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§1. We showed in [1] a piecewise linear approximation theorem but there was
an error in the proof. We shall correct it and prove the following Theorem.

Theorem Let f: P— Q be a piecewise linear mapping of a compact polyhedron
P onto a compact polyhedron Q and g: P—>E" a piecewise linear mapping of P
into a euclidean n-space E™ such that

n>dim Q+2 mgzx dim 1(q).
qe

Then for any ¢ > 0 there is a non-degenerate piecewise linear map h: P— E™
such that

a) dh,g)<e

b h |f71(q) is a homeomorphism for any qeQ

O if ¢15q:€Q and h(f(q)))Nh(f~1(q)) > ¢ then there are polyhedral cells
C, and C, of P satisfying Ci C f~(q), C. € f~1(qz) and

h(C)=h(C)=h(f"(g)) N h(f™(gs))-

We shall assume that all polyhedra and complexes are contained in a euclidean
space E!. Let K be a finite complex and g:| K |— E" be a continuous map of underlying
space | K| into E™ such that for any simplex &eK, g|&—E" is linear. Then we shall say
g:K—E™ is a semi-simplicial (or SS) map. It is clear that if g: K— E" is semi-
simplicial g:|K|— E™ is piecewise linear (or PL). Throughout this paper we shall
assume that f: K — H is a simplicial map of a finite complex K onto a finite complex

H such that
n>dim H+2 max dim f~1(q)

gelH|

and g: K — E™ is a semi-simplicial map of K into a euclidean n-space E™.

If £eK and neH such that f(§)=7. We denote £=[ay,], ¢=0,1, -, m(v,§) and
n=_[v], where

a»;, v are vertices of £ and 7 respectively,

fla.)=v,

m (v, §)=dim (f~* (v) N §).
Since f|& — 7 is linear. It is easy to show the following;
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Proposition 1. For any point q of the interior n of 7, f~*(q) N & is a poly-
hedral convex m—cell which is the intersection of & and a hyper plane parallel to the
hyper plane spanned by the vectors {a.,—a»} 0<i<m (v, §), ven.

We denote the dimension m of f~!(q)Né by d;(£). Since f|&-— % is onto and
q is an interior point. Proposition 1 implies;

Proposition 2.

dr(§)= 3 m(v,§)=dim §—dim n < max dim f~1(q).

vey qe |H|

Under the assumption of [Proposition 1, if #:K— E™ is a non—degenerate SS-
map of K into E”, h|§ > E" is a non-degenerate and linear. Therefore the following

is clear ;

Proposition 1. % (f~1(q) N &) is a polyhedral convex dy(&)-cell which is the
intersection of h(£) and a hyper plane parallel to the hyper plane E*r. spanned
by vectors

{h(as)—h(ay)}, 0<i<m(v,8), ven.

A pair (a, b) is a set of two points @ and b satisfying (@, b)=(b,a). a and b are
called vertices of the pair (a,b). A set of pairs S={(a;,b,), (az, bs), -+ , (ax, be)} is cyclic
if by=a,, b;=as, -+, bx=a,. A finite set T' of points of E™ is in pairwisely general
position, if, for any set S of pairs of points in T such that

1) S does not contain cyclic subset,

2) the number N(S) of pairs of S<#,
the set of vectors {b—a | (a,b)eS} is linearly independent.

Proposition 3. If S is a set of pairs of points of E™ such that

1) S does not contain cyclic subset,

2) N©S)=n
and if V(S) is the set of vertices of pairs of S. Then for any <> 0 there is a map
h|V(S)— E"™ such that

dh,1)<e

and {h (b)—h (a)|(a, b) €S} is linearly independent.

Proof. We can order S in the order {(ai, 1), (az, b3), -+- , (ax, be)} so that b; ¢
{a1, by, az, by, -, biy, @i}, 1=1,2, .- ; k. We can inductively construct 4 :V (S) = E* such
that

i) dh1)<e

ii) the vector % (b;)—h(a:) is not contained the vector space spanned by vectors
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{h(b))—h(a)), -, h(bicy)—h(aiy)}.

If a finite set T/ of E™ is in pairwisely general position, there is a ¢ > 0 such
that for any map A : T'— E™, satisiymg d(h,1) < d, A(T') is in pairwisely general
position. Therefore by Proposition 3 it is easy to prove.

Proposition 4. If T is a finite set of points of E™. For any ¢ > 0 there is a
map h: T - E™ such that

dh,1)<e
and h(T) is in pairwisely general position.

Let » be a simplex of H and £,& be simplexes of K such that f(§)=f(&')=1.

