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In my paper I gave a simple and whole proof of the completeness of the
first-order functional calculus.

J. Slupecki gave the thought to generalize the proof method for many valued
calculi.

In 6], [7]. I presented different generalizations of the satisfiability definition
and generalizations of completeness theorem with generalizations of Herbrand’s theorem
but proved by means of the usual completeness theorem and therefore proved on a
semantic way.

In this paper I generalize the method given in [3] and I obtain in such way
simultaneous generalizations of Gédel’s completeness theorem with Skolem-Lowenheim’s
theorem which include also Herbrand’s theorem according to the above and in a syntactic
way,

They are proved also completeness of infinite many Boolean important calculus
with (finite) truncated introduction of general and existential quantifiers which approximate
the first-order functional calculus.

This paper we can divide ‘in two parts: the first part is analogical to and
in the second one it is generalized the proof method of with generalizations of the
above theorem.

We use notations of [4]-(16] and in particular:

(01) wvariables: (1’) free: x, --- (simply x),
(2') apparent : ay, --- (simply a),
(02) relations signs: f1, -+, fL, o, f o0, S5
(03) logical constants: ', + , 1],
(04) w(E), p(E)—the number of different free, apparent, variables respectively which
occur in the expression E, 2
(05) {Ka}—the sequence Kj, -, Kn; {K!} —the sequence K}, -+, K}, - , K, -+, K,

(06) {Zweer}> { Juwcmy} —indices of all free variables occurring in E,

1) The paper is connected with my lectures on J. Slupecki’s seminar in 1951-1957 years and
on meetings of Polish Mathematical Society at Wroclaw and was written several years ago ; results
without proofs are published at [12]. ;

2) An expression in which an apparent variable belongs to the scope of two quantifiers I/a
is not a formula; if @ does not cccur in E, then I/aE is not a formula.
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(07) (E)=max {iymn}, n(E)=max {{(E), w (E)+p(E)},

(08) E (u/z)—the expression resulting from E by substitution of # for each z in E
with known conditions, E ({7;}/{4;})=E (%:,/y:)) +"(%i,/¢ ),

(09) C {E}—the set of all significant parts of the formula E.

(010) M, M,, ---—models; @, @y, -+ —non-empty sets of models of the same power
(for finite models it is used also the word ‘“rank” instead of the word ; power):
Q(k)—Q is a set of models of the power k.

(011) A, A,, --+— sets of indecomposable formulas, i.e. atomic formulas with their
negation, in which indices of individual variables are <k, where %k is a given
numbber ; the sets may be infinite; S,—the set of all free variables which occur
in elements of A, therefore S;—the set of all free variables occurring in the
expression E; if all the elements of S, are all free variables with indices < &
and for each indecomposable formula E, if S;cS,, then EeA iff E'é A, then
A is called “set of the power &”; B, By, ---—families of sets A ; if elements of
B’s are only sets of the power %, then B is called : family of the power &; for
brevity we shall assume that we only consider A’s and B's of a given power,

(012) The pair <D, {F!}> denote a model, i.e. that the domain D is an arbitrary
non-empty set and {F!} is an arbitrary finite sequence of relations such that
F7 is m-ary relation on D,k=1,.--,q and m=1,---,¢. A model of the power £
is such model whose domain has exactly numbers 1, ::-, k(2 may be infinite),

(013) M {E}=0, i.e. E’ is true in the model M; M {E({sc})}=0, i.e. {sx} are
elements of the domain of M, x; are names of s; and {s;} do not satisfy E in
the model M,

(014) Let M=<Dy, {Ft}>, M, A—have the same power and for each my, ---, m;<k
and j<t,i<q:Fi(my, - ,my) ift [} (%mg, o+, Xmy) € A and ~ F{(my, -+ ;m;) iff
Si (Xmg, =+ 5 Xmy) € A—such M is called a description of A,

(015) For each model M= <D, {Ft} >by M/s,, -+, sx/—or briefly : M/{sc} —we shall
denote a model <Dy, ¢;> of the power k such that for each 7y, -+, 7:<k: ¢}
(rey o, 70) Mff FY(Sp1, 0, 8m),8=1,--,¢t and j=1,.--,q. So M/{se}= <D,
{#:}>; if {sc} is empty, then one holds for all models; M/{s} is a submodel
of M in the meaning of homomorphism,

(016) quantifiers: (K), (AK), ({Kn}), @ {Kn}),

(017) E€ A/sy, +++, -+, se/ ff E({sc}/{k})eA,

(018) A/{sc}=A/sy, -, sx/; A/{sx} isa coset of A in the meaning of homomorphism.
In the following X, Y, X, :--—denote a model M or a set A; U, Uy, ---—sets
Q or B.

