}=1\right\}$,
D. 4. $F_{\epsilon} P(k, Q, M)$ iff $F_{\epsilon} P\left(k, Q, M,\left\{i_{w(F)}\right\}\right)$,
D. 5. $\quad F_{\epsilon} P\{k\}$ iff $(Q)(M)\{Q(k) \wedge(M \epsilon Q) \rightarrow F \epsilon P(k, Q, M)\}$
D. 6. $E \in P$ iff $\left.(\exists k)\{(k \geqslant n(E)) \wedge(E \in P\{k\})\}^{4}\right)$.

We recall:
$V\left\{k, Q, M,\left\{i_{t}\right\}, E\right\}=1$ may be read : the model M satis fies E respectively to Q and $\left\{i_{l}\right\}$.
3) Instead F we may write here an estabilshed formula E, to consider only parts of this formula and then we shall receive a relative definition of the defined class P as in [4], [6]. The reader may replace E by a set of formulas.

Analogously we may define the satisfiability functional V_{1} which depends also on arbitrary sequence $\left\{z_{i}\right\}$ of elements of D_{k}; for atomic formulas, negations and alternatives the definition of V_{1} is usual, s. [3], [17], [20], and analogic to the above, and for quantifiers: (d4) $V_{1}\{k, Q, M$ $\left.\left\{i_{l}\right\},\left\{z_{t}\right\}, \Pi a F\right\}=1$ iff $(j)(z)\left(M_{1}\right)\left\{(j=1,2, \cdots) \wedge\left(x_{j} \bar{\epsilon} S_{F}\right) \wedge\left(Z \in D_{k}\right) \wedge\left(M_{1} / z_{i_{l}}\right\}=M /\left\{z_{i}\right\}\right) \rightarrow V_{1}$ $\left\{k, Q, M_{1},\left\{i_{l}\right\} j,\left\{z_{t}\right\}\left(z / z_{j}\right), F\left(x_{j} / a\right)\right\}=1$.

By means of the functional V_{1} we obtain as a special case the usual truth definition and its generalization according to the above.
4) It is easy to see $n(E)$ may be less than used here.

If we assume Q is one elementing, then V is the usual satisfiability functional in the domain of ordinary numbers D_{k}, D. 2.-4. are then obviously and they create the usual truth definition in M.

If M is a model and $Q=M[k]$, then elements of Q are submodels of M in the meaning of homomorphism, the number j in (4d) is the name of an arbitrary element of the domain of M and D. 3. says that the sequence $\left\{i_{l}\right\}$ has not influence in whole on the introduced truncated satisfiability definition as in one elementing Q; here we need note that the invariant relation $N(k, Q, H)$ holds for connectives of propositional calculus and for quantifiers it is assumed in D. 3.; D. 5.-6. are pictures of the usual truth definition in its generalization introduced here.

In [4] and [6] it is proved that for normal formulas E it suffices to consider only $H=E$ and the implication in the left-hand side of D. 2 . instead of the second equivalence.

It is easy to prove suitable:
(d) (H) $\left\{(H \epsilon C\{E\} \rightarrow N(k, Q, H)\}\right.$ iff $(H)\left\{(H \epsilon C\{E\}) \wedge\left(H=\Pi a H_{1}\right.\right.$ for some $\left.H_{1}\right) \rightarrow N(k, Q, H)$.
(3D) $F \epsilon P\left(k, Q, M,\left\{i_{l}\right\}\right)$ iff $(\exists H)\left\{(H \epsilon C\{F\}) \wedge\left(N(k, Q, H) \rightarrow V\left\{k, Q, M,\left\{i_{l}\right\}, F\right\}=1\right)\right\}$,
L. 3. If $M /\left\{i_{l}\right\}=M^{\circ} /\left\{i_{l}\right\}$, then :

$$
V\left\{k, Q, M,\left\{i_{l}\right\}, E\right\}=1 \quad \text { iff } V\left\{k, Q, M^{\circ},\left\{i_{l}\right\}, E\right\}=1
$$

$$
V\left\{k, Q, M,\left\{i_{l}\right\}, F+G\right\}=0 \text { iff } V\left\{k, Q, M,\left\{i_{l}\right\}, F\right\}=0 \wedge
$$

$$
V\left\{k, Q, M,\left\{i_{l}\right\}, G\right\}=0
$$

(4d') $\quad V\left\{k, Q, M,\left\{i_{l}\right\}, \Pi a F\right\}=0$ iff $(\exists j)\left(\exists M_{1}\right)\left\{(j \leqslant k) \wedge\left(M_{1} /\left\{i_{l}\right\}-M /\left\{i_{l}\right\}\right) \wedge\right.$ $\left.V\left\{k, Q, M_{1},\left\{i_{l}\right\}, J, F\left(x_{j} / a\right)\right\}=0\right\}$,
(5d) $\quad V\left\{k, Q, M,\left\{i_{l}\right\}, \Sigma a F\right\}=1$ iff $(\exists j)\left(\exists M_{1}\right)\left\{(j \leqslant k) \wedge\left(M_{1} /\left\{i_{l}\right\}=M /\left\{i_{l}\right\}\right) \wedge\right.$ $\left.V\left\{k, Q, M_{1},\left\{i_{l}\right\}, j, F\left(x_{j} / a\right)\right\}=1\right\}$,

$$
\begin{align*}
& V\left\{k, Q, M,\left\{i_{l}\right\}, \Sigma a F\right\}=0 \text { iff }(j)\left(M_{1}\right)\left\{(j \leqslant k) \wedge\left(M_{1} /\left\{i_{l}\right\}=M /\left\{i_{l}\right\}\right) \rightarrow\right. \\
& \left.V\left\{k, Q, M_{1},\left\{i_{l}\right\} J, F\left(x_{j} / a\right)\right\}=0\right\} .
\end{align*}
$$

The proof of (d) and L. 3. are inductivel on the length of the considered formulas; (3D) follows immedately from D. 3. and (d); s. L. 5. in [5] and L. 14. in [13].

In the following the rank of X, U, \cdots we denote by $v(X), v(U), \cdots$ For brevity of considerations we shall assume that the sequence $(B) A_{1}, A_{2}, \ldots$ includes all elements of B, i. e. we assume we enumerated all elements of B.