Then we can write n=_[v],

§="[aw], 0<i<m((v,§)
§'=[d"], 0sism(v, ¢
where f(a,,)=v, f(a's;)=v. Moreover we may assume that §N¢&'=[a"y,],
a',,=a,=a,,0<i<m(v, §N¢E)
Let A,()={(aspas)} 0si=m(v,$),
As(§)={(@'e a's;))} 0=<i=m(v,&’) and
Ay (UAL (&) if ayy=av,
Ay (§)U(@vy, @'ng) UAL(E) if  avy>ay,
It is clear that A,(&,&') does not contain any cyclic subset and VA, (£, )N
VA, (£ 8)=0¢ if vx0 en.
Proposition 5. A4 (¢, &)= yA,, (&,&') has no cyclic subset and the number
NA (&, &) of vertices of A (§,¢) i: less than or equal to n. ‘
Proof. Since A, (£, &) has no cyclic subset. A (§, ') has no cyclic subsef.
NA (§,8)= 3 NA.(§,¢§)

vey

< I3 (NA.(§)+NA,(§)+1)

Vep

=3 mé&+ 3 m(v, &)+dim p+1

vey €y

ds (§)+ds (&) +dimn+1
< 2max dim f~!(q)+dim H+1=<n.

qe | HI
Lemma 1. For any >0 there is a an SS-map h: K — E" such that d(h,g) <e
and h|f(q)—> E™ is a homeomorphism for any qe| H |. '

Aus,8)={

fl

Proof. From Proposition 4 we can choose h:K— E™ such that d(h,g)<e
and {h(a)| ae VK=K"°} is in pairwisely general position. Since we have
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n>dim H+2 max dim f~*(q)

ge |H

=>dim H+ max dim f~1{q)=dim K.

qe |HI|
h is a non-degenerate map. Let g be any point of | H|. Then there is a simplex 7 of
H such that gep. k| f1(g)Né is a linear homeomorphism for any £eK. Then it is

sufficient to show that
hif (@ NONR(F(@NE)=h(f(gNENE)
for any &, & €K such that f(§)=f(§')=». Let
g=' 3 v, 3 =1 >0 and let pe f~*(g)N§ and p'=f"1(q)N&".
Then we i);éve thewfollowing;
p= 1%;2 {Ao; @, | 0Si=m (v, §)}
p= 33N dv|0=i=m(v, &)}

3 3 {2 |0Sism(v,8)}= 33 (o] 0Sism (v, &)} =1

vey vey

Ap; =20 25,20 and

3 {20, |0=i=m (v, §)} =2 {Xo; | 0=<i=m (v, &)} = .
Put r= Y ma, and #'= 3 pa'y,. Then we have
h(p)—h(r)= 3 3 {Ay; (has)—h (aw)) | 1Zi<m (v, §)}
h(p)—h(r)=33{Zy(h{av)—h(@ ) 1=i< m(v, &)}
Therefore if h(p)=h(p),

0=h(p)—h(p)=(h(p)—h(r'})—{h(D)—h(r))+(h(r')—h(r))

= UZ (5 2 (B (dv)— P (@) )= % A, (B (@ ;)= (@) )+ o (B (@) — R (@) ))

By [Proposition 5| the set of vectors {4 (b)—#% (a)|(b, a) €A (¢, &)} is linearly independent.
Therefore h(p hir)=h(p)—h(r)=h(r')—h(r)=0. and consequently h(p)=h(r)=
h(r)=h(p'). Furthermore h|& h|ENE,h|E are one-to-one, then p=r=r'=p'.
Thus A(f1{@n&Nh(fgné&)=h(f*(@NENE) and we have proved Lemma 1.

We denote the origin of E” by o.

Proposition 6. If h: K—>E" is an SS-map such that oUh(VK) is in
pairwisely general position. Then for any simplexes &, &' of K and any point q of
f(&) such that h(f (@ NENK(E)xd, there is one and only one q' of f(¢&') such that

R(f~HQNENBE)=R(f(@NENA [ (@)INE)

and h(f~1(@)NENK () is a polyhedral convex cell of dimension < d;(EN¢E’),
Proof. Let f(&)=n=[v], f(&)=v'=[V], é=[ay], 0<i<m(v, &), &=[a'w,],
Osism (v, &) éng'=[a"], O0=i=m (", £N¢) where
flaw)="7, f(a,v’i)——'vly f(a”v"i)=v"
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a'v,=ay,=av, for vV'=v=0v 0=Zi<m @, £N¥&).