If x,;€S, or respective s; does not belong to the domain of the model, then we
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assume X/sy, +++, Su/=X/S1, ** » Si-1, Sig1, *** » Skr Of course:

L. 1. X/{se}/{jm}=X/{Ssn}, s. (1]

L. 2. If M, is the description of A; and M, is the description of Ay, and both
models have the same power, then : M,/{jm} =M./ {jm} iff A/ {Jm}=As/{jm}

D. 1. XeY (B) iff (3 {seh){X=Y/{sc}}
Y (&) is the set of all Y/{s}.

For an arbitrary family @ of models of the same power, for an arbitrary model
M=<D, {F;} >€Q, for an arbitrary formula E and each {4} D {iww}, +p(E)<k we
introduced in the following inductive definition of the functional V :

(1d) V {k, Q, M, {ii}, [ (%rp» -+ s Xy} =1 iff FP (ry,--- ,rm)
2d) V{k,Q M, {i}, F'}=1iff~V {k,Q, M, {i,}, F}=1 iff {Vk Q, M, {i,}, F}=0,
(3d) Vi{k,Q M, {i,}, F+G}=1iff V {k, Q, M, {i }F}=1vV{k Q. M, {1}, G} =1,
(4d) V {k Q M, i, llaF}=1 iff (j)(M){j<RIAM:/{i}=M/{i})~>
V ik, Q, M, {ir}, j, Fix;/a)} =1}.
D. 2. N(k Q, H) iff ({&}{({ée} D {twcy DAU+D (H)<E)
—>My)(¢)(V {k, Q, My, {ii}, H} =1 iff V {k, Q, My, {41}, i, H}=1}},
D. 3. FeP(k, Q M, {i,}) iff GH){(HeC {F})AN(H=1IIaH, for some H,)®
ANk, Q, H)-»V {k, Q, M, {ii}, F} =1},
D. 4. FeP(k, Q, M) iff FeP (k, Q, M, {iwr))}),
D. 5. FeP {k} iff (Q) (M) {Q (RN (MeQ)—>FeP (k, Q, M)}
D. 6. EeP iff Qk){(k=n(E))A(EeP {k})}*».
We recall :
V{k Q M, {i,}, E}=1 may be read : the model M satis fies E respectively to
Q and {7}. ‘

3) Instead F we may write here an estabilshed formula E, to consider only parts of this
formula and then we shall receive a relative definition of the definad class P as in (4], [6). The
reader may replace E by a set of formulas.

Analogously we may define the satisfiability functional V; which depends also on arbitrary
sequence {2z:} of elements of Di; for atomic formulas, negations and alternatives the definition of
V. is usual, s. [3), [(17], (20), and analogic to the above, and for quantifiers: (d4) V; {k Q, M
{}, {z}, HaF}=1iff (j) @) M) {(j=1,2, )N\ (x; € Se)N\(ZeDHIN\M./z} =M/ {2} ) >V,
th Q My, (il 4, {2t} (2/2p), F (x:/a)}=1.

By means of the functional V, we obtain as a special case the usual truth definition and its
generalization according to the above.

4) It is easy to see # (E) may be less than used here.
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If we assume ) is one elementing, then V is the usual satisfiability functional
in the domain of ordinary numbers Dy, D. 2.-4. are then obviously and they create the
usual truth definition in M. ‘

If M is a model and Q=M (k], then elements of § are submodels of M in the
meaning of homomorphism, the number j in (4d) is the name of an arbitrary element
of the domain of M and D. 3. says that the sequence {#;} has not influence in whole
on the introduced truncated satisfiability definition as in one elementing @ ; here we
need note that the invariant relation N (k, @, H) holds for connectives of propositional
calculus and for quantifiers it is assumed in D. 3.; D. 5.-6. are pictures of the usual
truth definition in its generalization introduced here.

In and it is proved that for normal formulas E it suffices to consider
only H=E and the implication in the left-hand side of D. 2. instead of the second
equivalence.

It is easy to prove suitable :

(d) (H){(HeC{E}—>N(k, Q, H)} iff (H){(HeC {E})N(H=IaH, for
some H,)-»N(k, Q, H).