Let $v(B)=k$; then :
For an arbitrary $A \in B$, for an arbitrary formula E such that $n(E) \leqslant k$ we introduce the symbol $A, B \vdash E$ which we read" E is a thesis of A respectively to $B^{\prime \prime}$:
(11) $A, B \vdash F$, for each $F_{\epsilon} A$,
(12) $A, B \vdash F+F^{\prime}$, for each F,
(13) If $A, B \vdash F_{1}+\cdots \cdots+F_{m}$ and k_{1}, \cdots, k_{m} is an arbitrary permutation of number $\leqslant m$, then $A, B \vdash F_{k 1}+\cdots+F_{k_{m}}{ }^{5)}$,
(14) If $A, B \vdash F$ and G is a formula, then $A, B \vdash F+G$,
(15) If $A, B \vdash F+G$ and ${ }^{6)} A, B \vdash F+G^{\prime}, G^{\prime} \epsilon C\{F\}$ then $A, B \vdash F$,
(16) If $A, B \vdash F+G, x_{r} \epsilon S_{F}, x_{r} \epsilon S_{G}$ and

If there exists such $\left\{i_{l}\right\} \supset\left\{i_{w\left(E+a\left(a / x_{r}\right)\right)}\right\}, l+p\left(F+G\left(a / x_{r}\right)\right) \leqslant k$, then :
$\left(1^{\circ}\right)$ for each $j \leqslant k$ we have $A, B \vdash F+G\left(x_{j} / x_{r}\right)$,
(2 ${ }^{\circ}$) for each $A^{\circ} \epsilon B$, if $A^{\circ} /\left\{i_{l}\right\}=A /\left\{i_{l}\right\}$, then for each $j \bar{\epsilon}\left\{i_{l}\right\}: A^{\circ}, B \vdash F+G\left(x_{j} / x_{r}\right)$, ${ }^{7}$ then $A, B \vdash F+\Pi a G\left(a / x_{r}\right)$,
(17) If $A, B \vdash F+\Pi a G, \Pi a G \epsilon C\{F\}$, then for each $\left\{i_{l}\right\} \supset\left\{i_{w(F+G)}\right\}, l+p(F+G) \leqslant k$, for each $A^{\circ} \epsilon B$, if $A^{\circ} /\left\{i_{l}\right\}=A /\left\{i_{l}\right\}$, then $A^{\circ}, B \vdash F+G\left(x_{j} / a\right)$ (it suffices to take here only $t=w(F+G)$),
(18) If there exists such $\left\{i_{l}\right\} \supset\left\{i_{w(F+G)}\right\}, l+p(F+G) \leqslant k$ and there exist such $j \leqslant k$ and $A^{\circ} \epsilon B, A^{\circ} /\left\{i_{i}\right\}=A /\left\{i_{1}\right\}$ that $A^{\circ}, B \vdash F+G\left(x_{j} / a\right)$, then $A, B \vdash E+\Sigma a G$.
(19) If $A, B \vdash F+\Sigma a G, \Sigma a G E \epsilon C\{F\}$, then for each $\left\{i_{l}\right\} \supset\left\{i_{w(F+G)}\right\}, l+p(F+G) \leqslant$ there exist such $j \leqslant k$ and $A^{\circ} \epsilon B$ that $A^{\circ} /\left\{i_{l}\right\}=A /\left\{i_{l}\right\}$ and $A^{\circ}, B \vdash F+G\left(x_{j} / a\right)^{8)}$. (From the following considerations follows that (18), (19) follows from (11)-(17).) Of course (12)-(15) are proof rules of the propositional calculus and (12)-(17)-of the first-order functional calculus; the last fact is obviously for B-empty.

The following consideration hold also by replacing $j \leqslant k$ in (16), (1°) by means $j \leqslant k-p\left(F+G\left(a / x_{r}\right)\right)$ analogic to [6] ; then we modify (4d) according to [6].

Let
$C l(U)$ iff $(X)\left(m_{1}\right) \cdots\left(m_{k}\right)\left\{(X \epsilon U) \wedge\left(m_{1}, \cdots, m_{k}\right.\right.$ is a permutation of numbers $\left.\leqslant k\right) \rightarrow$ $\left.\left(X / m_{1}, \cdots, m_{k} / \epsilon U\right)\right\}$.

If $C l(B)$, then B is not one-elementing and in this condition all following

[^0]considerations hold by assuming in (16) only: $j \in\left\{i_{l}\right\}$ in $\left(1^{\circ}\right), j=r$; if permutations are also with reiterations, then it suffices only: $j \in\left\{i_{w\left(G\left(a / x_{r}\right)\right)}\right\}$ in $\left(1^{\circ}\right)$, and in $\left(2^{\circ}\right)$ as above $j=r$. Then (16) will receive a from of usual quantification rule but we must here use more strong lemma than L. 3., namely :
L. 3'. If $E^{\circ}=E\left(\left\{j_{1}\right\} /\left\{i_{l}\right\},\left\{i_{l}\right\} \supset\left\{i_{w(E)}\right\},\left\{j_{l}\right\} \supset\left\{j_{w\left(E^{\circ}\right)}\right\}, M /\left\{i_{l}\right\}=M^{\circ} /\left\{i_{l}\right\}\right.$ and $C l(Q)$, then :
$$
\left.V\left\{k, Q, M,\left\{i_{l}\right\}, E\right\}=1 \text { iff } V\left\{k, Q, M^{\circ},\left\{j_{l}\right\}, E^{\circ}\right\}=1, \text { s. L. } 12^{\prime} \text {. in } 9\right] .
$$

If B is non-determined, one-elementing and $v(B)$ infinite, then we also will speak that it is closed under the considered permutations.

Other form of proof rules are regarded in [4], [6], [14] and will be also a topic of my future papers.

We point out that in order to approximate the first-order functional calculus by the above calculi it suffices to consider only B and Q with the above permutation property, s. also [8], [9], [15], [16].
D. 7. The double sequence $E_{i 1}, \cdots, E_{i n_{i}}, i=1,2, \cdots$ is a formal proof of the formula E in A, respectively to B iff $E=E_{j n_{j}}$ and for each $i=1,2, \cdots$ and $t=1, \cdots, n_{i}$ one of following conditions holds:

1. $E_{i t}$ is an element of A_{i}, s. (B), or $E_{i t}=F+F^{\prime}$, for some F,
2. there exists $d<t$ such that $E_{i t}$ results from $E_{i d}$ by means of rules (13) or (14),
3. there exist $d, m<t$ such that $E_{i t}$ results from $E_{i 1}$ and $E_{i m}$ by means of the rule (15),
4. $E_{i t}$ results from the double sequence $E_{d_{1}}, \cdots, E_{a t-1}, d=1,2, \cdots$ by means of the rule (16),
5. there exist $d<t$ and m such that $E_{i t}$ results from $E_{m i}$ by means of rules (17) or (18), or (19),
D. 8 The formula E is a thesis of A_{j} respectively to B-in symbols : $A_{j}, B \vdash$ E-iff there exists a formal proof of E in A_{j} respectively to B.
$A, B \vdash E$ we read : E is not a thesis of A respectively of B.
D. 9. $B \vdash E$ iff $(A)\{(A \epsilon B) \rightarrow(A, B \vdash E)\} \quad B \vdash E$ may be read: E is a thesis respectively to B .

D 10. $k \vdash E$ iff $(B)\{(v(B)=k) \rightarrow(B \vdash E)\}$.
D 11. $H E$ iff $(\exists k)\{k \vdash E) \wedge(k \geqslant n(E))\}$.
H E may be read: E is a B-thesis.

Of course:
If B is not determined and $B \vdash E$, then $\mathrm{k} \vdash E$.
The converse implication follows from generalization of Gödel-Skolem-Lövenheim's theorem, p. 14.
T. 1. If E is a thesis, then $H E$.
T. 2. If Q is the family of all description of elements of $B, k=v(B)=v(Q), M$ is the description of $A_{t}, E_{i 1}, \cdots, E_{i n_{i}}$ is a formal proof of E in A_{t} respectively to B, $k \geqslant n\left(E_{i s}\right), s=1, \cdots, n_{i}$, and $i=1,2, \cdots$,then $E_{t s} P(K, Q, M)$.

