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1. Summary. By making use of coordinate transformations, planar rings with
(i) right zero, (ii) left zero, (iii) zero, (iv) right zero and right unity (or left unity, or
unity), (v) left zero and left unity (or right unity, or unity), or (vi) zero and unity, etc.,

are constructed from a general planar ternary ring, so that, the projective planes induced
by the old and the new planar rings are isomorphic. Such constructions lead to slightly
different proofs of two interesting theorems by Wesson [3]. Discussions of planar ternary

rings with one-sided zeros and one-sided unities are also given.

2. Introduction. As is well-known, a projective plane is a set $P$ of “points“
with certain subsets called “lines” such that:

$P1$ . Any two distinct points are contained in exactly one line.
$P2$ . Any two distinct lines contain exactly one common point.
$P3$ . $P$ contains at least four pojnts, no three of which are on $\cdot the$ same line.

By definition, a planar ternary ring (PTR) is a pair $(S, < >)$ consisting of a

set $S$ with at least two elements and a ternary operation $<$ $>$ which assigns to every
ordered triple $a,$ $b,$ $c$ of elements of $S$ a unique element of $S$ denoted by $<abc>$ such
that for all $a,$ $b,$ $c,$ $d$ in $S$ :

I. $<abx>=c$ has a unique solution $x$ in $S$ .
II. $<xab>=<xcd>,$ $a\neq c$ has a unique solution $x$ in $S$ .

III. $<axy>=b,$ $<cxy>=d,$ $a\neq c$ has a unique solution pajr $(x, y)$ consisting

of elements of $S$ .
It has been shown by Martin [2] that

Proposition 1. The uniqueness of solution pair in III follows from I and II.

Here we would also like to point out the following for later use:

Proposition 2. The uniqueness of the solution in II follws from III.

Proof. Suppose we have two solutions $x=x_{1},$ $x=x_{2},$ $x_{1}\neq x_{2}$ of $<xab>=<xcd>$ ,

$a\neq c$ ; then $<x_{1}ab>=<x_{1}cd>=e$ and$<x_{2}ab>=<x_{2}cd>=f$. This shows that $<x_{1}xy>$

$=e,$ $<x_{2}xy>=f,$ $x_{1}\neq x_{2}$ has two solutions $(x=a, y=b)$ and $(x=c, y=d),$ $a\neq c$ which
contradicts the uniqueness of solution in III.

It is also well-known that every planar ternary ring $(S, < >)$ induces a
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projective plane $(P, < >)$ which consists of points represented by $(x,y)$ , or $(m)$ , or $(\infty)$

for every $x,$ $y,$ $m$ in $S$ but $\infty$ not in $S$. The lines of the plane $(P, < >)$ are
represented by $[m, b]$ , or $[c]$ , or $[\infty]$ for every $m,$ $b,$ $c$ in $S$. The incidence relations
are defined such that $[\infty]$ contains exactly $(\infty)$ and points $(m)$ for all $m$ in $S,$ $[c]$

contains exactly $(\infty)$ and all points $(c, y)$ for every $y$ in $S$, and the line $[m, b]$ contains
exactly $(m)$ and all points $(x, y)$ for which $y=<xmb>$ .

A planar ternary ring is called [2] an intermediate ternary ring (ITR) if it also
satisfies the following two conditions:

IV. $<amb>=<cmb>=d,$ $a\neq c$, implies $<xmb>=d$ for all $x$ in $S$.
V. $<mad>=<mcd>=b,$ $a\neq c$, implies $<mxd>=b$ for all $x$ in $S$.

The followings will also be used later:

Proposition 3. Condition IV is equivalent to the following:
IV’ There exists an element $m_{0}$ of $S$ and a permutation $:b\rightarrow b^{*}$ on $S$ such

$that<am_{0}b^{*}>=b$ for all $a,$
$b$ in $S$.

Proof. $IV\rightarrow IV^{\prime}$ : Since any two points $(a, d)$ and $(c, d)$ determine a line in
the induced projective plane $(P, < >)$, condition IV means that all the points $(x, d)$

($x$ variable and $d$ fixed) are on a same line $[m, b]$ . If all the points $(x,g)(g\neq d)$ are on
the line $[n, q]$ , the point of intersection of $[m, b]$ and $[n, q]$ can not be a point $(e,f)$ ,
because if $(e, f)$ were the point of intersection, then $f=d=g$ which contradicts $g\neq d$.
Thus $[m, b]$ and $[n, q]$ intersect at a point $(m_{0})$ and $m_{0}=m=n$ . Since $[n, q]$ is an
arbitrary line containing all the points $(x, g)$ , every such line passes through the same
point $(m_{0})$ on $[\infty]$ , so that such a line can be represented as $[m_{0}, t^{*}]$ , where $t^{*}$ is
obtained from $<xm_{0}t^{*}>=t$ where $(x, t)$ is an arbitrary point on the line (such a $t^{*}$ is
uniquely determined by IV). The correspondence $t\rightarrow t^{*}$ is evidently a permutation on $S$.

IV’ $\rightarrow IV$ : Suppose $<amb>=<cmb>=d,$ $a\neq c$ . By IV’ we have $<am_{0}d^{*}>=$

$<cm_{0}d^{*}>=d$. Thus we have $<amb>=<am_{0}d^{*}>$ , $<cmb>=<cm_{0}d^{*}>$ , $a\neq c$.
Consequently $m=m_{0}$ and $b=d^{*}$ by II. Therefore $<xmb>=<xm_{0}d^{*}>=d$ for all $x$.