(3D) FeP(k, Q, M, {i.}) iff QH){(HeC {F})A(N (k, Q, H)-V {k, Q, M, {ir}, F}=1)},
L. 8. If M/{i;}=M°/{ii}, then :

V{k Q {Zl}, }=1 iff V{k’ Q; Mo, {zl}’E} 1
(3d") V ik Q M, {i}, F+ } 0iff V{k Q M, (i}, F}=
{k Q, {ZL}, }
(4d) V{k Q M, {u} aF} 0 iff (37) @AMy {(F<EIAMy/ (i} —M/{i})A

V ik Q, My, {is}, ], F(x;/a)} =0},

(6d)  V{kQM, (i}, 2 aF}=1ift @j)QAM){(FSHAM/{i}=M/{i})A
V {k, Q, My, {ir}, j, F(x;/a)} =1},

(6d)  V {k Q M, {ii}, ZaF}=0 iff (j) (M) {(j <EAM,/{i1}=M/{i;}
V {k, Q, My, {i1} ], F (x;/a)} =0}.

The proof of (d) and L. 3. are inductivel on the length of the considered formulas;
(3D) follows immedately from D. 3. and (d); s. L. 5. in and L. 14. in [13].

In the following the rank of X, U, --- we denote by v(X), v(U), -+ For brevity
of considerations we shall assume that the sequence (B) A4,, A, -
includes all elements of B, i.e. we assume we enumerated all elements of B.

Let v(B)=Fk; then:

For an arbitrary AeB, for an arbitrary formula E such that n(E)<k we |
introduce the symbol A, B —E which we read” E is a thesis of A respectively to B":
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(11) A, BF, for each FeA,

(12) A, B+F+F', for each F,

(13) If A, B-Fi4-eeeet +Fu and ky, -+, b is an arbitrary permutation of number
<m, then A,BI——Fk1+"'+ka5),

(14) If A,B—F and G is a formula, then A, B—F+G,

(15) If A,B-F+G and® A, B—F+G', G'¢C {F} then A, B—F,

(16) If A, B—F+G, x,€Sz, xS, and
If there exists such {11} D {twczsacarzpp}> I+ 0 (F4+ G (a/x:) )<k, then:

(1°) for each j<k we have A, B-F+G (x5/x,),
(2°) for each A°¢B,if A°/{i;}=A/{ii}, then for each jé{i;}: A°, B~ F+ G (x;/%,),”
then A, BF+11aG (a/x,),

(17) ¥ A, B-F+11aG, I1aGeC {F}, then for each {ii} D {fwrser}, I+p (F+G)<E,
for each A°eB, if A°/{i;}=A/{i,}, then A°, B—F+G (x;/a) (it suffices to take
here only t=w (F+G)),

(18) If there exists such {7} D {tw(rsey}s I+p (F+G)<k and there exist such j<k and
A°eB, A°/{.}=A/{i;} that A°, BF+G (x;/a), then A, B-E+2aG.

(19) If A, B+-F+2aG,3aGEeC {F}, then for each {i1}D {fwrsar}, [+p (F+G) <
there exist such j<k and A°B that A°/{i;}=A/{i,} and A°, B—F+G (x;/a)®.

(From the following considerations follows that (18), (19) follows from (11)—(17).)

Of course (12)-{15) are proof rules of the propositional calculus and (12)<(17)—of

the first-order functional calculus; the last fact is obviously for B—empty.

The following consideration hold also by replacing j<k in (16),(1°) by means
J<k—p(F+G(a/x;)) analogic to [6] ; then we modify (4d) according to [6].

Let

Cl(U) iff (X)(my)--(me){(XeU)A(my, -+, mp is a permutation of numbers < k)—>
(X/ml, see m,.,/eU)}

If CI(B), then B is not one-elementing and in this condition all following

5) Of course, the rule may be replaced by usual associative and commutative laws.

6) For theses we may assume also {iwcr+a7)} = {fwcm}-
7) If considered sets of formulas are closed under substitutions regarded in (1°) and (2°),

then it suffices to assume j=v7.

8) If we consider a relative definition of the class P respectively to E, s. [4], (6], then in
proof rules we must assume all considered formulas are composed of significant parts of E and then
assumptions about parts in proof rules are in general less, s. footnote 3.
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considerations hold by assuming in (16) only : je {i1} in (1°), j=r; if permutations are
also with reiterations, then it suffices only : je {fwaass,»} in (1°), and in (2°) as above
j=r. Then (16) will receive a from of usual quantification rule but we must here use
more strong lemma than L. 3., namely:
L. 8. If E°=E({ju}/{i}, (i} D liww}s (7} D {fwwo}, M/} =M°/{i} and
Cl(Q), then:
VikQ M, (i}, E}=1iff V{k Q, M°, {7}, E°}=1, s.L. 12'. in [9].