Proof. Let the assumption of T. 2. hold.
We shall prove T. 2. by induction on $s=n_{t}$ simultaneously for all $t=1,2, \ldots$
Of couse, if $E_{t s}=F+F^{\prime}$ or $E_{t s} \epsilon A_{t}$, then in view of the assumption T. 2. holds; therefore T. 2. holds for $s=1$.

Let T. 2. holds for all $m<s$; we shall prove it for s.
If $E_{t s}$ results from $E_{t m}, m<s$, by means of rules (11)-(14), then T. 2. also holds obviously for $E_{t s}$; in (14) we use D. 2.

If $E_{t s}$ results from $E_{t m}$ and $E_{t d}, d, m<s$, by means of the rule (15), then in view of the assumption and D. 2. we obtain that T. 2. also holds for $E_{t s}$.

If. $E_{t s}$ results from the double sequence $E_{d 1}, \cdots, E_{d s-1}, d=1,2, \cdots$, by means of the rule (16), then $E_{t s}=F+\Pi a G\left(a / x_{r}\right), x_{r} \epsilon S_{F}, x_{r} \epsilon S_{G}$, for each $j \leqslant k$ formulas $F+G$ $\left(x_{j} / x_{r}\right)$ occur in the sequence $E_{t 1}, \cdots, E_{t s-1}$, and there exists such $\left\{i_{i}\right\} \supset\left\{i_{w\left(F+a\left(a / x_{r}\right)\right.}\right\}$, $l+p\left(F+G\left(a / x_{r}\right)\right) \leqslant k$, if $A_{t} /\left\{i_{l}\right\}=A_{c} /\left\{i_{l}\right\}$, then for each $\bar{\epsilon}\left(i_{l}\right\}$ there exists $m<s$ such that $E_{c m}=F+G\left(x_{j} / x_{r}\right)$.

Let $E_{t s} \bar{\epsilon} P(k, Q, M)$; therefore in view of D. 3.-4., (d), for each $H \epsilon C\left\{E_{t s}\right\}$ we have $N(k, Q, H)$ and $V\left\{k, Q, M,\left\{i_{l^{\prime}}\right\}, E_{t s}\right\}=0, l^{\prime}=w\left(E_{t s}\right)$, and we may assume by D. 2. $l^{\prime}=l$ given above ; therefore by $\left(3 \mathrm{~d}^{\prime}\right)$ and the above $V\left\{k, Q, M,\left\{i_{l}\right\}, F\right\}=0$ and $V\left\{k, Q, M,\left\{i_{l}\right\}, \Pi a G\left(a / x_{r}\right)\right\}=0$. Hence by virtue of $\left(4 \mathrm{~d}^{\prime}\right)$ there exist $j \leqslant k$ and $M_{1} \epsilon \boldsymbol{Q}$ such that $M_{1} /\left\{i_{l}\right\}=M /\left\{i_{l}\right\}$ and $V\left\{k, Q, M_{1},\left\{i_{l}\right\}, j, G\left(x_{j} / x_{r}\right)\right\}=0$;

We consider two cases:
(1°) $j \in\left\{i_{l}\right\}$
($\mathbf{2}^{\circ}$) $j \bar{\epsilon}\left\{i_{i}\right\}$
In the case $\left(1^{\circ}\right)$ in view of L. 3. and the above we also have $V\left\{k, Q, M,\left\{i_{i}\right\}\right.$, $\left.G\left(x_{j} / x_{r}\right)\right\}=0$ and thus $V\left\{k, Q, M,\left\{i_{i}\right\}, F+G\left(x_{j} / x_{r}\right)\right\}=0$ what according to the above and $C\left\{E_{t s}\right\} \supset C\left\{F+G\left(x_{j} / x_{r}\right)\right\}$ gives a contradiction.

In the case $\left(2^{\circ}\right)$ in view of $M_{1} /\left\{i_{i}\right\}=M /\left\{i_{i}\right\}$ we also have $V\left\{k, Q, M_{1},\left\{i_{l}\right\}\right.$, $F\}=0$. Because from the assumption $l+p(F)<k$, therefore in view of $N(k, Q, H)$ for each $H_{\epsilon} C\left\{F+G\left(x_{j} / x_{r}\right)\right\}$, the assumption and ($3 \mathrm{~d}^{\prime}$) we have $V\left\{k, Q, M_{1},\left\{i_{l}\right\}, j, F\right\}=0$ and $V\left\{k, Q, M_{1},\left\{i_{i}\right\} j, F+G\left(x_{j} / x_{r}\right)\right\}=0$ what as above gives a contradiction.

If B is closed under permutations considered on $\mathrm{p} .7^{8)-15}$, then Q is also closed under the same permutations; then we regard simpler rules described on p. $7^{8)-15)}$ and the same two cases. The case $\left(1^{\circ}\right)$ is as above and in the second case we permute j to r,: afterwards we use L. 3^{\prime}. instead of L. 3. and we enlarge the sequence $\left\{i_{l}\right\}$, to the sequence $\left\{i_{l}\right\}, r$ as above, s.e.g. [13].

If B is closed under permutations with reiterations considered on p. $7^{8)-15)}$, then we regard two simpler cases:
(1') $j \in\left\{i_{w\left(a\left(a / x_{r}\right)\right)}\right\}$,
(2') $j \in\left\{i_{w\left(G\left(a / x_{r}\right)\right)}\right\}$.
The case (1^{\prime}) is here as $\left(1^{\circ}\right)$ above.
In the case (2^{\prime}) we permute j to r with reiteration and act as in the case $\left(2^{\circ}\right)$ for B closed only on permutations without reiteration, s.e.g. [9].

The above proves T. 2. in the case of the rule (16).
If $E_{t s}$ results from $E_{c m}, m<s$, by means of the rule (17), then $E_{t s}=F+G\left(x_{j} / a\right)$, $E_{c m}=F+\Pi a G, \Pi a G \epsilon C\{F\}, m<s$, and $A_{c} /\left\{i_{l}\right\}=A_{t} /\left\{i_{l}\right\},\left\{i_{l}\right\} \supset\left\{i_{w(F+G)}\right\}, l+p(F+G) \leqslant k$.

Let $E_{t s} \bar{\epsilon} P(k, Q, M)$; therefore in view of D. 3.-4., (d), for each $H_{\epsilon} C\left\{E_{t s}\right\}$ we have $N(k, Q, H)$ and $V\left\{k, Q, M,\left\{i_{l^{\prime}}\right\}, E_{t s}\right\}=0, l^{\prime}=w\left(E_{t s}\right)$, and by (3d') and above $V\left\{k, Q, M,\left\{i_{l^{\prime}}\right\}, F\right\}=0$ and $V\left\{k, Q, M,\left\{i_{i^{\prime}}\right\}, G\left(x_{j} / a\right)\right\}=0$. Hence in view of D. 2. $V\left\{k, Q, M,\left\{i_{l}\right\}, F\right\}=0$ and $V\left\{k, Q, M,\left\{i_{l}\right\}, j, G\left(x_{j} / a\right)\right\}=0$; therefore by ($4 \mathrm{~d}^{\prime}$) also $V\left\{k, Q, M,\left\{i_{l}\right\}, \Pi a G\right\}=0$ and by $\left(3 d^{\prime}\right) V\left\{k, Q, M,\left\{i_{i}\right\}, F+\Pi a G\right\}=0$.