Proposition 4. Condition V is equivalent to the following:
V’. There exists an element $a_{0}$ of $S$ and a permutation $:d\rightarrow d^{*}$ on $S$ such

$that<a_{0}md>=d^{*}for$ all $m,$ $d$ in $S$ .
Proof. $V\rightarrow V^{\prime}$ : In the induced projective plane $(P, < >)$ , condition V means

that all the lines $[x, d]$ ($x$ variable and $d$ fixed) pass through the same point $(a, b)$ .
Suppose all the lines $[x, g],$ $g\neq d$ pass through the point $(c, q)$ . The line joining these
two points can not be a line $[m, y]$ , because if this were the line joining these points,
then $y=d=g$ which contradicts $g\neq d$. Thus $(a, b)$ and $(c, q)$ are on a line $[a_{0}]$ through
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$(\infty)$, and $a_{0}=a=c$. Sinoe $(c, q)$ is an arbitrary such point, every such point is on the
same line $[a_{0}]$ and thus can be represented as $(a_{0}, f^{*})$ , with $t^{*}$ obtained from $<a_{0}xt>=$

$t^{*}$ , where $[x, t]$ is any line through the point. The correspondence $t\rightarrow t^{*}$ is evidently
a permutation on $S$.

V’ $\rightarrow V$ ; Suppose now that $<mad>=<mcd>=b,$ $a\neq c$. By V’ we have $<a_{0}ad>$

$=<a_{0}cd>=d^{*},$ $a\neq c$. Thus it follows that $m=a_{0}$ and $b=d^{*}$ by III. Consequently
$<mxd>=<a_{0}xd>=d^{*}=b$ for all $x$ in $S$ .

An element $u$ in $S$ is called a right zero if $<xub>=b$ for all $x,$
$b$ in $S$, and

an element $v$ in $S$ is called a left zero if $<vxb>=b$ for all $x,$
$b$ in $S$. An element 2

is said to be a zero if $z$ is both a right zero and a left zero.

A left zero (or a right zero) is unique if it exists. It is shown by Martin [2] that:

Proposition 5. If $a$ PTR $(S, < >)$ has a right zero $u$, $then<xab>=d$,

$a\neq u$ , has a unique solution $x$. If $(S, < >)$ has a left zero $v$ , $then<axd>=b,$ $a\neq v$

has a unique solution $x$.
From this, it follows that in a PTR, the existence of a right zero implies IV,

and that of a left zero implies V. But IV does not imply the existence of a right zero,
and V does not imply that of a left zero. In a PTR, the existence of a right zero and
that of a left zero are independent conditions.

3. Coordinate transformations. To each element $a$ in $S$ assign a permutation
$\sigma(a)$ on $S$ ($S$ may be finite or infinite). Let $\sigma^{\prime}(a)$ be the inverse permutation of $\sigma(a)$ .

Proposition 6. The ternary system $(S, \{ \})$ , defined by $\{amd\}=<amd>\sigma(a)$

for all $a,$ $m,$ $d$ in $S$, is a planar ternary ring if and only if the ternary system
$(S, < >)$ is a planar ternary ring.

Proof. (1) As $\{abx\}=d$ if and only if $<abx>=d^{\sigma(a)}’$ , condition I for $(S$, { } $)$

follows from that for $(S, < >)$ and vice versa. (2) Similarly, since $\{axy\}=b$, $\{cxy\}=$

$d,$ $a\neq c$ if and only if $<axy>=b^{\sigma\prime(a)},$ $<cxy>=d^{\sigma^{\prime}(C)}$ , condition III for $(S$, { } $)$ follows
from that of $(S, < >)$ and vice versa. (3) Suppose II for $(S, < >)$ is satisfied; that
is, $<xab>=<xcd>,$ $a\neq c$ has a unique solution $x=x_{1}$ . Then $\{x_{1} ab\}=<x_{1}ab>\sigma(x_{1})=$

$<x_{1}cd>\sigma(x_{1})=\{x_{1}cd\}$ ; that is, $\{xab\}=\{xcd\},$ $a\neq c$ has a solution $x=x_{1}$ . The uniqueness
of the solution follows from I and III by Proposition 2. Assuming II for $(S$, { } $)$,
we can also prove II for $(S, < >)$ in the same way.

Proposition 7. The ternary system $(S, \{ \})$ , defined by $\{acb^{\sigma(C)}\}=<acb>for$

all $a,$ $b,$ $c$ in $S$, is a planar ternary ring if and only if the ternary system $(S, < >)$

is a planar ternary ring.

Proof. For conditions I and II, proofs are similar to the proofs of I and III in
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Proposition 6. Now assume that $<ax_{1}y_{1}>=b,$ $<cx_{1}y_{1}>=d,$ $a\neq c$ has a unique solution
pair $(x_{1},y_{1})$ . Let $x=x_{1},$ $y=y_{1}^{\sigma(x_{1})}$ ; then $\{axy\}=\{ax_{1}y_{1}^{\sigma(x_{1})}\}=<ax_{1}y_{1}>=b$ , and $\{cv\}=$

$\{cx_{1}y_{1}^{\sigma(x_{1})}\}=<cx_{1}y_{1}>=d$. That is, $\{axy\}=b,$ $\{exy\}=d,$ $a\neq c$ has a solution pair $(x, y)$ .
The uniqueness of the solution follows from I and II by Proposition 1. Assuming that
III holds for $(S$, { } $)$ we can show that III holds also for $(S, < >)$ in the same way.

Proofs of these two propositions can be carried out more $g\ovalbox{\tt\small REJECT} metrically$, if we
make use of the projective plane $(P, < >)$ induced by a planar ternary ring $(S, < >)$ .

In the induced projective plane $(P, < >)$ , assign new coordinates $(a,b^{\sigma(a)})$ to

the point with the coordinates $(a, b)$, but preserve all the old coordinates for all other
kinds of elements. Instead of expressing the incidenoe of the point $(a, b)$ with the line
$[m, d]$ by $<amd>=b$, we use the relation {amd} $=b^{\sigma(a)}=<amd>\sigma(a)$ in the new
coordinates. Then the ternary system $(S$, { } $)$ gives a new coordinatization of the
projective plane $(P, < >)$ , and therefore $(S$, { } $)$ is a planar ternary ring. This
argument also shows that the projective plane induced by $(S, < >)$ can also be seen
as the projective plane induced by $(S$, { } $)$ .