If B is non—determined, one-elementing and v (B) infinite, then we also will speak

that it is closed under the considered permutations.
Other form of proof rules are regarded in (4], (6], (14) and will be also a topic

of my future papers.

We point out that in order to approximate the first-order functional calculus by
the above calculi it suffices to consider only B and @ with the above permutation
property, s. also [8], (9], (15), (16].

D. 7. The double sequence Ey, -, En;i=1,2,++ is a formal proof of the
formula E in A, respectively to B iff E=Ejs; and for each 1=1,2, - and t=1, -, 7
one of following conditions holds:

1. E; is an element of A;, s.(B), or E;=F+F' for some F,

9. there exists d<? such that E; results from E;; by means of rules (13) or (14),

3. there exist d, m<t such that Ej; results from E;; and Eis by means of the rule
(15),

4. E, results from the double sequence Eai, -, Eai—1, d=1,2, -+ by means of the
rule (16),

5. there exist d<t? and m such that E; results from En; by means of ‘rules (17) or
(18), or (19,

D. 8 The formula E is a thesis of A; respectively to B—in symbols: A;, B+
E—iff there exists a formal proof of E in A; respectively to B.

A,B—E we read: E is not a thesis of A respectively of B. -

D. 9. B-Eiff (A){(AeB)>(A,B+E)} B+E may be read: E is a thesis
respectively to B.

D 10. k+E iff (B) {(v(B)=k)—>(B+E)}.
D 11. HE iff QR {(E=E)A(k=n(E))}.
HE may be read: E is a B-thesis.
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Of course :
If B is not determined and B\ E, then kE.

The converse implication follows from generalization of Gédel-Skolem-Lovenheim’s
theorem, p. 14. .

T. 1. If E is a thesis, then HE.

T. 2. If @ is the family of all description of elements of B, k=v(B)=v(Q),M
is the description of A, Eiy, -+, Ein; is a formal proof of E in A, respectively to B,
k>n(Ey), s=1,---,m;, and i=1,2, ... ,then E;eP (K, Q, M).

Proof. Let the assumption of T. 2. hold.
We shall prove T. 2. by induction on s=#; simultaneously for all {=1,2,.-

Of couse, if E;;=F+F' or E;,A;, then in view of the assumption T. 2. holds;
therefore T. 2. holds for s=1.

Let T. 2. holds for all m<s; we shall prove it for s.

If E;s results from Em, m<s, by means of rules (11)<(14), then T. 2. also holds
obviously for E; in (14) we use D. 2.

If E;s results from Eim and E.q, d, m<s, by means of the rule (15), then in view
of the assumption and D. 2. we obtain that T. 2. also holds for E.,.

If E.s results from the double sequence Eguy, -, Egs-y,d=1,2, -+, by means of
the rule (16), then E;;=F+11aG (a/x.),x,éSy, x€Sg, for each j<k formulas F+G
(x;/x,) occur in the sequence E;;, -, Ey_;, and there exists such {i} D {twrro aram}s

I+p(F+Gla/x,) )<k, if Ai/{i:}=A./{i}, then for each jé(i,} there exists m<s such
that Ecn=F+G (x;/x,).

Let Ey€éP(k, Q, M) ; therefore in view of D. 3.-4.,(d), for each HeC {E;} we
have N(k, Q,H) and V {k, Q, M, (i1}, Eis} =0,!'=w (E:), and we may assume by
D. 2. I’=1] given above; therefore by (3d’) and the above V {k, Q, M, {i;}, F}=0 and
V {k, Q, M, {1}, I1aG(a/x,)} =0. Hence by virtue of (4d’) there exist j<k and M;eQ
such that My/{i;}=M/{i;} and V {k, Q, My, {ir}, }, G (x;/%,)} =0 ; '

We consider two cases:

(1°)  Jje {i:}

(2°) jé (i}

In the case (1°) in view of L. 3. and the above we also have V {&, @, M, {i.},

G (%;/%)} =0 and thus V {k, Q, M, {i,}, F+G(x;/x,)} =0 what according to the above
and C {E.;}DC {F+G (x;/%,)} gives a contradiction.
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In the case (2°) in view of Mi/{i;}=M/{i} we also have V {k, Q, M, {i},
F}=0. Because from the assumption [+p (F )<k, therefore in view of N (&, @, H) for
each HeC {F+G (x;/%,)}, the assumption and (3d’) we have V {&, Q, M, {2:},7, F}=0
and V {k, Q, My, {i.} j, F +G(xj/xr)}=0 what as above gives a contradiction.