Let M_{1} be the description of A_{c}; then in view of the above and L. 2. we have also $M /\left\{i_{l}\right\}=M_{1} /\left\{i_{l}\right\}$ and by virtue of L. 3. $V\left\{k, Q, M_{1},\left\{i_{l}\right\}, F+\Pi a G\right\}=0$ and thus $V\left\{k, Q, M_{1},\left\{i_{l}\right\}, E_{c m}\right\}=0$.

Because by assumption $C\left\{E_{c m}\right\}=C\left\{E_{t s}\right\}$, therefore in view of D. 2. and the above we may assume here $l=w\left(E_{c m}\right)$ what gives a contradiction with the inductive assumption.

Thus T. 2. is also true in the case of the rule (17).
Let $E_{t s}$ results from $E_{c m}, m<s$, by means of the rules (18) or (19), then we need consider two cases according to two rules:
(1) $E_{t s}=F+\Sigma a G$,
(2 $\left.{ }^{\circ}\right) E_{t s}=F+G\left(x_{j} / a\right), \Sigma a G \epsilon C\{F\}$.

In the first case $E_{c m}=F+G\left(x_{j} / a\right), m<s$, and for some $\left\{i_{l}\right\} \supset\left\{i_{w(F+G)}\right\}, l+p(F+G)$ $\leqslant k, A_{t} /\left\{i_{l}\right\}=A_{c} /\left\{i_{l}\right\}$.

Let M_{1} be the description of A_{c}; therefore in view of the above and L. 2. we have $M /\left\{i_{l}\right\}=M_{1} /\left\{i_{l}\right\}$. By the inductive assumption $F+G\left(x_{j} / a\right) \epsilon P\left(k, Q, M_{1}\right)$.

If $F+\Sigma a G \epsilon \bar{\epsilon} P(k, Q, M)$, then in view of D.3.-4., (d), for each $H \epsilon C\{F+\Sigma a G\}$ we have $N(k, Q, H)$ and $V\left\{k, Q, M,\left\{i_{l_{0}}\right\}, F+\Sigma a G\right\}=0$, and by $\left(3 d^{\prime}\right)$ also $V\{k, Q, M$, $\left.\left\{i_{l_{0}}\right\}, F\right\}=0, V\left\{k, Q, M,\left\{i_{l_{0}}\right\}, \Sigma a G\right\}=0, l^{\circ}=w(F+\Sigma a G)$. Hence in view of D.2. we may assume $l^{\circ}=1$ and therefore by L. 3. and (3d') also $V\left\{k, Q, M_{1},\left\{i_{l}\right\}, F+\Sigma a G\right\}=0$.

Because $C\left\{F+G\left(x_{j} / a\right)\right\} \subset C\{F+\Sigma \mathrm{a} G\}$, therefore from the above $V\left\{k, Q, M_{1}\right.$, $\left.\left\{i_{l},\right\}, F+G\left(x_{j} / a\right)\right\}=1, l^{\prime}=w\left(F+G\left(x_{j} / a\right)\right)$; therefore by (3d) and (5d) also $V\left\{k, Q, M_{1}\right.$, $\left.\left\{i_{l^{\prime}}\right\}, F+\Sigma a G\right\}=1$ and analogical by D. 2. we may replace here l^{\prime} by l what gives a contradiction with the above.

In the case (2°) $E_{c m}=F+\Sigma a G, m<s$, and let M_{1} be the description of A_{c}. By the inductive assumption $F+\Sigma a G \epsilon P\left(k, Q, M_{1}\right)$.

If for some $\left\{i_{l}\right\} \supset\left\{l_{w(F+\sigma)}\right\}, l+p(F+G) \leqslant k$, for each $j \leqslant k$ and each $M \epsilon Q$ such that $M /\left\{i_{l}\right\}=M_{1} /\left\{i_{l}\right\}$ we have $F+G\left(x_{j} / a\right) \epsilon \bar{\epsilon} P(k, Q, M)$, then in view of the above, D. 3.-4., (d), for each $H \epsilon C\left\{F+G\left(x_{j} / a\right)\right\}=C\{F+\Sigma a G\}$ wehave $N(k, Q, H)$ and $V\left\{k, Q, M,\left\{i_{i}\right\}\right.$, $\left.F+G\left(x_{j} / a\right)\right\}=0, l^{\prime}=w\left(F+G\left(x_{j} / a\right)\right)$; hence by (3d'), D. 2. we receive $V\left\{k, Q, M,\left\{i_{l}\right\}\right.$, $F\}=0$ and $V\left\{k, Q, M,\left\{i_{l}\right\}, j, G\left(x_{j} / a\right)\right\}=0$. Therefore by L. 3, and (5d') also $V\{k, Q$, $\left.M_{1},\left\{i_{l}\right\}, F\right\}=0$ and $V\left\{k, Q, M_{1},\left\{i_{l}\right\}, \Sigma a G\right\}=0$; thus by (3d') $V\left\{k, Q, M_{1},\left\{i_{i}\right\}, F+\right.$ $\Sigma a G\}=0$, what in view of the above D.2. gives a contradiction.

Therefore for each $\left\{i_{l}\right\} \supset\left\{i_{w(F+G)}\right\}, l+p(F+G) \leqslant k$, for some $j \leqslant k$ and for some $M \epsilon Q, M /\left\{i_{l}\right\}=M_{1} /\left\{i_{l}\right\}: F+G\left(x_{j} / a\right) \epsilon P(k, Q, M)$. This M is the description of the needed A_{t}, what proves T. 2. in the case (2°).

The above closed the inductive proof of T. 2.
From T. 1. and T. 2. follows:
T. 3. If E is a thesis, then $E \epsilon P$.
D. 12. A set U of formulas of the first-order functional calculus is consistent respectively to B and $A \epsilon B$ iff there exists at least one formula E such that $A \cup U$, $B \notin E$, where $A \cup U$ means that we assume the proof rule (11) also for elements of U and $k \geqslant n(F)$ for $F \in U$.

The reader may define more general notion than in D. 12. by adding to each element of B a set of considered formulas.

In the same way as T. 2 . we may prove the generalization of it:
T. 4. If Q is the family of all description of elements of $B, k=v(B)=v(Q), M$ is the description of A_{t} and for each $E_{\epsilon} U, F \in E(k, Q, M), E_{i 1}, \cdots, E_{i n_{i}}$ is a formal proof of E in $A_{t} \cup U$ respectively to $B, k \geqslant n\left(E_{i s}\right), s=1, \cdots, n_{i}$, and $i=1,2, \cdots$, then $E_{t s} \leqslant P$ (k, Q, M), s. foot note 3).
T. 4. is especially an interesting generalization of the known theorem that if M is a model for axioms of a given theory, then M is a model for their conclusions.