For Proposition 7, assign new coordinates $[c, b^{\sigma(c)}]$ to the line with the coordinates
$[c, b]$ and preserve the old coordinates for all the other kinds of elements. Instead of
expressing the incidence of the point $(a, d)$ with the line $[c, b]$ by $<acb>=d$ in the
old system, we use $\{acb^{\sigma(c)}\}=d$ in the new coordinate system. Then the ternary system
$(S$, { } $)$ again gives a new coordinatization of the projective plane $(P, < >)$, and thus
$(S, \{ \})$ is a planar ternary ring. Again the projective plane induced by $(S, < >)$

can also be seen as the projective plane induced by $(S$, { } $)$ .
Thus in both cases, the projective planes induced by $(S, < >)$ and $(S$, { } $)$

are isomorphic.

As special cases, consider $\sigma(a)\neq identity$ for a fixed element $a$ in $S$ and $\sigma(x)=$

identity for all $x\neq a$ . In Proposition 6, this gives a coordinate transformation on only
one line $[a]$ and leaves the coordinates unchanged for every other element. In Proposition
7, this gives a coordinate transformation on only one pencil of lines with center $(a)$ and
leaves all other coordinates unchanged.

We can also consider a coordinate transformation only on the line $[\infty]$ . Suppose
$\sigma(\infty)=\sigma$ is a permutation on $S$ and rename the point $(m)$ as $(m^{\sigma})$ . This gives rise to a
PTR $(S$, { } $)$ defined by $\{am^{\sigma}d\}=<amd>$ . Next, suppose $\rho(\infty)=\rho$ be a permutation
on $S$ ; then a coordinate transformation on only one pencil with center $(\infty)$ can be
obtained by renaming $[a]$ as $[a^{\rho}]$ . This gives rise to a PTR $(S$, { } $)$ defined by
$\{a^{\rho}md\}=<amd>$ . The latter two cases are special instances of isotopisms [2].

Example 1. The following is a PTR satisfying IV:
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$x=r$ $x=s$ $x=t$

$\underline{\backslash _{m_{S}}}tr]_{rts}^{\underline{rst}}\ell rsrst$ $\underline{\backslash _{m_{S}}}tr]_{srt}^{\underline{rst}}trstrs$ $\underline{\backslash _{m_{S}}}t\gamma]_{tsr}^{\underline{rst}}str$

If we change the $c\infty rdinates$ of lines of the pencil with center $(r)$ by

$[r, r]\rightarrow[r, t],$ $[r, s]\rightarrow[r, r],$ $[r, t]\rightarrow[r, s]$ ,

then we get a PTR with right zero $r$ ( $r$ is not a left zero) as follows:

$x=r$ $x=s$ $x=t$

$\underline{\backslash _{m_{S}}}tr]_{rts}^{\underline{rst}}rstrst$ $\underline{\backslash ^{b}}m_{S1_{srt}^{\gamma st}}|\underline{rst}trtrs$ $\backslash _{\underline{m_{S}}}^{b}tr|_{fsr}^{\underline{rst}}strrst$

We can get the former PTR from the latter by the coordinate transformation;

$[r, r]\rightarrow[r, s],$ $[r, s]\rightarrow[r, t],$ $[r, t]\rightarrow[r, r]$ .

Example 2. The following is a PTR satisfying V:

$x=r$ $x=s$ $x=t$

$\backslash _{\underline{m_{S}}}tr]_{srt}^{\underline{rst}}srtsrt$ $\underline{\backslash _{m_{S}}^{b}}tr|_{f\gamma S}^{\underline{rst}}strrst$ $\underline{\backslash _{m_{S}}^{b}}tr|_{tsr}^{\underline{rst}}srtrts$

If we change the $c\infty rdinates$ on the line $[r]$ by

$(r, r)\rightarrow(r, s),$ $(r, s)\rightarrow(r, r),$ $(r, t)\rightarrow(r, t)$ ,

then we get a PTR with left zero $r$ ( $r$ is not a right zero) as follows;
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$x=r$ $x=s$ $x=t$

$\backslash _{\underline{m_{S}}}^{b}fr|_{rst}^{\underline{rst}}rstrst$ $\underline{\backslash bm}\backslash tsr|_{trs}^{\underline{rst}}strrst$ $\underline{\backslash _{m_{S}}^{b}}fr|_{fsr}^{\underline{rst}}srtrts$

We can get the former PTR from the latter one by the same point coordinate trans-
formation as above.

4. Planar ternary rings with one-sided zeros. Using coordinate transformations
discussed in 3, we can construct a PTR with one-sided zeros from a general PTR by
the following steps:

Proposition 8. Let $(S, < >)$ be a planar ternary ring, and $u$ be a fixed
element of S. Then (i) the ternary system $(S, \{ \})$ defined by $<au\{amd\}>=$

$<amd>is$ a planar ternary ring with a right zero $u$ , and (ii) $v$ is a left 2ero of
$(S$ , { } $)$ if and only if $(S, < >)$ is a planar ternary ring satisfying V’ with $a_{0}=v$ .

Proof. Although (i) can be checked directly, we prefer to relate its proof to

Proposition 6. The aet of $\mu ints$ on the line $[a]$ is in $one-to- ne$ correspondence with
the set of all lines in the pencil with the center $(u)$ by assigning $(\infty)\rightarrow[\infty]$ and
$(a, e)\rightarrow[u, b]$ which is incident with $(a, e)$ . In this way, a permutation $\sigma(a)$ on $S$ is
defined by $b=e^{\sigma(a)}$ . Then $<aub>=e$. If $[m, d]$ is any line on $(a, e)$ , then $<amd>=e$.
Thus $<amd>=<aub>$ , and $\{amd\}=<amd>\sigma(a)=b$ can be expressed as $<amd>=$
$<au\{amd\}>$ .