If g=2 pw, 2 p=1 =0 and p,ZJ are points of f~'(g)N& and p’,j;’ are
vy

Ven

points of & such that
R(p)=h(p),  h(p)=h(p)

Then we have

p’=,2, .‘zz'wz vy 3 3 Hy;=1, V20
vien vep'

Since 3 Ap,=p = ¥ lv,-, vep. We have
o<t 0<t¢
p = 2 ‘le avo+ 2 2 21)1; (a'vi"‘avo)

D=23 tast 3 3 Ao, (@n;—an,)

vey vep 1<¢
4

Let ll’v'= Z 2',,,. /»‘v'= 2 2’1:',; 1}'67].
Then p = 2 ﬂ r a vg + 2 2 vy (a,v’i—a"v'o)

v'ep’ Si

B= 3 byt 33 Told—ay)

v'ep’ 14
Therefore
h(D)=h(p)=3 3 (g —vg) (8 (@og)— b (@ag) )

h(p)—h (p)-mywmmaw
b5 X Torym ) (1 (@)= I (@) ).

vy’ 151
The set of pairs 4= {(k (avy), h (Gv;))} U {(h(a'v), h(@'s;) ]} U {0, B (a'v))} has no cyclic
subset and moreover '

Nd= 3 m (v, E)+ Zm( , 8 )+dim 7' +1

vey

<2 max dim f~1(q)+dim H+1=n.

qelH|
Then the set of vectors {h(av;,)—h (@v)} U {h(@'v))—h(@'0o)} U{h (@0} is linearly in-
dependent. Hence by the conditions % {p)=h(p’) and h(p)=h(p') we have formulas

ﬂ’v' =Z"”” 0’677’,
zvi—-ivi=z'wi-—l’w if v=v=0v 0<i<m({v',&NE),
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Apz—Ap,=0 Ly, =Xy, =0 if otherwise.
Let ¢ =v'2' Yo', {Then it is clear that
| R @NONAE)=R(F@NONAF@INE).
and this is a polyhedral convex cell in a hyper plane parallel to E?¢n¢> spanned by
vectors {h (@ v)—h(@vrg)} Ve€ENE, 1<i<m (v, §NE’). We have proved
§2. Let & be any simplex and v be any vertex of H. Then we denote the
simplex f~! ()N¢ by &, Let & and &’ be any simplex of K such that f(§)=f(§’). Then
we denote the number NV (§,N¢",) of vertices V (§,N§") by ay(§,¢) and X avw(é, &)
by a(&,&'). If &, &/, &:. &' are simplexes of K such that »;=f(§:)= f(¢s), i=1, i,fygve denote
ay (&1, §'1) + av (§2, §';) by av(és, &1 : 62, &2 ") and 2 ay (61, &1 162, 82") by a(éy, §/: &2 &),
We define the number By=p(§1, &1’ : &2, §2') by the following formulas ;

Bs=0, if (10U )N (620U 20)=¢
Bo=NV ((£10U810)N(E20U&'20) )—1 if  (§10U& 1) N{E20 U & 20) ¢
Put B (61, §'1:62 &2)= P Bo (&1, §'1: &2, &)
Let §10=_[av,;], 0<j<m (v, &),
§'w=1[a"y], 0<j=m (v, &)
&20 = [bv;], 0<j<m (v, &)
&'20=[b"v;], 0<j<m (v, &)
¢wNéw=[a ’Uj]’ 0<j<ay (51, §'1)—1
20N &' 90=[0"v;], 0<j<ay(és&)—1,
where @'y =av;=a'v; 0<j<ay(é, &)1
by, =bo,=b's, 0<j<a, (&, &) 1.

A vertex v of &, &', &, &5 is free if it is contained in only one of §;, &'y, 4,8 A
pair x of A (&, &) and A (s, §2) is free if at least one vertex of x is free. Hereafter
we shall assume that ay, (similarly a'v, bey b's) is free if and only if all vertices of
€10 (&'10s E20, &' vespectively) are free. A pair x is linearly dependent on a set I' of
pairs if kU is cyclic.

Proposition 7. NA (§i, §/)<n—a (5, §'s), 1=1, 2.

Proof. Let NA (&, &'s) is the number of pairs of A (§;,é/),i=1,2. Then
NA (&, 8)= 2 NA,(§: &)

veyy

= I (dim &iw+dim §w—dim (§iwNEw))

veyy

= J (dzm eiv‘*‘dlm E'iv—a’v (Eia 5’1«)+1)

veny

=d; (§)+d; (§)—a (i, §)+dim pi+1




A THEOREM OF PIECEWISE LINEAR APPROXIMATIONS II. 113

<2 max dim f~1(q)+dim H+1—a (&, &)Sn—a (&, &)

qelH|
Proposition 8. There are non-free pairs xi, %, - , %3 of Ao (&, §'y) such that
(Ao (€1 &'1)= 21U XU -+ Uxpo) U Ay (&2, &'5) has no cyclic subset and any x;,i=1,2, ---, B,
is linearly dependent on non-free pairs of Ao (&1, &1)U A, (&2, &)