To each $A \epsilon B, k=v(B)$, we correspond a set J_{A} and to B we correspond the family B_{J} of all $J_{A}^{\prime} s$ in the following way:
D. 13. A family B_{J} is called a family of generalized proper prime ideals respectively to B iff there exists such double sequence of formulas $E_{1}^{A_{1}}, E_{2}^{A_{1}}, \cdots$ that $J_{A_{1}}$ is the set of all elements of the sequence $E_{1}^{\Lambda_{1}}, E_{2}^{A_{2}}, \cdots A_{1}=A \cup U$ or $A_{1} \in B, B_{J}$ is the family of all $J_{\Lambda_{1}}$ and the following conditions are satisfied: ${ }^{9)}$

1. If for some d and certain formulas F and G we have $E_{d}^{A_{1}}=F+G$, then there exist $i, j<d$ such that $E_{i}^{A_{1}}=F$ and $E_{j}^{A_{1}}=G$,
2. For each $d=1,2, \cdots$ there exists $A_{2} \in B$ such that : $A_{2}, B \wedge E_{1}^{A_{1}}+\cdots+E_{d}^{A_{1}}$,
3. If a formula $E \bar{\epsilon} J_{A_{1}}$, then there exists d such that for each $A_{2} \epsilon B, A_{2}, B \vdash E_{1}^{A_{1}}+$ $\cdots+E_{d}^{A_{d}^{1}}+E$ and if $E=\Pi a F$, then $E_{d}^{A_{1}}=(\Pi a F)^{\prime}$,
4. If $E_{a^{1}}^{A^{1}}=\Pi a E$, then $\left(\left\{i_{l}\right\}\right)\left(\exists A_{2}\right)(\exists j)\left\{\left(\left\{i_{l}\right\} \supset\left\{i_{w(E)}\right\}\right) \wedge(l+p(E) \leqslant k) \rightarrow\left(A_{2} \epsilon B\right) \wedge(j \leqslant k) \wedge\right.$ $\left.\left(A_{2} /\left\{i_{i}\right\}=A_{1} /\left\{i_{i}\right\}\right) \wedge\left(E\left(x_{j} / a\right) \in J_{A_{2}}\right)\right\}$,
If $E_{d}^{A 1}=(\Pi a F)^{\prime}$, then $\left(\left\{i_{l}\right\}\right)\left(A_{2}\right)(j)\left\{\left(A_{2} \in B\right) \wedge\left(\left\{i_{l}\right\} \supset\left\{i_{w(E)}\right\}\right) \wedge(l+p(E) \leqslant k) \wedge(j \leqslant k)\right.$ $\left.\wedge\left(A_{2} /\left\{i_{l}\right\}=A_{1} /\left\{i_{l}\right\}\right) \rightarrow\left(E\left(x_{j} / a\right) \bar{\epsilon} J_{A_{2}}\right)\right\} .{ }^{10)}$
5. If $A_{1} /\left\{i_{l}\right\}=A_{2} /\left\{i_{l}\right\},\left\{i_{w(E)}\right\} \subset\left\{i_{l}\right\}$, then: $E \in J_{A_{1}}$ iff $E \in J_{A_{2}}$.

In the following we consider only B closed under suitable permutations described on p. $7^{8)-15}$, i. e. we consider only described there rules; we assume also:
${ }^{(*)}$ if k is finite, then for each different $\left\{i_{l}\right\}, j$ and each $A_{1} \in B$ there exists $A_{2} \in B$ such that $A_{1} /\left\{i_{l}\right\}=A_{2} /\left\{i_{l}\right\}$ and $A_{1} /\left\{i_{l}\right\}, j \neq A_{2} /\left\{i_{l}\right\}, j /$.
T. 5^{\prime}. If $A_{1}=A \cup U, A_{1}, B \notin E_{0}{ }^{\prime \prime}$ and $k \geqslant n\left(E_{0}+F_{1}+\cdots+F_{n}\right)^{n}$ for all $F_{1}, \cdots, F_{n} \epsilon U$, then there exists a family B_{J} of generalized proper prime ideals respectively to B such that $E_{0}^{\prime \prime} \epsilon J_{A_{1}}$.
9) We leave for readers the modification of D. 13. in which does not occur the double sequence ; the property 1 . may be also omitted, s. [3].
10) We may assume also that j satisfies conditions formulated in T. 5. The reader may formulate analogical properties for the existential quantifier.
11) From the proof follows that k may be less than given above.

Proof: Because we have a denumerable number of all significant parts of considered formulas, therefore we may order them in a double sequence
(1) $G_{1}^{\Lambda_{1}^{2}}, G_{2}^{\Lambda}, \cdots$
in such way that it satisfies the following conditions:
(1a) all formulas of each sequence of (1) are different,
(2a) $G_{1}^{A_{1}}=E_{0}$, for $A_{1}=A \cup U$,
(3a) if for some d and certain formulas F and G we have $G_{d}^{A^{2}}=F+G$, then there exist $i, j<d$ such that $G_{i}^{A}=F$ and $G_{j}^{A_{2}}=G$,
(4a) if for some d and some formula E we have $G_{d}^{A}=\Pi a E$, then $G_{d^{d^{2}+1}}^{a^{0}}=E^{\prime \prime}\left(x_{j} / a\right)$ and $j \bar{\epsilon}\left\{i_{l}\right\}$, where :
$\left(1^{\circ}\right)$ if k is infinite, then $A_{3}^{0}=A_{2}, G_{d+1}^{A_{2}}, \cdots, G_{d^{\prime}}^{A_{2}}$ are all substitutions $E^{\prime \prime}\left(x_{j} / a\right)$, for $j \in\left\{i_{l}\right\}$ and we enlarge all lines to the length d^{\prime} e.g. as below in (2°) and $l=W\left(G_{1}^{A}+\cdots+G_{d^{2}}^{A}\right)$,
$\left(2^{\circ}\right)$ if k is finite, then for each $\left\{i_{l}\right\} \supset\left\{i_{w(E)}\right\}, l+p(E) \leqslant k$, we choose $A_{3}^{*} \epsilon B$ as at (*), i. e. a new line, such that $A_{3}^{*} /\left\{i_{l}\right\}=A_{2} /\left\{i_{l}\right\}$ and we assume that
 occur indices of $\left\{i_{l}\right\}$ and afterwards all substitutions $E^{\prime \prime}\left(x_{j} / a\right)$, for $j \in\left\{i_{w(l)}\right\}$ and we enlarge all lines to the length d^{\prime} by adding to them e.g. E_{d} with an even number of negations,
(5a) if non (4a), then $G_{d+1}^{A_{2}}$ is the first formula which is not included into $G_{1}^{A_{2}}, \cdots, G_{d}^{A_{2}}$, Let
(2) $E_{1}^{4}, E_{\frac{1}{2}}^{4}, \ldots$
be a subsequence of the sequence (1) defined in the following way:
(1b) $E_{1}^{\Lambda 1}=G_{1}^{A 1}=E_{0}^{\prime \prime}$, for $A_{1}=A \cup U$,
(2b) $E_{d+1}^{A_{2}}$ is the first element after $E_{d}^{A_{2}}$ of the double sequence (1) such that for some $A_{2}^{0} \epsilon B: A_{2}^{0}, B \perp E_{1}^{A_{2}}+\cdots+E_{d+1}^{A_{2}}$ and if there exists d such that for each $A_{2}^{0} \epsilon B$: $A_{2}, B \vdash E_{1}^{A_{2}}+\cdots+E_{d^{2}}^{A^{2}}+\Pi a F$, then in $(4 \mathrm{a})\left(1^{\circ}\right),\left(2^{\circ}\right)$ we add $E_{d^{\prime}}=(\Pi a F)^{\prime}$
(3b) If $A_{2} /\left\{i_{l}\right\}=A_{3} /\left\{i_{l}\right\},\left\{i_{w(E)}\right\} \subset\left\{i_{l}\right\}$, then ahead: $E=E{ }_{j}^{A_{2}}$ iff $E=E{ }_{3}^{A_{3}}$. Here we restrict ourself to formulas with a finite length of significant parts; if we do not restrict ourself to such formulas we need use all finite sequences of formulas belonging to ideals as in [3], s. footnote 9).