If B is closed under permutations considered on p.7®-19, then @ is also closed
under the same permutations ; then we regard simpler rules described on p.7®-! and
the same two cases. The case (1°) is as above and in the second case we permute j to
7,: afterwards we use L.3. instead of L. 3. and we enlarge the sequence {i;}, to the
sequence {i;},  as above, s.e.g. [13].

If B is closed under permutations with reiterations considered on p.7®-19, then

we regard two simpler cases:
() Jje {iw(G(a/:c,-))}’
(2') Jje {iw(G(a/x,-))}'
The case (1') is here as (1°) above.

In the case (2') we permute j to 7 with reiteration and act as in the case (2°)

for B closed only on permutations without reiteration, s.e. g. [9].
The above proves T.2. in the case of the rule (16).

If E, results from Eem, m <s, by means of the rule (17), then E,,=F+G (x;/a),
Ewm=F+1aG,1aGeC{F}, m<s, and Ac/{i;}=A:/{it}, (it} Dllursa), I+D (F+G)<E.

Let Et,é'P(k, Q, M) ; therefore in view of D.3.-4.,(d), for each HeC {E.} we
have N(& Q,H) and V {k, Q, M, {ir}, Eis}=0, '=w(E:), and by (3d’) and above
V ik, Q M, (i}, F}=0 and V {k, Q, M, {i}, G (x;/a)} =0. Hence in view of D.2.
V ik Q M, {i;}, F}=0 and V {k, Q, M, {i.}, j, G (x5/a)} =0 ; therefore by (4d’) also
V {k, Q, M, (i}, [1aG}=0 and by (3d) V {k, Q, M, {i.}, F+1IaG}=0.

Let M, be the description of A.; then in view of the above and L. 2. we have
also M/{i;}=M,/{i;} and by virtue of L.3. V {k, Q, My, {ir}, F+1IaG}=0 and thus
V {k, Q, My, {ii}, Een}=0.

Because by assumption C {Eem}=C {Es}, therefore in view of D. 2. and the above

we may assume here /=w (E.m) what gives a contradiction with the inductive assumption.
Thus T. 2. is also true in the case of the rule (17).

Let E.s results from E.m, m<s, by means of the rules (18) or (19), then we need

consider two cases according to two rules:

(10) E:3=F+261G,
2°) Eu=F+G (x;/a), SaGeC {F}.
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In the first case Emn=F+G (x;j/a), m<s, and for some {i;} D {i,crsar}, I+ (F+G)
<k, Ai/{u}=A/{u}.

Let M; be the description of A, ; therefore in view of the above and L. 2. we
have M/{i;} =M,/{i;}. By the inductive assumption F-+ G (x;/a)cP (k, Q, M,).

If F+2aGéP(k, Q, M), then in view of D.3.-4., (d), for each HeC {F+2aG}
we have N(k, Q,H) and V {k, Q, M, {i;,}, F+2aG} =0, and by (3d’) also V {k, @, M,
{t:0}, F}=0,V {k, Q, M, {i:,}, XaG} =0, I°=w (F+2XaG). Hence in view of D.2. we
may assume /°=1 and therefore by L.3. and (3d’) also V {k&, @, My, {i:}, F+2aG}=0.

Because C {F+G (x;j/a)}cC {F+23aG}, therefore from the above V {&, Q, M;,
{iv}, F+ G (x5/a)}=1,I'=w (F+ G (x3/a) ) ; therefore by (3d) and (5d) also V {&, Q, My,
{iv}, F+2aG} =1 and analogical by D.2. we may replace here !’ by [/ what gives a
contradiction with the above.

In the case (2°) Esn=F+2aG, m<s, and let M; be the description of A.. By
the inductive assumption F+XaGeP (k, Q, M,).

If for some {1} D {l,rsar}> {+p (F+G)<k, for each j<k and each MeQ such that
M/{i}=M,/{i;} we have F+G (x;/a)éP (k, Q, M), then in view of the above, D.3.-4.,
(d), for each He C {F+G (x;/a)} =C {F+XaG} wehave N(k,Q, H) and V {k, Q, M, {i.},
F+G(x;/a)}=0,l'=w (F+G (x;/a)); hence by (3d’), D.2. we receive V {k, Q, M, {i:},
F}=0 and V {k,Q, M, {i1},j,G(x;/a) } =0. Therefore by L. 3, and (5d’) also V {&, Q,
M, (i}, F}=0 and V {k, Q, M, {11}, XaG}=0 ; thus by (3d") V {&, Q, M,, {i.}, F+
2'aG} =0, what in view of the above D.2. gives a contradiction.