Proof. In the case that B,=0. A,(£;, &%), i=1,2, has no cyclic subset and
Av(61,8"1) and A, (2, &'5) have at most one common vertex. Then Ay (¢, 8 U
Ay (£, §'2) has no cyclic subset. In the case that 8,=1 let aUa’=V A, (&1, &)\ VAs (Es, 3]
(a#a’). 1) If au a'=aw,Uda's, put x,=(av, a'v). 2) If aUa'*a,Ua's, We can assume
without loss of generality that a=ay, (ix0). Let x;=(ay, a»,). From the condition that
if ay, is free all vertices of &, are free, x, is not free and aUa'=ayUay,. Then there
is a cycle consisting of x; and non-free pairs of A, (&, &)U A, (&, §’2). In the case
that B,>2 there is a common vertex a of A, (&, &'y) and A, (&2, &) such that Q=% Qg ',
Suppose a=ay, ({%0) and put % =(@v, @), Then the number NV (4, (&, §)—x)N
Ay (&, &'5)) of common vertices of A, (£;, &)~ and Ao (&, &%) is Bo—1. Inductively we
can choose x, +*+, Xy as similarly as x; in 2) and choose %5, as similarly as #; in 1).

We have proved Proposition 8.

Let A, (§1, €1 : 62, §a)=(Av (&1, &'))— 21U -+ U %, )U Ayv (&2, &'2) and A (61, 81 : 62, ")
= vLJHAv (61,6'1:62,8%)), where if wvin Ao(f1, &1)—2 U Uxs,=¢ and if uvgp,
Ao (§2, §'s)=¢. Then Proposition 7 and Proposition 8 implies the following ;

Proposition 9. NA (&, &' : &,, §o)S2n—a(fr, §1:6s, 82)—B (61, &'1: 85, &)
If h:K—>E" is an SS-map and py, p's, ps, p's are points in §1, 81, 62, &2
respectively such that
f(p)=fP)=q1= £ 2,0

vtql

F(p)=f(pe)=q2= 3 pyv

vsqz

h(p1)=h (Do) h(P'1)=h(p's).

Let
p1=05 2 {A; v, | 0Si<m (v, &)} (1)
pr1=v§ 2 {Ao e | 0<i<m(vy &)} (1)
s =2 3 oy br; | 0<i<m (v, &)} (2)
Pa= 22' 2 {(s, Us,| 0<i<m (v, &)} (2)

veng

Then from & (p,)=h(p,) and h(p')=h(p';) we have.
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2 (% b (@w)+ 2 Ao, (h (@v)—h (ax)))

veny

=, (e (b + 2 g (o) = P (Brg))) (1)
Z Qb (@)t 2 2v (k@)= h(d))

= 2l h )+ 2 s )= B)) 2"
Ve 1

By (1")—(2") we have v
3 ()= (a0 Z o U1 @nd = (o))~ 2 Ko (@)= o)

Veng ,

= 2 (pto (1 (bug) = (B'g) )+ Z to; (B (bog)— I (beg) ) — ZHurl0)—hWw)). 3

Veng

Lemma 2. If h: K— E" is in pairwisely genera | position and o (&, §1: &, §'2)
+B (€181, : 6,8 0)=n. Then the coefficients of free vertices in (1), (1), (2), (2') are 0.

Proof. By Proposition 9
NA (61,65, :¢'1, g S 2n—a(éy, 81:6,82)—B (&1, &1, 62, &'2) = 1.

Then the vectors in (3) corresponing to A {(§;, &1 : &, &) are linearly independent and
any vector in (3) corresponding t:omgir {%1, +++, X} 1is linearly dependent on vectors
corresponding to non—free pairs of A (&1, §'1) UA (2, §2). Therefore the coefficients of
free vertices in (1), (1)),(2), (2" are 0. We have proved Lemma 2.

b

ag bl
§3 Let a= ( ?2) and b= ( l._’z)be n-dimensional vectors. Then the 2n-denensional
Qn

Q1
vector (Z)= ZI" is called a vector of type 0) with top vector a and bottom vector b.
bn

If a=b, b=0, a=0, we say that the vector (g) has type 1), type 2), type 2') respectively.
A pair of vectors, {(8) (2)} is' called a pair of type 3).