Putting $m=u$ in this relation, we have $<aud>=<au\{aud\}>$ which implies
$\{aud\}=d$ for all $a,$ $d$ in $S$ by I. Thus $u$ is a right zero.

(ii) We know that $\{vmd\}=d$ for all $m$ if and only if $<vud>=<vmd>$ for
all $m$ . By III, the latter holds if and only if $(S, < >)$ satisfies V’ with $a_{0}=v$ and
$d‘‘=<vud>$ . If $v$ is the left zero of $(S, < >)$ , we have $<vmd>=<vud>=d$ ; that
is, V’ holds with $a_{0}=v$ and $d^{*}=d$ .

Proposition 9. Let $(S, < >)$ be a planar ternary ring, and $v$ be a fixed
element of S. For $a,$ $m,$ $b$ in $S$, define $\{amb\}=<amd>$ , where $d$ is the unique
solution $of<vmd>=b$ . Then (i) the ternary system $(S$, { } $)$ is a planar ternary
ring with $v$ as a left zero, and (ii) $u$ is a right zero of $(S$, { } $)$ if and only if $(S$,

$<$ $>$ ) is a planar ternary ring satisfying IV’ with $m_{0}=u$ .
Proof. (i) By using the $one-to$-one onto correspondence between the set of
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points on the line $[v]$ and the set of lines in the pencil $(m)$ , rename the line $[m, d]$

in the pencil $(m)$ as $[m, b]$ if and only if $[m, d]$ is on $(v, b)$ . This gives rise to a
permutation $\sigma(m)$ on $S$ with $d^{\sigma(m)}=b$ . Then $<vmd>=b$ and $\{amd^{\sigma(m)}\}=<amd>$ is
equivalent to $\{amb\}=<amd>$ where $d$ is the unique solution of $<vmd>=b$ . Proposition
7 then implies that $(S$, { } $)$ is a planar ternary ring; this can also be checked directly.
As $\{vmb\}=<vmd>=b,$ $v$ is a left zero.

(ii) Since $\{aub\}=b$ for all $a,$ $b$ in $S$ if and only if $<aud>=b$ and $<vud>=b$

for all $a,$
$b$ in $S$ , this means that IV’ holds with $u=m_{0}$ and $b^{*}=d$. If $u$ is the right

zero of ( $S,$ $<$ $>I$ then $<aub>=b$ for all $a,$
$b$ in $S$ ; that is, IV’ holds with $m_{0}=u$

and $b^{*}=b$ .
Now let $u,$ $v$ be two fixed elements in $S$ . Then from Proposition 8 and Proposi-

tion 9, it follows that if we construct $(S$, [ ] $)$ from $(S, < >)$ by Proposition 8, and
then construct $(S$, { } $)$ from $(S$ , [ ] $)$ by Propositition 9, the resulting $(S$, { } $)$ is a
planar ternary ring with right zero $u$ and left zero $v$ . It is obvious that we can also
get a planar ternary ring with the same zeros if we interchange the order of applying
the two constructions. Now, for convenience, we formulate one of these constructions
in the following:

Proposition 10. Let $(S, < >)$ be a planar ternary ring, and let $u,$ $v$ be two
fixed elements in S. For any $a,$ $m,$ $b$ in $S$, define the ternary operation $\{$ $\}$ by the
following steps: (i) determine a $c$ such that $<vmc>=<vub>$ , (ii) determine a $d$

such $that<aud>=<amc>$ , and (iii) define $\{amb\}=d$ (that is, define $\{$ $\}$ by
$<an\{amb\}>=<amc>)$ . Then $(S$, { } $)$ is a planar ternary ring with the right
zero $u$ and the left zero $v$ .

By putting $z=u=v$ in Proposition 10, we can obtain a planar ternary ring with
zero $z$ . (See Theorem 3.3 in Wesson [3]). It is also interesting to note that if we apply
the natural duality [2] to the PTR $(S$, { } $)$ of Proposition 8 (that is, define $(S, [ ])$

by $d=[mab]$ if and only if $b=\{amd\}$ ), then the resulting ternary system $(S, [ ])$ is
the PTR considered by Wesson in his Theorem 3.1 [3]. This is easily seen: from
$<au\{amd\}>=<amd>$ , it follows that $<aub>=<am[mab]>$ .

Example 3. It is well-known that if $S$ is a field, the system $(S, < >)$ with
$<xyz>=xy+z$ is a planar ternary ring with zero $0$ and unity 1. Now defining $[$ $]$ by
$<au[amd]>=<amd>$ , we obtain $[amd]=a(m-u)+d$. Next, defining $\{$ $\}$ by
$\{amb\}=[amd]$ where $[vmd]=b$ , we obtain $\{amb\}=(a-v)(m-u)+b$ . The system
$(S$, { } $)$ is then a planar ternary ring with the right zero $u$ and the left zero $v$ .

5. Planar ternary rings with one-sided zeros and one-sided unities. Suppose
$(S, < >)$ is a planar ternary ring with right zero $u$ (or left zero, or zero). An element
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$h$ of $S$ is called a right unity associated with $u$ if $<ahu>=a$ for all $a$ in $S$. An
element $g$ of $S$ is called a left unity associated with $u$ if $<gmu>=m$ [for all $m$ in
$S$. An element $e$ of $S$ is called a unity associated with $u$ if it is at the same time a
right unity and a left unity associated with $u$ . A planar ternary ring with a zero and
a unity is called a Hall ternary ring (HTR) [2]; an HTR is frequently called a
“planar ternary ring“ in the literature [1].

Proposition 11. If $a$ PTR $S$, $(< >)$ with right 2ero $u$ (or left zero, or zero)

has at the same time a right unity $h$ and left unity $g$ associated with $u$ , then $h=g$

and $h$ is a unity associated with $u$ .
Proof. Sinoe $h$ is a right unity associated with $u$ , we have $<ghu>=g$, and

since $g$ is a left unity associated with $u$ , we have $<ghu>=h$ . Therefore $h=g$.