Therefore for each {4} D {iycrra}s I+ D (F+G)<k, for some j<k and for some
MeQ, M/{i:}=M,/{i.} : F+G (x;/a)eP(k,Q, M). This M is the description of the
needed A;, what proves T. 2. in the case (2°).

The above closed the inductive proof of T. 2.

From T. 1. and T. 2. follows:

T. 8. If E is a thesis, then EeP.

D. 12. A set U of formulas of the first-order functional calculus is consistent
respectively to B and AeB iff there exists at least one formula E such that AUU,
BrE, where AUU means that we assume the proof rule (11) also for elements of U
and k>n (F) for FeU.

The reader may define more general notion than in D. 12. by adding to each -

element of B a set of considered formulas.

In the same way as T. 2. we may prove the generalization of it :
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T. 4. If @ is the family of all description of elements of B, k=v(B)=v(Q), M
is the description of A, and for each EeU, FeE (k, Q, M),E;;, -+ ,Ein; is a formal proof
of Ein A;UU respectively to B, k>n(Ey;), s=1,:,n;, and i=1,2, .-, then E;P
(k, Q, M), s. foot note 3).

T. 4. is especially ian interesting generalization of the known theorem that if
M is a model for axioms of a given theory, then M is a model for their conclusions.

To each AeB, k=v(B), we correspond a set J, and to B we correspond the
family B, of all /s in the following way :

D. 13. A family B, is called a family of generalized proper prime ideals respec-
tively to B iff there exists such double sequence of formulas E1, Eft, .. that [, is
the set of all elements of the sequence E{1, Efe, .- A;=AUU or AB, B, is the family
of all J,, and the following conditions are satisfied : ®

1. If for some d and certain formulas F and G we have E 41=F+G, then there
exist 7, j<d such that Ef1=F and Ef1=G,

2. For each d=1,2, -+ there exists A, eB such that: Ay, B Efi+-.--+E4,

3. If a formula F€J,, then there exists d such that for each A;eB, As, B-E{t+
«+FE4+F and if E=IlaF, then Efi1=(llaF),

4. If Efsi=IIaE, then ({i1}) (342) (37) {7} D {iw ey AU+ D (E)< k) A B)A(FSR)A
(Ao/{i} =A1/{LDAE (x;/a) €] 1))}

If E&=(IIaF), then ({i:})(A:) (7) {(A2B)A({i1} Dl NAU+D(E)SEIA(FSE)

A(Ao/ i} = Ay/{0})(E (x;/a) € ] 45)}. 10

5. If Ai/{i}=Ay/{i}, {t,m} i}, then: EeJ, iff Ee],,.

In the following we consider only B closed under suitable permutations described

on p. 7®-1%, i.e. we consider only described there rules; we assume also:

(*) if k is finite, then for each different {i;}, j and each A;eB there exists A:eB
such that A,/{i;}=A,/{i} and A/{ii},j+As/{i:}, ]/ '

T.5. If Ay=AUU, Ay, B<Ey" and k>n(Ey+ F,+ -+ Fy)" for all Fy, .-+, FreU,

then there exists a family B, of generalized proper prime ideals respectively to B such
that Eg'e/,,.

9) We leave for readers the modification of D.13. in which does not occur the double
sequence ; the property 1. may be also omitted, s. [3].

10) We may assume also that j satisfies conditions formulated in T. 5. The reader may
formulate analogical properties for the existential quantifier. ‘

11) From the proof follows that £ may be less than given above.
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Proof: Because we have a denumerable number of all significant parts of
considered formulas, therefore we may order them in a double sequence
(1) Gf% Gy, -
in such way that it satisfies the following conditions :
(1a) all formulas of each sequence of (1) are different,
(2a) G#1=E,, for A;=AUU,
(3a) if for some d and certain formulas F and G we have G#2=F-+G, then there
exist 7, j<d such that Gf2=F and G4=G,
: 0
(4a) if for some d and some formula E we have Gi:=[laE, then Gi%,=E" (x;/a)
and je€ {i;}, where:

(1°) if k is infinite, then A%=A,, Gi,, -+, G4 are all substitutions E" (x5/a),
for je {i;} and we enlarge all lines to the length d’ e.g. as below in (2°)
and /=W (G{z+---+Gg2), '

(2°) if k is finite, then for each {7} D {iucm},+p(E)<k, we choose A;eB as
at (*), i.e. a new line, such that A;/{i;}=A,/{ii} and we assume that
G#s, -, G4 are only such formulas belonging to Gfz, -, Gé2 in which
occur indices of {i;} and afterwards all substitutions E” (x;/a), for je {iww}

and we enlarge all lines to the length d’ by adding to them e.g. Eq with
an even number of negations, '