Proposition 10. If A=(aij) is a (2n, r) matrix, which consists of N (1) vectors
of type i), i=0,1,2,2', and N(3) pairs of type 3) such that

N(O)+N(1)+N(2)+N(2)+2N(3)=r < 2n

N(1)+N(3)<n

N(2)+N(3)<n

N(2)+N(3)<n
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Then for any >0 thereis a (2n, r) matrix A'=(a's;) consisting of vectors and
pairs with the same types and the same numbers as A=(a:;) such that

1) column vectors of A' are linearly independent.

2) |aij—ai;| <e.

Proof. Any minor determinant of A is an analytic function of {a:;}. Then it is
sufficient to show the existence of such an A’ satisfymg only the condition 1).
Furthermore the vectors of type 0) can be arbitrarily moved. Then it is sufficient to
prove the existence of linearly independent vectors of types 1), 2), 2') and pairs of type
3) with number N(1), N(2), N(2) and N(3) respectively. We denote by s: the »n-
dimensional vector whose i-th element is 1 and whose other elements are 0. If

NU)+N@+N(@3) <n and N1)+N(2)+N(@3) <.

Let Eli=(§:‘) 1<i<N(Q),
Ey=(§) N1)<j<ND)+N@)+N(@3),
Evy=(3)  NO</'SNO+NE@)+NE)
Then {Eis, Esj, Ey:5.}  are the required vectors.
I  NQ)+N@+NG@)>n
Let Ev=(%) 0<i<N()+N@+N@)—n,
Sis o
Evi=(3") N(@2)<i<n—N(3),
E2j=(gf> 0<j<N(2)
E —(0) N@)—N@3)<j'<n—N(3
v =\, n—N(2)=N@)<j'<n—-N(3)
— [ Sk
Eu=({) n—N@B)<k<n

Eyi=()) n—N@<k<n.
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type 1) 2) 2) : |
f—'L P ~—N\

T 1
N(1)+N(2)+N(3)=n . "-1 ’ N(2)
1\
n=N(3)
1,
1
I, "
N(1)+N(2)+N(3) 1
e 2n-N(2)=N(3)
T, a
\ ! B l 2n-N(3)
1!
\ . "1]2:1
'y [

Then {Eu, Eyvi, Esj, Ezrjry Egiy Ege}  are the required linearly independent vectors.
Similarly we can prove it' in the case that N(1)4+ N(2')+ N(3) > n. Therefore we

have proved Proposition 10.

We can restate the formulas (1”) and (2”) as follows:

h Gh) h v —h vg 0
s (Z( (a )) . 20{( (av)—h (a )) . N”f(h( \)

h(a's,) 0 1s¢ a’,,i)-fha’vo) /

B (Bo,) 1 (B,)— b (bo 0
-2 (u O )+ 2 ‘ ‘”) + ot ) (4)
veny h (V') 154 0 1<i K (8.)—h (D)

We denote by A (§1,6"1) and A, (62, §'2) the sets of 2n—dimensional vectors

{(h(auo)> (h(aui)-h(auo)> ( 0 ) 1<i<m (v, &)
h(d.) . 0 , \h(d'.;,)—h(d,) } 1</'=m (v, §")

{(h(buo)> (k (bui)—h(bu(,)> : 0 )} 1<i<m (v, &)
k(¥ 0 ,(h (8" )= P (Bsp) 1<i<m (v, &)

h (a) ) <h (b)—h (V)

0
) < ) are free, if pairs (a,a'), (b, b'),(c, ¢’) are
h(a) 0 ,

Vectors (
h(c)—h(c')
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free respectively. We define the number 7, (&, &', &, &'5) by the formulas

= 0, if (Ew N Ezv) U (511} N E,ZU) =¢
70v=NV (§1wN&)+ NV (§10NE20)—1, i ($10N&a)U(E 10N E 20) .

Then it is clear that 7y (&1, &'y : &2, &) < Bo (61, &2 &2, &2).

Proposition 11. There are yy (51, &', 2, §'s) mon-free vectors {x, %, -+, x,,} of
Aon (81, 81) such that x: is linearly dependent on non—free vectors of (Aw (&1, &'1)—
X U oo U, )U Ao (€2, §2).

Proof. If y,=0 this proposition is trivial. If 7,=1 then (£10U&z)U(§'1sN&20)=
aUd, axa'

1) f auad'=a,Ua's. We can write

a=aw=by;, a'=ay,=V0y;.
h (av,)
h(a'y,)

(h(bvj)—h(bvo)> (h (b,,,,)> ( 0 )
X1 = + +
0 B®o) b By —h (b)) -

Since b,,j and b’vj, are non—free vertices. by, and by, are non-free vertices and then x,

h (bvj)—h (bvo) h (bvo) O
is the sum of non—free vectors > ( ) ( )
0 Iy h (b’q)o) Iy h (b’vj,)'_ h (b"vo)

Let x1=< ) Then we have

2) If auad’*xayUa'y,, Then we may assume a=av;=bv;, ix0.
h(aow)—h (a”o) )
0
If a’=av;=bv;, we have
(h (Boy)— (Bug) ) (h (bo3)—h <buo)> | <h (@vy) —h (a%))
X = - +
0 0 0

Put X1= <

I a=a,, =by, we have
b J

xX1= + +
0 BB \B(Bo;)—h (D)

AN o )
R (@) —h (@) \h(a))] .