Proposition 12. (i) For $a$ PTR with a right 2ero $u$ , a right unity associated
with $u$ is unique, if it exists. (ii) For $a$ PTR with a right zero $u$ , a left unity

associated with $u$ is unique, if it exists. (iii) For $a$ PTR with left 2ero $v$ , a right
unity associated with $v$ is unique, if it exists. (iv) For a PTR with a left 2ero $v$ ,

there may exist more than one left unity associated with $v$ .

Proof. (i) Suppose $h\neq h^{\prime}$ are right unities associated with the right zero $u$ of

a PTR, then $<xhu>=<xh^{\prime}u>=x$ for all $\prime x$, and this contradicts II. (ii) If $g\neq g^{\prime}$ are

left unities associated with the right zero $u$ of $(S, < >)$ , then $<gmu>=<g^{\prime}mu>=$

$m$ for all $m$ (so for $m\neq u$). This contradicts Proposition 5. (iii) Suppose $h\neq h^{\prime}$ are right

unities of a PTR $(S, < >)$ associated with the left zero $v$ ; then $<xhv>=<xh^{\prime}v>$

$=x$ for all $x$ (so for $x\neq v$). This contradicts Proposition 5. (iv) The following is an ex-
ample of a planar ternary ring $(S, < >)$ with a left zero $r$ and two left unities $s$

and $t$ associated with the left zero $r$.

Example 4.

$x=r$ $x=s$ $x=t$

$\underline{\backslash _{m_{f}}^{b}}|\underline{rst}s\gamma|_{rst}^{rst}rst$ $\underline{\backslash _{m_{S}}}^{b}tr|_{trs}^{\underline{rst}}strrst$
$\underline{\backslash _{m_{S}}}tr]$

$\underline{rst}$

$r$ $t$ $s$

$s$ $r$ $t$

$t$ $s$ $r$

Proposition 13. (i) If $h$ is a right unity of $a$ PTR associated with the right

zero $u$ , then $h\neq u$ . (ii) If $g$ is a left unity of $a$ PTR associated with the left 2ero $v$,
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then $g\neq v$ . (iii) For $a$ PTR with a right zero $u$ , $u$ may be a left unity associated
with itself. (iv) For $a$ PTR with a left zero $v,$ $v$ may be a right unity associated
with itself.

Proof. (i) If $h=u$ , then for any $x\neq u$ we have $<xuu>=<xhu>=x$ by the
definition of right unity $h$ associated with $u$ . This contradicts $<xuu>=u$ which
follows from the definition of the right zero $u$ . (ii) If $g=v$, then for any $x\neq v$, we
have $<vxv>=<gxv>=x$ by the definition of left unity $aq_{Sociated}$ with $v$ . This
contradicts $<vxv>=v$ which follows from the definition of the left zero $v$ . (iii) The
following is an example of a PTR in which $r$ is a right zero and a left unity associated
with itself;

Example 5.

$x=r$ $x=s$ $x=t$

$\backslash _{\underline{m_{S}}}^{b}tr|\left|\begin{array}{lll}- & & \underline{\backslash }|\\tr & s & \gamma\\ ts & \gamma & s\\t r & s & t\end{array}\right|brstrtsrts$
$\underline{\backslash _{m_{S}}^{b}}tr|_{srt}^{\underline{rst}}tsrrst$

(iv) The following is an example of a PTR in which $r$ is a left zero and a right unity
associated with itself.

Example 6.

$x=r$ $x=t$

$\underline{\backslash _{m_{S}}}trJ_{rst}^{\underline{rst}}rstrst$
$\backslash _{\underline{m_{S}}}^{b}tr|_{rst}^{\underline{rst}}str$ $\backslash _{\underline{m_{S}}}^{b}t\gamma|_{srt}^{\underline{rst}}rts$

Proposition 14. (i) a) If a planar ternary ring $(S, < >)$ has a left zero $v$

and a right unity $h$ associated with the right zero $u$ , or b) if $(S, < >)$ has a right
2ero $u$ and a left unity $g$ associated with the left zero $v$ , then $u=v$ . $(ii)$ If $(S,<>)$

has a right unity $h$ associated with the right zero $u$ and a left unity $g$ associated
with the left zero $v$ , then $u=v$ and $g=h$ . (iii) A planar ternary ring $(S,< >)$ can
have a right unity associated with the left zero $v$ and a left unity $g$ associated with
the right zero $u$ such that $u\neq v$ and $g\neq h$ .
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Proof. (i) a) If $h$ is a right unity associated with the right zero $u$ , then
$<vhu>=v$ . On the other hand, as $v$ is the left zero, we have $<vhu>=u$ . Henoe

$u=v$ . b) can be shown similarily. (ii) follows from (i) and Proposition 11. (iii) An
example will be given in the next section.

6. Constructions of Hall ternary rings.

Proposition 15. Suppose $(S, < >)$ is $a$ PTR with a right 2ero $u$ and left
zero $v$ , and let $k$ be an element of $S$ such that $k\neq u$ . Define $\{cmd\}=<amd>$ ,

where $a$ is determined from $<akv>=c$ (such an $a$ is uniquely determined by Pro-
position 5, as $k\neq u$). Then (i) $(S,\{ \})$ is $a$ PTR with right zero $u$ , left zero $v$ , and
$k$ as a right unity associated with the left zero $v$ . $(ii)$ If $g$ is a left unity associated

with the right zero $u$ in $(S, < >)$ , then $f=<gkv>$ is a left unity associated with

the right zero $u$ in $(S$ , { } $)$ .
Proof. (i) We note that $(S$ , { } $)$ is a new coordinatization of the projective

plane induced by $(S, < >)$ obtained by the point coordinate transformation. $(a, b)\rightarrow$