We shall prove the family B_{J} of all $J_{A_{2}}, A_{2} \epsilon B$ or $A_{2}=A_{1}$, where $J_{A_{2}}$ is the set of all elements of the sequence $E_{1}^{A_{2}}, E_{2}^{A_{2}}, \cdots$, - is a family of proper prime ideals respectively to B; in this purpose it suffices to prove conditions $1 .-5$. of D. 13 .

Immediately conclusions from the definition of the sequence (2) are $1 .-3 ., 5$ s. [3], [11].

We prove 4.:
$\left(1^{\prime}\right)$ let $E_{d}^{A_{2}^{2}}=\Pi a E$, for some E,
(2') for each d there exists $A_{2}^{\circ} \in B: A_{2}^{\circ}, B \wedge E_{1}^{A_{2}}+\cdots+E_{d}^{A_{2}}$
$\left(3^{\prime}\right)$ there exists such m that $G_{m}^{A_{2}}=E_{d}^{A_{2}}=\Pi a E$.
(4) $G_{a 41}^{A_{0}^{\circ}}=E^{\prime \prime}\left(x_{j} / a\right)$ and $j \bar{\epsilon}\left\{i_{i}\right\}$, where:
(1°) if k is infinite, then $A_{3}^{0}=A_{2}$ and $l=w\left(G_{1}^{A_{2}} \cdots G_{d}^{A^{2}}\right)$, s. (4a) $\left(1^{\circ}\right)$, $\left(2^{\circ}\right)$ if k is finite, then for cach $\left\{i_{l}\right\} \supset\left\{i_{w(E)\}}\right\}, l+p(E) \leqslant k$ we choose $A_{3}^{0} \epsilon B$, determined in (4a), (2 ${ }^{\circ}$), i. e. a new line, such that $A_{3} /\left\{i_{l}\right\}=A_{2} /\left\{i_{l}\right\}$ and we assume that $G_{1}^{A^{\circ}}{ }^{\circ}, \cdots, G_{d}^{A^{\circ}}{ }^{\circ}$ are only such formulas belonging to $G_{1}^{A^{2}}, \cdots$, $G_{d}^{A 2}$ [or with two negations] in which occur indices of $\left\{i_{l}\right\}$, s. footnote 7),
(5') for some $\left\{i_{l}\right\} \supset\left\{i_{w(E)}\right\}, l+p(E) \leqslant k$, for each $A_{3} \in B$ and $j \leqslant k$ if $A_{3} /\left\{i_{l}\right\}=A_{2}$ $/\left\{i_{l}\right\}$, then $E\left(x_{j} / a\right) \bar{\epsilon} J_{A_{3}}-a$ contrary assumption,
(6^{\prime}) for some $\left\{i_{l}\right\} \supset\left\{i_{w(E)}\right\}, l+p(E) \leqslant k$, for each $A_{3} \in B$ and $j \leqslant k$ if $A_{3} /\left\{i_{l}\right\}=A_{2}$ $/\left\{i_{l}\right\}$, then there exists c such that for each $A_{4} \in B: A_{4}, B \vdash E_{1}^{A_{3}}+\cdots+E_{c}^{A_{3}}+$ $E\left(x_{j} / a\right)$,
(7^{\prime}) In the case ($\left.4^{\prime}\right)\left(1^{\circ}\right)$ we take $A_{3}=A_{2}$ and thus: for each $A_{4} \in B: A_{4}, B \vdash$ $E_{1}^{A_{2}}+\cdots+E_{c}^{A_{2}}+E\left(x_{j} / a\right), c=d, j \epsilon\left\{i_{l}\right\}$ and some $j \bar{\epsilon}\left\{i_{w\left(E_{1}^{A} 2 \ldots E_{c}^{A 2}\right)}\right\}$,
(8') for each $A_{4} \in B: A_{4}, B \vdash E_{1}^{A_{2}}+\cdots+E_{d}^{A_{2}}+\Pi a E \quad$-rule (16),
(9) for each $A_{4} \in B: A_{4}, B \vdash E_{1}^{A_{2}}+\cdots+E_{d^{2}}^{A^{2}} \quad$-contradiction,
(10^{\prime}) in the case (4^{\prime}), $\left(2^{\circ}\right)$, we take $A_{3}=A_{3}^{0}$ and thus; for earch $A_{4} \in B ; A_{4} . B \vdash$ $E_{1}^{A_{3}^{0}}+\cdots+E_{c}^{A_{3}^{0}}+E\left(x_{j} / a\right), c=d, j \epsilon\left\{i_{i}\right\}$ and some $j \bar{\epsilon}\left\{i_{w\left(E_{1}{ }_{1}^{0}+\ldots+E_{c}^{A}{ }_{c}^{0}{ }^{3}\right\}}\right\}$,
(11) for each $A_{4} \epsilon B: A_{4}, B \vdash E_{1}^{A_{3}^{0}}+\cdots+E_{d^{i}}^{\dot{a}}+\Pi a E \quad$-rule (16)
(12') for each $A_{4} \epsilon B: A_{4}, B \vdash E_{1}^{A_{3}^{\dot{3}}}+\cdots+E_{d}^{A^{\dot{B}}} \quad$-contradiction
The second sentence of 4 . follows immediately from (17) considering the line described in (4a) $\left(2^{\circ}\right)$; q.e.d.

According to the above T. 5^{\prime}. also holds with B composed of one non-determined element A and k infinite; thus it also holds for usual theses.
D. $14 A^{\circ} \epsilon B[r]$ iff $(\{r\}$ is a permutation of k upon $r) \wedge(r \leqslant k) \wedge$
$(\exists A)\left\{(A \epsilon B) \wedge\left(A^{\circ}=A /\{r\}\right)\right\} \wedge(r$ is a finite number $)$
Let B_{J}^{0} be the set of all $J_{A} \mid\left\{i_{r}\right\}$, for a given r and $A_{1} \in B$ or $A_{1}=A \cup U$.