Therefore x; is the sum of non—free vectors of (Aw (&1, &1)—%1) N Aon (2, &'2). If 7, >0,
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we may choose %y, +++, %;,—1 as similatly as x; in 2) and x,, as in 1) or 2). We complete
the proof of Proposition 11.
We denote the set of above vectors by
A (€1, &) =Aon (1, §1)—xUx U - Ux, A (82, &) =Aun (€2, §2)
Ao (81, 811 60 &0)=Aun (€1, §'1)U Aun (62, §'2).
Lemma 3 If h: K— E" is an SS-map and
a (€1, 8118, 80)+B(EL 6L 16,8 <.
Then for any € > 0. there is an SS-map. h':K—E " such that d(h, h)<e and
U Aon (&4, &1 180, &) are linearly independent. Consequently the coefficients of free

veny Ung

veetors in (1), (1), (2), (2') are 0. , _
Switch of base points. If &,NEpwx¢. There is a vertex a=av,=by,. Define a

set of vectors A’ (&1, &'y) : as follows;

If i=0. A"vh (51, 5'1)=Avh (51, 5’1)- ’
If 7x0. We change the vectors of Ao (&4, &) by.

(h (@) —h <a,,o)> (h (avg)—h (am)

0
(h (@v) ) (h (av,) >
h(a's,) h(a's,)
(h (@o;)—h (avo)) (h (@o;)—h (avi))
z= L 4 Z2—X=
0 0

By the above modification we get A’w (§1, &) such that A'w (§y, &) is equivalent to
A (€4, &) and the base point of top vectors of A’w (§1,§") is h(a)=h (av,). Similarly we
get A'w (&g, &) such that A'w (&3, &) is equivalent to A (€3, &) and the base point
of top vectors of A’w, (&2, 8's) is h(a)=h(by,). Put

Alon (61,81 2 &2, &) =A'vn (€1, 1)U Alon (€2, §'2).
Then A'on=A'w (£, &, 1 &, &) is equivalent to Auwn (61, &)U Awn (€2, §'2) and the base

point of its top vectors is & (a). Next we shall define A"w (€1, §'1: &, &) by switch of
the base point of bottom vectors of A’w (§1, §'1:65, &%) I a'vy=b, put A"on=~A"wn.

assume that a'v,3'by,. Since

< 0 > (h(a) ) (h(a) >
@ -] \h@w] \k@w)) -
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h (a) 0
Change ( ) to x=< ) and
h(a's) Vi (@ vg)—h (B'vp)

0 0
— + =
Y (h (a’vi) —h (a'vo) ) oy < h (a'”i)'—'h (b""o)) :

Consequently we get A, which is equivalent to A’s 'and then to A, and the base
points of top vectors and bottom vectors are h(a) and h (b'y,) respectively. We denote
the set of vertices of top vectors and bottom vectors of Aw by VyAw and Vg Auwm.
It is clear that

Ve A=V A"n

Vs Aon=Vz A" .
Furthermore if (§15U&:)N (61w U&%) 3¢ we can easily modify A”wm to A”w so that all

base points of top and bottom vectors of | A" are h(c) and A"wn~Awm, Vr An=
VT A"’vh, VB Avh': VB A" o

Proof of Lemma 3. We shall define an SS-map h:K—E" and a set of
vectors By;. At first we assume that 1) (610N &) U (810N &'20) 5 6. Moreover if 1.1) (10U
£ N(E'1wUE)=6¢. Put h=h and B,3=A".. Then B,; has only vectors of types 0),
2) and 2') which can be arbitrarily approximated. Furthermore it is easy to see that the
numbers of vectors of B,; satisfy the following relations;

N(v, 2)+ N (v, 3)=N (v, 2)<dim Ev+dimésn+1

N(v,2")+N(v,3)=N (v, 2")<dim &' 1v+dim §'s+1

N (v, 1)+ N (v, 3)=0< av+ So.
Secondly if 1.2) (£1U&)N(E'1wU& %@, Put h=h and Biz=A"w. Then By; has
only vectors of types 1), 2), 2) and pairs of type 3) which are arbitrarily approximated.
It is clear that

N (v, 2)+ N (v, 3)<dim &, +dim Ep+1
N (v, 2')+ N (v, 3)<dim &1,+dim &'3p+1.