$(<akv>, b),$ $[m, d]\rightarrow[m, d]$ . Thus $(S$ , { } $)$ is a PTR. 1) Because $u$ is the right

zero, $\{cud\}=<aud>=d$. 2) From $<akv>=v$ and $<vkv>=v$ (as $v$ is the left zero)

and $k\neq u$ , we have $a=v$ . Consequently, $\{vmd\}=<amd>=<vmd>=d$. 3) Because $a$

is obtained from $<akv>=c$ , we have $\{ckv\}=<akv>=c$ .
(ii) We have that $\{fmu\}=<amu>$ where $a$ is determined from $<akv>=f$

Sinoe it is assumed that $<gkv>=f$, we have $a=g$ by Proposition 5. Then $\{fmu\}=$

$<gmu>=m$ , because $g$ is a left unity associated with $u$ in $(S, < >)$ .

Proposition 16. Supp0se $(S, < >)$ be $a$ PTR with a right zero $u$ and a left
zero $v$ . Let $g$ be an element of $S$ such that $g\neq v$ . Define {and} $=<amd>$ , where $m$

is determined $from<gmu>=n(m$ is uniquely determined by Proposjtion 5, $as$

$g\neq v)$ . Then (i) $(S$ , { } $)$ is $a$ PTR with right zero $u$ , left zero $v$ , and left unity $g$

associated with $u$ . (ii) If $k$ is a right unity associated with $v$ in $(S, < >)$ , then

$h=<gku>is$ a right unity associated with $v$ in $(S$ , { } $)$ .
Proof. (i) We note that $(S$, { } $)$ is a new coordinatization of the projective

plane induced by $(S, < >)$ , obtained by the line coordinate transformation: $[m, d]\rightarrow$

$[<gmu>, d],$ $(a, b)\rightarrow(a, b)$ . Thus $(S$, {} $)$ is a PTR. 1) Because $v$ is the left zero of
$(S, < >),$ $\{vnd\}=<vmd>=d$. $2$ ) In $\{aud\}=<amd>,$ $m$ is obtained from $<gmu>$

$=u$ . But $<guu>=u$ as $u$ is the right zero. Thus $m=u$ by Proposition 5. Then $\{aud\}$

$=<amd>=<aud>=d$. $3$) Because $m$ is determined from $<gmu>=<gmu>=n$ .

(ii) In $\{ahv\}=<amv>,$ $m$ is determined from $<gmu>=h$ . But we have also

$<gku>=h$ by assumption. Henoe $m=k$ by Proposition 5. Then $\{ahv\}=<akv>=a$

as $k$ is a right unity associated with $v$ in $(S, < >)$ .
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Starting from a PTR with a right zero $u$ and a left zero $v(u\neq v)$ , we can
construct a PTR with right zero $u$ , left zero $v$ , right unity $k$ associated with $v$ and
left unity $f$ associated with $u$ (left unity $g$ associated with $u$ and a right unity $h$

associated with v) by combining Propositions 15 and 16. This gives examples for (iii) of
Proposition 14.

In Proposition 15 (or 16), if $u=v$, then we obtain a PTR with zero $u$ and a
right unity $k$ (or a left unity g) associated with the zero $u$ .

Putting $u=v=z$ , we can construct a PTR with zero $z$ and unity $h=g$ (or $f=k$)
by combining Propositions 15 and 16, because we have $h=<gku>=g$, as $k$ is the
right unity of $(S, < >)$ associated with $u$ (or $k=<gkv>=f$, as $g$ is the left unity of
$(S, < >)$ associated with $v$). These are the constructions of Proposition 1, 2, and 3
of Martin [2].

Instead of carrying out the constructions of Propositions 15 and 16 one after
another, we can also use the following construction:

Proposition 17. Let $(S, < >)$ be $a$ PTR with a right zero $u$ and a left zero
$v$ . Let $k,$ $g$ be two elements in $S$ such that $k\neq u$ and $g\neq v$ . Define $\{cnd\}=<amd>$ ,

where $a$ is determined $from<akv>=c$ and $m$ is determined from $<gmu>=n$ .
Then $(S, \{ \})$ is $a$ PTR with right zero $u$ , left zero $v,$ $f=<gkv>as$ left unity
associated with the right zero $u$ , and $h=<gku>as$ right unity associated with the
left zero $v$ .

Proof. We note that $(S$ , { } $)$ is a new $\ovalbox{\tt\small REJECT} ordinatization$ of the projective plane
induoed by $(S, < >)$ obtained by the coordinate transformation: $(a, b)\rightarrow(<akv>, b)$

and $[m, d]\rightarrow[<gmu>, d]$ . 1) By definition $\{cud\}=<amd>=<aud>=d$, sinoe $u$

is the right zero of $(S, < >)$ , and $m=u$ which follows from $<gmu>=u$ and
$<guu>=u$ . $2$ ) By definition $\{vnd\}=<amd>=<vmd>=d$, because $v$ is the left zero,
and $a=v$ which follows from $<akv>=v$ and $<vkv>=v$ . 3) We note that $a=g$ as
$<akv>=f$ and $<gkv>=f$ ; henoe $\{fnu\}=<amu>=<gmu>=n$ . $4$ ) Finally, noting
that $m=k$ as $<gmu>=h$ and $<gku>=h$ , we see that $\{chv\}=<amv>=<akv>=c$.

If we put $z=u=v$ in Proposition 17, we have $f=h=<gkz>$ , and henoe we
obtain a PTR with zero $z$ and unity $h$ . This is the construction given in Theorem
4.1 of Wesson [3]. See also Theorem 19 of Martin [2].

If $u\neq v$, then $h=<gku>\neq<gkv>=f$ by I. In this case Proposition 17 also
gives an example for (iii) of Proposition 14.