(5a) if non (4a), then G22, is the first formula which is not included into Gf, -, G2z,
Let
(2) Efz Ef, -
be a subsequence of the sequence (1) defined in the following way :
(1b) E#=G{'=E,, for A;=AUU,
(2b) EZ3, is the first element after E42 of the double sequence (1) such that for some

A%¥B:AY) BNE#2+...+E%2, and if there exists d such that for each AjeB:
A;, B-Efe+4... 4+ E#+4IIaF, then in (4a)(1°),(2°) we add Eq=(lIaFY

(8b) If A,/{i}=As/{i1}, {tww} C {4}, then ahead: E=FE4: iff E=FE4s. Here we
restrict ourself to formulas with a finite length of significant parts; if we do
not restrict ourself to such formulas we need use all finite sequences of formulas
belonging to ideals as in [3], s. footnote 9).
We shall prove the family B; of all /,,, A:eB or A,=A;, where J,, is the

set of all elements of the sequence E#2, E42,..-, — is a family of proper prime ideals
respectively to B; in this purpose it suffices to prove conditions 1.-5. of D. 13.
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Immediately conclusions from the definition of the sequence (2) are 1.-3.,5. s.
£33, (113
We prove 4.:
(1') let Ef2=IIaFE, for some E,
(2") for each d there exists AjeB: A;, BixEfz+---+E42
(3') there exists such m that Gi:=E4:=1IqaFE.
(4" Gii=E'" (x;/a) and jé {i;}, where:

(1°) if % is infinite, then A}=A, and [I=w (G{2 .-- G42), s.(4a)(1°),

(2°) if k is finite, then for cach {i:} D {iwm}, I+ (E) <k we choose AJB,
determined in (4a),(2°), i.e. a new line, such that Ag/{i;}=A;/{i;} and
we assume that G#%s, .-, G4's are only such formulas belonging to Gie, -,
G# [or with two negations] in which occur indices of {7}, s. footnote 7),

(5) for some {41} D {ium}, I+ P (E)E, for each AseB and j<k if As/{ii}=A,
/{:}, then E(x;/a)é],,—a contrary assumption,

(6') for some {61} D {ium}, I+p (E)<E, for each AyeB and j<k if Ag/{ir} =As
/{i.}, then there exists ¢ such that for each A4 B: Ay, B-E{#s+--+E#*+
E (x;/a),

(7)) In the case (4')(1°) we take Ag=A, and thus: for each A,«B: A4 B+
Ef2+..-+E{2+ E(x;/a), c=d, je {i1} and some j€ {iyzfs.r42},

(8') for each AuB: Ay B-Efe+.--+Ed2+1laFE —rule (16),

(9') for each A«B: Ay, B-E{f2+..-+FE4 —contradiction,

(10") in :che case °(4’), (2°), we take Az3=A} and thus; for earch A,.B; A, B+
E*+.+E*+E (v;/a), c=d, je {i1} and some jé {i, @ srss’ }s

(11) for each AuB: Ay, B—Ef +--+Ef + [aE —rule (16)

(12) for each Ay B: Ay, B—Efs +-+Efs — contradiction

The second sentence of 4. follows immediately from (17) considering the line
described in (4a)(2°); q.e.d.

According to the above T. 5. also holds with B composed of one non-determined
element A and % infinite; thus it also holds for usual theses.

D. 14 A°eB (r) iff ({r} is a permutation of k& upon 7)A(r<k)A
3A) {(AeB)A(A°=A/{r})} A (r is a finite number)
Let B? be the set of all J,| {i,}, for a given » and A,eB or A;=AUU.
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The set B} we enlarge to a family B} of proper prime ideals respectively to B”
where B results from B (] by adding to the last set lines described in (4a), (2°) and
(4'), (2°) of T.5'; of course, the fullfiling of B (7] is according to T. 5.

First of all we must note that if A/{s,}=A° and A°, B'—H({r}/{ir}) then
A, B+H.

The proof of the above sentence is inductive according to the length of the
formal proof of the considered formula.

By virtue of the above, if we establish r># (E) for all considered formulas, then
the following lemmas hold for B, B’, B,, B}, U| {i,} respectively; proofs are almost
identical with ones given in [3], (11].

L. 4. Ee/, iff E'¢],,.
L. 5. E, Fe], iff E+Fe],,.

T.5. If A,=AUU, AeB and A,, B—E,, then there exists a‘family B; of
generalized proper prime ideals respectively to B such that Eoe J,,.