Furthermore numbers of vertices satify the following
=NV (§1sN&"10)+ NV (§20N E'50)
2 NV (10N €10+ NV (20N &'20).
where NV (§sN &), i=1,2 is the number of vectices in &N & but not in &N &0,
j=i
Bo=NV ((§10U&"10)N(E1nUE20))—1
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=NV (£ Ex) U 10N &) U (10N E20) U (§' 10N E20) ) — 1
>NN (€W &)+ NV (€N éz).

Then  avtBo> NV (E1wN &)+ NV (20N 0+ NV (10N &20)+ NV (8100 €20)
> N(v,3)+1=N(v, 3)+ N (v, 1).

Next we assume that 2) (£1N&)U(EwNEw)=6¢. 2.1) I (510N &20)U(E"1wNEm)=¢. Put
h=h and B,y =A.x. Then it is clear that

N (v,2)+N (v, 3)<dim &o+dim &5

N, 2)+ N (v, 3)<dim §'1v+dim a0

N(v; 1)+ N (v, )<ar=0ay+ B

22) If (10N&%)U(EwN&n)x¢ and then we assume that d €§19N§'%. Define 7 as
follows :

7 (@)=0 if a=d

h(a)="h(a) if axd, acVK.

Put sz={(h(a”°)> (h(“vmw,m)) ( 0 )
o /., .\ 0 , \h(@)/

( 0 ) (h(bvo)> (h(bvm(n,&)))
h(a'vw(v,eq)) ] 0 ’ ’ 0 ’

0 0
( ) < >] Then it is clear that B,; is equivalent to
h (b,vo Py Py h (b'vm (v, 5’2)) .

A,z and B,y has only vectors of types 2), 2') and pairs of 3). Moreover
N(@,2)+ N, 3)<dim &p+dim §p+1
N (v, 2)+ N (v, 3)<dim & +dim §5+1
N, )+ N (@, 3)<ay+»

Then we have

S (Nw,2)+N(@®3))<n

vSvIUvZ
S N0, 2)+N(@v,3))<n

valuriz

S Nw,D)+N(@2)< I (avt+po)

vntUvz vnzluvvz



A THEOREM OF PIECEWISE LINEAR APPROXIMATIONS IL 121

S aféy, §1:6,89)+B (61, &1:6, &) <n.

Therefore by Proposition 10 we have an SS-map 4': K — E™ such that Bh'_:; UUan: is
linearly independent. Therefore A = U Ay (&1, &'1: 65, &) is linearly independ;;t.ﬂ We
have proved Lemma 3.

§4 Let K' and H' be first derived subdivisions of K and H respectively
such that f: K’ — H' is simplicial, Let denote by & the barycenter of a simplex &. If X
is a subset of | K| and ¢ is a minimum simplex of K containing X. We denote £ by
7 (X). It is clear that 77(§)=E.

Proposition 12. Let &, &5, &5, &4 be simplexes of K' such that any vertex of
them is non—free (i.e. belongs to at least two of them). Then if a vertex a does not
belongs to &; and belongs to &;, for all j=i. The join ax&; is a simplex of K'.

Proof. Sappose that a¢é; and ae &, &, &5. Let b be a vertex of §;. Then there
is a simplex &;(j%1) such that b is a vertex of &;. Therefore 7 (a)<n(b) or 7(b)<7(a)
Thus a#é, eK'.

Proposition 13. If &, &, &, &, are simplexes of K' such that any vertex of
them is non— free. Then there are two simplexes {, and §; of K such that

GiUCEDé&USHUS U

Proof. It is sufficient to prove that for any &; there is §; (j 2 7) such that
7(6:)<7n(&;). Since 7(£;) is non—free and then a vertex of & (ix 7). p(&)<n(§))

The following proposition is clear :

Proposition 14. If h: K — E™ be a non-degenerate SS map. Then there is an
e>0 such that if h' is an SS-map of K’ into E™ satisfying d (h, h')<e then h'[(K'|§)
is an isomorphism for any Ee¢ K, where K'|& is the subcomplex of K' whose
underlying space is §. ‘

Proof of Let #:K' — E™ be an SS—-map which satisfies the conditions
of h:K—E" in Lemma 2 and the conditions of #':K— E™ in Lemma 3 for any
such sinplexes &, &y, &;, &2 of K’ that

m=f(§)=,("), n=r(E)=S({")

Furthermore if p, e, p'1 €6y, Pz‘—‘fz, pe’ €&y and f(p)=f(D"1), f(po)=F(D2), h(D1)=
h(ps), h(p's)=h(p's). Then by Lemma 2, Lemma 3, and [Proposition 12| we may

assume that any vertex of £&;, &, &, &, belongs to just two of them or all of them.