In Proposition 17, we can modify the definition of $\{$ $\}$ to obtain the following:

Proposition 18. Let $(S, < >)$ be $a$ PTR with right zero $u$ and left zero $v$ ,
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and let $k,$ $g$ be two elements of $S$ such that $k\neq u$ and $g\neq v$ . Define $\{cnd\}=<amd>$

where $a$ is determined from $<aku>=c$ and $m$ is determined from $<gmv>=n$ .
Then $(S$ , { } $)$ is a PTR with right 2ero $v$ , left zero $u,$ $f=<gku>as$ left unity
associated with right 2ero $v$ , and $h=<gkv>as$ right unity associated with left 2ero

$u$ .
Proof of this proposition is similar to that of Proposition 17.

We can also modify the definition of $\{$ $\}$ in Propositions 15 and 17 to form
the following propositions.

Proposition 19. Let $(S, < >)$ be $a$ PTR with a right 2ero $u$ , and let $k$ be
an element of $S$ such that $k\neq u$ . Define $\{cmd\}=<amd>$ , where $a$ is determined
$from<aku>=c$. Then (i) $(S, \{ \})$ is $a$ PTR with right zero $u$ and $k$ as right
unity associated with $u$ ; (ii) if $k$ is a left unity associated with $u$ in $(S, < >),$ $k$

is the unity associated with the right 2ero $u$ in $(S$, { } $)$ .
Proof. For assertion (i), the proof is similar to that of Proposition 15. For

(ii), we have $\{kmu\}=<amu>=<kmu>=m$ , because $k$ is a left unity associated with
$u$ in $(S, < >)$ , so that $<kku>=k$ , and $<aku>=k$ imply $a=k$ . This shows that
$k$ is a left unity associated with $u$ in $(S$ , { } $)$ . This and (i) imply (ii).

Proposition 20. Let $(S, < >)$ be $a$ PTR with a left 2ero $v$ , and let $g$ be an
element of $S$ such that $g\neq v$ . Define {and} $=<amd>$ , where $m$ is determined from
$<gmv>=n$ . Then (i) $(S$ , { } $)$ is $a$ PTR with left 2ero $v$ and $g$ as left unity
associated with $v$ . $(ii)$ If $g$ is a right unity associated with $v$ in $(S, < >)$ , then $g$

is the unity associated with left zero $v$ in $(S$ , { } $)$ .

Proof. (ii). We have $\{agv\}=<amv>=<agv>=a$ , because $g$ is a right unity
associated with $v$ in $(S, < >)$ , so that $<ggv>=g$, and $<gmv>=g$ imply $m=g$.

Proposition 21. Suppose, in Proposition 19, that $v,$ $g(g\neq v)$ are, respectively,
a left zero and a left unity associated with $v$ in $(S, < >)$ ; then $v,$ $g$ are also
respectively, a left zero and a left unity associated with $v$ in $(S$ , { } $)$ if and only

if $u=v$ and $g=k$ .
Proof. The “only if” part follows from Proposition 14 (ii). The “if” part can

be easily shown as follows : $\{kmu\}=<amu>$ where $<aku>=k$ . But $<kku>=k$ .
Henoe $a=k$ by Proposition 5, and so $\{kmu\}=<kmu>=m$ as $k$ is a left unity

associated with $u=v$ .
Proposition 22. Suppose, in Prop0sition 20, that $u,$ $k(k\neq u)$ are, respectively,

a right zero and a right unity associated with $u$ in $(S, < >)$ ; then $u,$ $k$ are also
respectively, right zero and a right unity associated with $u$ in $(S$ , { } $)$ if and only

if $u=v$ and $g=k$ .
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Proof. The “if” part can be shown as follows: $\{akv\}=<amv>$ where $<kmv>$
$=k$ . But $<kkv>=k$ as $k$ is a right unity ’associated with $u=v$ . Henoe $m=k$ by
Proposition 5. Then $\{akv\}=<akv>=a$ .

Combining Proposition 8 and Proposition 19, and combining Proposition 9 and
Proposition 20 we will have, respectively, the following:

Proposition 23. Let $(S, < >)$ be a planar ternary ring, and let $u,$ $h$ be
two distinct elements in S. For any given $c,$ $m,$ $b$ in $S$ , define a ternary operation
$\{$ $\}$ by the following steps: i) determine an $a$ such $that<auc>=<ahu>$ ; ii)

determine an $e$ such $that<aue>=<amb>;iii$ ) define $\{cmb\}=e$. Then the ternary
system $(S$ , { } $)$ obtained in this way is a planar ternary ring with $u$ as $a$ . right
zero and $h$ as a right unity associated with $u$ .

Proposition 24. Let $(S, < >)$ be a planar ternary ring, and let $v,$ $g$ be
distinct elements in S. For elements $c,$ $n,$ $p$ in $S$ , define a ternary operation $\{$ $\}$ by
the following steps: i) determine $m,$ $q$ such $that<gmq>=n$ $and<vmq>=v$ ; ii)
determine $b$ such that $<vmb>=p$ ; iii) define $\{cnp\}=<cmb>$ . Then the ternary
system $(S$ , { } $)$ is a planar ternary ring with the left zero $v$ and the left unity $g$

associated with $v$ .
Substituting the Propositions 23 and 24 for Propositions 19 and 20, we have the

following propositions corresponding to Propositions 21 and 22:

Proposition 25. Suplose, in Proposition 23. that $v,$ $g$ are, respectively, a left
2ero and a left unity of $(S, < >)$ associated with $v$ . Then $v,$ $g$ are also, respectively,
a letf zero and a left unity of $(S, \{ \})$ associated with $v$ if and only if $u=v,$ $g=h$

and there exists an element $a$ such $that<aum>=<amu>for$ all $m$ .
Proof. The proof of the part $u=v$

’ is the same as in Proposition 14 and is
obvious. Now, if $g$ is a left unity associated with $v$ in $(S$ , { } $)$ , then $\{gmu\}=m$ for
all $m$ ; that is, the element $a$ obtained from $<aug>=<ahu>$ satisfies $<aum>=$
$<amu>$ for all $m$ . Then we have also $<ahu>=<auh>$ and henoe $g=h$ . Conversely,
if $g=h$ and $<aum>=<amu>$ for all $m$ , then $g$ is obviously a left unity associated
with $v$ .