The set B_{J}^{0} we enlarge to a family B_{J}^{r} of proper prime ideals respectively to B^{r} where B^{r} results from $B[r]$ by adding to the last set lines described in (4a), $\left(2^{\circ}\right)$ and $\left(4^{\prime}\right),\left(2^{\circ}\right)$ of T. 5^{\prime}; of course, the fullfiling of $B[r]$ is according to T. 5^{\prime}.

First of all we must note that if $A /\left\{i_{r}\right\}=A^{\circ}$ and $A^{\circ}, B^{r} \vdash H\left(\{r\} /\left\{i_{r}\right\}\right)$ then $A, B \vdash H$.

The proof of the above sentence is inductive according to the length of the formal proof of the considered formula.

By virtue of the above, if we establish $r \geqslant n(E)$ for all considered formulas, then the following lemmas hold for $B, B^{r}, B_{J}, B_{J}^{r}, U \backslash\left\{i_{r}\right\}$ respectively; proofs are almost identical with ones given in [3], [11].
L. 4. $E \in J_{A_{1}}$ iff $E^{\prime} \bar{\epsilon} J_{A_{1}}$.
L. 5. $E, F \epsilon J_{A_{1}}$ iff $E+F \epsilon J_{A_{1}}$.
T. 5. If $A_{1}=A \cup U, A \in B$ and $A_{1}, B \vdash E_{0}$, then there exists a family B_{J} of generalized proper prime ideals respectively to B such that $E_{0} \in J_{A_{1}}$.
T. 6. If $A_{1}=A \cup U, A \in B$, then for each family B_{J} of generalized proper prime ideals respectively to B there exists such family Q of models of the power $k=v(B)$ that for each $A_{2}=A_{1}$ or $A_{2} \epsilon B$ and the description M (which create the set Q) of negations of atomic formulas belonging $J_{A_{2}}$ and each formula E of considered formulas, i.e. $n(E)$ $\leqslant k$:
(1) If $E \bar{\epsilon} J_{A_{2}}$, then $\left(\left\{i_{l}\right\}\right)\left\{\left(\left\{i_{l}\right\} \supset\left\{i_{w(E)}\right\}\right) \wedge(l+p(E) \leqslant k) \rightarrow V\left\{k, Q, M,\left\{i_{l}\right\}, E\right\}=1\right\}$.
(2) If $E \in J_{A_{2}}$, then $\left(\left\{i_{l}\right\}\right)\left\{\left(\left\{i_{l}\right\} \supset\left\{i_{w(E)}\right\}\right) \wedge(l+p(E) \leqslant k) \rightarrow V\left\{k, Q, M,\left\{i_{l}\right\}, E\right\}=0\right.$.
(3) $E \bar{\epsilon} J_{A_{2}}$ iff $E \epsilon P(k, Q, M)$.

Proof: We prove implications (1), (2) together by induction on the length of the formula E.

In view of the assumptions, if E is an indecomposable formula, then (1), (2) hold.
Let (1) and (2) hold for formulas of the length $<m$; we shall prove it for m.
We consider three cases:
(1') $E=F^{\prime}$, (2) $E=F+G$, ($\left.3^{\prime}\right) E=\Pi a F$.
In the cases (1^{\prime}) and (2^{\prime}) we obtain immediately (1) and (2) in view of the inductive assumptions, L. 4., L. 5., (2d) and (3d); the strict proof is almost identical with [3], [11].

In the case (3^{\prime}) in view of the definition of Q, the inductive assumption (4d), D. 13. 4.-5. and L. 4. we obtain in both cases:
$\quad E \epsilon J_{A_{2}}$ iff $\Pi a F \bar{\epsilon} J_{A_{2}} \rightarrow\left(\left\{i_{l}\right\}\right)\left(A_{2}^{0}\right)(j)\left\{\left(A_{2}^{0} \epsilon B\right) \wedge\left(\left\{i_{l}\right\} \supset\left\{i_{w(F)}\right\}\right) \wedge(l+p(F) \leqslant k) \wedge(j \leqslant k)\right.$
$\wedge\left(A_{2}^{0} /\left\{i_{l}\right\}=A_{2} /\left\{i_{l}\right\}\right) \rightarrow\left(F\left(x_{j} / a\right) \bar{\epsilon} J_{A_{2}}^{0}\right) \rightarrow\left(\left\{i_{l}\right\}\right)\left(M_{1}\right)(j)\left\{\left(M_{1} \epsilon Q\right) \wedge\left(\left\{i_{l}\right\} \supset\left\{i_{w(F)}\right\}\right) \wedge(l+p(F) \leqslant k)\right.$
$\left.\left.\wedge(j \leqslant k) \wedge M_{1} /\left\{i_{l}\right\}=M /\left\{i_{l}\right\}\right) \rightarrow V\left\{k, Q, M_{1},\left\{i_{l}\right\}, j, F\left(x_{j} / a\right)\right\}=1\right\} \rightarrow\left(\left\{i_{l}\right\}\right)\left\{\left(\left\{i_{l}\right\} \supset\left\{i_{w(F)}\right\}\right) \wedge\right.$
$\left.(l+p(F) \leqslant k) \rightarrow V\left\{k, Q, M,\left\{i_{l}\right\}, \Pi a F\right\}=1\right\} \rightarrow\left(\left\{i_{l}\right\}\right)\left\{\left(\left\{i_{l}\right\} \supset\left\{i_{w(E)}\right\}\right) \wedge(l+p E) \leqslant k\right) \rightarrow V\{k, Q$,
$\left.\left.M,\left\{i_{l}\right\}, E\right\}=1\right\}$.
$\quad E \epsilon J_{A_{2}}$ iff $\Pi a F \epsilon J_{A_{2}} \rightarrow\left(\left\{i_{l}\right\}\right)\left(\exists A_{2}^{0}\right)(\exists j)\left(\left\{i_{l}\right\} \supset\left\{i_{w(F)}\right\}\right) \wedge(l+p(F) \leqslant k) \rightarrow(j \leqslant k) \wedge\left(A_{2}^{0} /\left\{i_{l}\right\}=\right.$
$\left.A_{2} /\left\{i_{l}\right\}\right) \wedge\left(F\left(x_{j} / a\right) \epsilon J_{A_{2}}\right) \rightarrow\left(\left\{i_{l}\right\}\right)\left(\exists M_{1}\right)(\exists j)\left\{\left(i_{l}\right\} \supset\left\{i_{w(F)}\right\}\right) \wedge(l+p(F) \leqslant k) \rightarrow(j \leqslant k) \wedge\left(M_{1} /\left\{i_{l}\right\}\right.$
$\left.\left.=M /\left\{i_{l}\right\}\right) \wedge V\left\{k, Q, M_{1},\left\{i_{l}\right\}, j, F\left(x_{j} / a\right)\right\}=0\right\} \rightarrow\left(\left\{i_{l}\right\}\right)\left\{\left(\left\{i_{l}\right\} \supset\left\{i_{w(F)}\right\}\right) \wedge(l+p(F) \leqslant k) \rightarrow V\{k\right.$,
$\left.\left.Q, M,\left\{i_{l}\right\}, \Pi a F\right\}=0\right\} \rightarrow\left(\left\{i_{i}\right\}\right)\left\{\left(\left\{i_{l}\right\} \supset\left\{i_{w(E)}\right\}\right) \wedge(l+p(E) \leqslant k) \rightarrow V\left\{k, Q, M,\left\{i_{l}\right\}, E\right\}=0\right\}$,
what proves (1) and (2).