Let p be any point of a simplex £. Then by barycentric coordinate we can wirte

N
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p= 320,80, TilE=1 2(r8=0.

VeE veé

From the linear independentness of A, 81:8,8)= U ((Av(Es &1)—x1U-+ U xp)U

Ay(&;, &5)) (Proposition 8 and Lemma 2) and that of A (51,?: 2252, & Z)Z UU/IM (&1, &2’ : £2,6"2)
[}
(Lemma 3) it is easy to see that _
1) 1(» € ) —2 (v, §'1)=2(v, &)— (v, §2) if vebinNé'iNéNé’s
2)  4[,¢ ( €1) if ve§iNE1—ENE:
3) v, 82) (v, &) if vebané—6NE,
4) A(v,§1)=14 (U, &) if ve§iN&—E1N¢s
5) A0, 8)=2(0, &) if 0 N&r—ENG
6) (v, 8)=2(v, £'2)=0 if vegiN€—&1NE,
7 A0, &)=2(0:1&)=0 if ve€'1NE—E1NEe.

By there are two simplexes {;, ; such that {;UD46, U UEUE,. If
£, U&l, by Propositun 14 p;=p,. Then we may assume that & U&; is contained
neither in &, nor {; and &,U¢&, is similar. By the conditions 6) and 7) we may assume

that
EiNE—81N&E=E1NE—6NE=¢
and then §UéCy, U8l
Thus we have '
p1=2 {2(v, &) v| ve§ 1 —&1}+2 {4 (v, &) v | veé N &1}
P1=2{2(v, &) v|ved'1—E}+ 2 (A(v, &) v| vediNE'1}
Pe=23 {A(v, &) v|vebs—E"} +2{A (v, &2) v | ve&a N E'}
Pa=2 {2(v, &) v|ved's—&} + 2 {4 (v, &'2) v| ve§a N €2}
If ve&;—¢&'; then vef;NE; and if vef,—&'; then wveéiNé;. By 2) and 3) we have
2 (A, &) v|veg1—&"1} =3 {A(v, &) v| veby—&'s).
Similarly we have
2 {A(v, &) v|ve'1 =&} =2 {2 (v, §'2) v | vefa— &)
Since & (p))=h(ps), b (p'1)=h(p':). From above formulas
8§ T (0 k) vetiNE =5 (2(0,8) k(D) | ve&N &)
9) 2 {A(v, &) h(v)|ves NE' 1} =2 {2 (v, §'2) b (v) | vebaN€'e}.
From the conditions 1), 2), 3), 4), 5) we have
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> {2 (v, 51)‘ ve§ —E&'1} =2 {4 (v, &) | ve€y—E&'5}
=23 }A(v, &) | vef'1—&:1} =2 {4 (v, &) | ve§'a—&s )

We denote this number by v and put

4=1 3 (30,0 vei—81} =L T (A(0,8) 0| veka—")

’,1=1__1_; 2 {A(v,6)v|veENEy}

1

—

I {A (v, &) v|veE2 NEs)

Vo=

-t

©

q’=%“ 2 {4(v, &) v|veg' 1 —61} =”,1j {2(v, &) v| ve€'s—E&5}

s 1%» S (A0, &) v| vt N &'y}

—t

7"2=1__y X {2(v,82) v vessNE L)

Then py=vg+(1—v)r 5 p1=vq'+(1—2)r/
pe=vq+(1—v)re, Ppo=vq'+(1—1)7';.

Furthemore

| q, q, 651052’
r, 7'y €€,NEy 72, 7' €NEs.

By 8). 9) we have
k(r)=hir)  h(r')=h(r")
U w=pp+(1—p) 9y, e=pps+(1—p)ps 1>p>0.
Then wu,, u, are points of {;, {; respectively and
uy=v (pg+(1—p) @)+ (1 —v) (ur1+(1—p) 7'4)
Uy =v (uq+(1—p) @)+ (1 —v) (urz+(1—p) 7'a).
Therefore
b (u)=vh (pq+(1—p) ¢)+1—») b (pr1+(1—p) 7'y)
h (ug)=vh (pg+(1—p) ')+ (1 —v) b (pre+(1—p) 7's).
Since h(r)=h(r) h(r')=h(r's). We have & (u))=h (u;). Therefore we have proved

the condition c) of Lemma 1 implies b) and we have completed the proof of
Theorem
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