T. 6. If A,=AUU, AeB, then for each family B, of generalized proper prime
ideals respectively to B there exists such family @ of models of the power k=v (B) that
for each A;=A, or A:eB and the description M (which create the set @) of negations
of atomic formulas belonging /,, and each formula E of considered formulas, i.e. #(E]

<k:
(1) If EéJa, then ({i1}) {({&e} D (i IA(U+p (E)SR)-V {k, Q. M, {ir}, E}=1}.
(2) I Eeja,, then ({ii}) {({é} D b DAU+p (E)<SE)V {k, Q, M, (i1}, E}=0.
(3) Eéja, iff EeP(k, Q,M).

Proof : We prove implications (1), (2) together by induction on the length of the
formula E.

In view of the assumptions, if E is an indecomposable formula, then (1), (2) hold.

Let (1) and (2) hold for formulas of the length<m ; we shall prove it for m.

We consider three cases: |

() E=F', (2) E=F+G, (3) E=IlaF.

In the cases (1) and (2') we obtain immediately (1) and (2) in view of the
inductive assumptions, L. 4., L.5., (2d) and (3d); the strict proof is almost identical with
£33, a1.

In the case (3) in view of the definition of @, the inductive assumption (4d),
D. 13. 4-5. and L. 4. we obtain in both cases:
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Eé]s, ff IaFe]a,~ ({i2}) (A3) (j) {(A2eB) A ({i} D {ium}) A (140 (F) <RIA(<k)
ANAY i} = Ao/ {i})> (F(xs/a) ] a2)} = ({2:}) (M) (5) {(M1e@)A ({2} D {Zuem DAL+ D (F) <k)
ANGSRAM/{i}=M/{u}) > V {k, Q, My, {ir}, j, F (x;/a)} =1} — ({i}) {({22} D {fum}) A
(+p(F)<k=>V {k Q M, (i}, TaF} =1} >({a){({8} D {tun AU+ E)<R) = V {, @,
M, {;}, E}=1}.

Ee]a, iff HaFe]4,—({ii}) (3A3) 37) ({i2} D {fum DAL+ (F)<E)(F<EIA(AY/ {0} =
As/ (8} N (F (x1/a) €] )} ({2} (3M1) 37) {6} D {lwm DA+ (F)<R) > (F<R)A M,/ {31}
=M/{i})ANV {k, Q, My, {i}, j, F(x;/@)} =0} >{{ir}) {({i} D {twmHAU+D (F)<k)-V (R,
Q, M, {it}, HaF}=0}—({ii}) {({zi} D liwnDAU+D(E) < k)->V {k, Q, M, {i.}, E}=0},
what proves (1) and (2).

)

Therefore we proved also N (k, Q, M) for each considered formulas H. Hence by
(1) and (2) we obtain (3); q.e.d.

Of course, T. 6. may be proved in a similar way for other truncated satisfiability
definition considered in my papers [4], (6] - (9], [13], [14].

From T.1., T.3.,, T. 4, T.5. and T. 6. follows:

Genralization of Godel-Skolem-Lowenheim’s therem : - If U is a consistent set
of formulas respectively to B and A;=AUU, AeB, A, BixE, then there exists such
family @ of models of the power k=v(B) and a correspondence between AeB and
M4eQ such that for each A; (A=A, else):

1. If A,;, B—E, then EeP (k, Q, M42),
2. V{kQ M4, E}=0,k-E iff EeP {k}
3. In 1.-2. we mey only assume v (Q)>n (E,)

’

If B is not determind and % infinite, then in 1.-2. we may assume @ one-
elementing.
Generalizations of Godel-Herbrand’s theorem : ' FE ia a thesis iff EeP iff HE.

Completenese theorem : All considered Boolean calculi (¢ E) with finite truncated

general and existential quantifiers are complete. (According to the above theorem they

approximate the first-order functional calculus), s. [15], [16].

The same theorems may be proved by analogical generalizations to methods used
in (2], (21]) and others.

Generalizations of Gentzen’s sequent proof rules according to the above are given

in [7], [8], s. also [1§].

12) A homogeny formulation of both above theorems is given at (12]
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Including of the above theorems in Tarski’s systems theory will be an interesting

topic of [10]; in such way will be presented the above generalized theorem in the
systems theory, s. [12]. [19]. According to 1-0-Bernoullie’s sequences at there are
given finite and asymptotic infinite probabilistic models of regarded here generalized

models with the generalizations of satisfiability definition.

1)
€23
€3]

43
€53

(63

(73
(8)
C9)
(103
(113
12)
(13)
(143

(15
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