Therefore we proved also $N(k, Q, M)$ for each considered formulas H. Hence by (1) and (2) we obtain (3); q. e.d.

Of course, T. 6. may be proved in a similar way for other truncated satisfiability definition considered in my papers [4], [6] - [9], [13], [14].

From T. 1., T. 3., T. 4., T. 5. and T. 6. follows:
Genralization of Gödel-Skolem-Löwenheim's therem :- If U is a consistent set of formulas respectively to B and $A_{1}=A \cup U, A \in B, A_{1}, B \notin E_{0}$ then there exists such family Q of models of the power $k=v(B)$ and a correspondence between $A \epsilon B$ and $M^{4} \in Q$ such that for each $A_{2}\left(A_{2}=A_{1}\right.$ else) :

1. If $A_{2}, B \vdash E$, then $E \in P\left(k, Q, M^{A_{2}}\right)$,
2. $V\left\{k, Q, M^{A_{1}}, E\right\}=0, k \vdash E$ iff $E \epsilon P\{k\}$,
3. In $1 .-2$. we mey only assume $v(Q) \geqslant n\left(E_{0}\right)$

If B is not determind and k infinite, then in $1 .-2$. we may assume Q oneelementing.

Generalizations of Gödel-Herbrand's theorem : ${ }^{12)} E$ ia a thesis iff $E \epsilon P$ iff $H E$.
Completenese theorem : All considered Boolean calculi $(k \vdash E)$ with finite truncated general and existential quantifiers are complete. (According to the above theorem they approximate the first-order functional calculus), s. [15], [16].

The same theorems may be proved by analogical generalizations to methods used in [2], [21] and others.

Generalizations of Gentzen's sequent proof rules according to the above are given in [7], [8], s. also [18].
12) A homogeny formulation of both above theorems is given at 〔12〕

Including of the above theorems in Tarski＇s systems theory will be an interesting topic of［10］；in such way will be presented the above generalized theorem in the systems theory，s．［12］．［19］．According to 1－0－Bernoullie＇s sequences at［16］there are given finite and asymptotic infinite probabilistic models of regarded here generalized models with the generalizations of satisfiability definition．

BIBLIOGRAPHY

〔1〕 Kalmar，L．：Uber die Erfüllbarkeit derjenigen Zahlausdrucke，welche in der Normalform zwei benachbarte Allzeichen enthalten，Math．Ann，108， 1933.
［2］Henkin，L．：A proof of completeness for the first－order functional calculus，J．Symb．L．， 14， 1949.

〔3〕 Reichbach，J．：O pelnosci wezszego rachunku funkcyjnego，Completeness of the first－order functional calculus，Studia Logica 2， 1955.
［4］Reichbach，J．：Some methods of formal proofs I，sent to print．
［5］Reichbach，J．：On theses of the first－order functional calculus，Z．Mathematische Logik und Grundlagen der Mathematik，VII，4， 1961.
［6］Reichbach，J．：On generalization of the satisfiability definition and proof rules with remarks to my paper：On theses of the first－order functional calculus，：Z．Mathematische Logik und Grundlagen der Mathematik，VIII，4， 1962.
〔7〕 Reichbach，J．：Some methods of formal proof II 〔Generalizations of the satisfiability definition］，sent to print．
［8］Reichbach，J．：Some examples of different mothods of formal proofs with generalizations of the satisfiability definition，Notre Dame J．Formal Logic，in print．
［9］Reichbach，J．：On the first－order functional calculus and the truncation of models，Studia Logica VII， 1958.
〔10〕 Reichbach，J．：Generalizations of sequents proof rules in Tarski＇s system theory，in sending to print．
〔11〕 Reichdach，J．：Fundamental theorems of mathematical logic，ISF， 1966. Reichbach，J．：About proof rules，ISF， 1966.
［12］Reichbach，J．：Boolean many valued calculi with quantifiers and homogeny proof of Gödel－ Skolem－Löwenheim－Herbrand＇s theorem，1967／8．
［13］Reichbach，J．：Some characterizations of theses of the first－order functional calculus，Math． Ann．152， 1963.
［14］Reichbach，J．：On characterizations and unpecidability of the first order functional calculus， Yokohama Math，Journal，XII， 1965.
〔15〕 Reichbach，J．：On the connection of the first－order functional calculus with many valued propositional caluli，Proceeding of the Fourth Congress of Scientific Societies，Rehowot，April 2－5，Israel，Bulletin of the Research Councii of Israel，Sec．F．，Math．Phys．，August 1961， 10

F1 [Abstract]
Reichbach, J.: On the connection of the first-order functional calculus with many valued propositional calculi, Notre Dame J. Formal Logic 4,1961.
[16] Reichbach, J.: Probability-Events Balance Appendix 1: About derivative and definite integrals, Appendix 2: Statistical densities in decidability problem of the first-order functional calculus. 1968.
〔17〕 Rasiowa, H., Sikorski, R., : A proof of the completeness theorem of Gödel, Fund. Math., 37, 1950.
[18] Rasiowa, H., Sikorski. R.: On the Gentzen theorem, Fund. Math., 1960, 48.
[19] Slupecki. J., Pogorzelski, W. A.: A variant of the proof of completeness of the first-order functional calculus, Studia Logica 12. 1961,
[20] Tarski, A.: Pojecie prawdy w jezykach nauk dedukcyjnych, Prace Towyrzystwa Naukowego Warszawskiego, Wydzial III, 1933.
[21] Thiele, H.: Eine Axiomatisierung der zweiwertigen Prädikatenkalkule der ersten Stufe, welche die Implikationen enthalten, Z. Mathematische Logik und Grundlagen der Mathematik, 2, 1955.

Tel-Avio-City, Bialik, POB. 4870, Israel.

[^0]: 5) Of course, the rule may be replaced by usual associative and commutative laws.
 6) For theses we may assume also $\left\{i_{\left.\boldsymbol{u}_{(F+}+G^{\prime}\right)}\right\}=\left\{i_{\left.w_{(F)}\right)}\right\}$.
 7) If considered sets of formulas are closed under substitutions regarded in $\left(1^{\circ}\right)$ and $\left(2^{\circ}\right)$, then it suffices to assume $j=r$.
 8) If we consider a relative definition of the class P respectively to E, s. [4], [6], then in proof rules we must assume all considered formulas are composed of significant parts of E and then assumptions about parts in proof rules are in general less, s. footnote 3).