Proposition 26. In Propositi0n 24, suppose $u$ and $h$ are, respectively, a right
zero and a right unity associated with $u$ in $(S, < >)$ . Then $u$ and $h$ are also,
respectively, a right zero and a right unity associated with $u$ in $(S$ , { } $)$ $\iota f$ and
only if $u=v$ and $g=h$ .

Proof. We will omit the proof of the $u=v$
’ part. Now, $h$ is a right unity of

$(S$ , { } $)$ associated with the right zero $u(=v)$ if and only if $\{ahv\}=a$ for all $a$ . This
means that $<gmq>=h,$ $<vmq>=v,$ $<vmb>=v$ , and $<amb>=a$ . From $<vmq>=$
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$v$, and $<vmb>=v$ , it follows that $b=q$ by I. Sinoe $h$ is the right unity of $(S, < >)$

associated with right zero $u(=v),$ $<ahv>=a$ for all $a$ . Then $<amb>=a$ and $<ahv>$

$=a$ yield that $<ahv>=<amb>$ for all $a$ . Hence, it follows by II that $m=h$ and
$b=v$ . Then $<ghv>=g$ and $<ghv>=h$ , henoe $h=g$. Conversely, if $h=g$, then $<gmq>$

$=g,$ $<vmq>=v$ , and $<\ovalbox{\tt\small REJECT} v>=g$, $<vgv>=v$ . From these relations, it follows that

$m=g,$ $q=v$ by III. Furthermore, from $<vgb>=v=<vgv>$ , it follows that $b=v$ .
Consequently, $\{cgv\}=<cmb>=<cgv>=c$.

Suppose now that $e=h=g$ and $z=u=v$ . If we construct $(S$ , [ ] $)$ from $(S, < >)$

by Proposition 23, then construct $(S$, { } $)$ from $(S$, [ ] $)$ by Proposition 24, the resulting

$(S$ , { } $)$ is a HTR with the zero $z$ and the unity $e$ by Proposition 26. Actually,

such a construction can be formulated as follows:

Proposition 27. Let $(S, < >)$ be a planar ternary ring, and $e,$ $z$ be two
distinct elements in S. For any elements $c,$ $n,$ $p$ in $S$ , define the temary operati0n

$\{$ $\}$ by the following steps: i) determine an $a$ such that $<aze>=<aez>$ ; ii)

determine an $a_{1}$ such that $<a_{1}zz>=<a_{1}ez>;$ iii) determine $m,$ $q$ such that

$<amq>=<azn>and$ $<a_{1}mq>=<a_{1}zz>$ (since $e\neq z$ , it follows from i) and ii)

that $a\neq a_{1}$ by $III$ ) $;iv$) determine a $b$ such $that<a_{1}zp>=<a_{1}mb>;v$) determine an
$a_{2}$ such $that<a_{2}zc>=<a_{2}ez>;vi$) determine an $r$ such $that<a_{2}zr>=<a_{2}mb>$ ;

finally, viii) define $\{cnp\}=r$. Then $(S$, { } $)$ is a Hall ternary ring with zero $z$ and
unity $e$.

In a PTR with a left zero $v(=u)$ and a left unity $g$ associated with $v$ constructed

in Proposition 24, the condition that there is an element $a$ such that $\{aum\}=\{amu\}$

for all $m$ in $S$ is not necessarily satisfied. For this condition to be satisfied, it is necessary

and sufficient that there is a fixed element $a$ such that $<am_{1}b_{1}>=<am_{2}q_{2}>$ for all
solutions $m_{1},$ $b_{1},$ $m_{2}$ and $q_{2}$ obtained from: $<gm_{1}q_{1}>=v,$ $<vm_{1}q_{1}>=v,$ $<vm_{1}b_{1}>=m$ ,

$<gm_{2}q_{2}>=m$ , and $<vm_{2}q_{2}>=v$ for all $m$ in $S$ . The following example shows that
this is not necessarily true:

Example 7.

$x=p$ $x=q$ $x=r$

$\frac{\backslash _{m}^{b}}{p}stqr|^{\frac{pqrst}{pstrqstprqstqrpsqrpttqprs}}$ $\frac{\backslash _{m}^{b}}{p}stqr|^{\frac{pqrst}{ptsqrsqptrtspqrtsqrpqptsr}}$ $m\frac{\backslash }{l,sqrt}b|^{\frac{pqrst}{pqrtssptrqtqrsprpqtstqspr}}$
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$x=s$

$m_{S}t\frac{\backslash }{p}qrb|^{\frac{pqrst}{pqtrstpsqrtsqprtpsrqqrpst}}$

$x=t$

$\frac{\backslash _{m}^{b}}{p}stqr|^{\frac{pqrst}{pqrtsptrsqtqrpssptqrstrqp}}$

Take $v=p$ and $g=q$ . Then it follows from $<qm_{1}q_{1}>=p,$ $<pm_{1}q_{1}>=p$ that $m_{1}=r$

and $q_{1}=r$. Thus we have the following solutions:

$m=p$ $m_{1}=r$ $b_{1}=r$ $m_{2}=r$ $q_{2}=r$ $a=arbitrary$

$q$ $r$ $q$

$r$ $\gamma$ $s$

$s$ $\gamma$ $t$

$t$ $\gamma$ $p$

$q$ $s$ $q$

$t$ $t$ $s$

$p$ $r$ $t$

$s$ $p$ $s$

7. Alternative constructions of planar ternary rings with one-sided zeros
and one-sided unities.

Proposition 28. Suppose $(S, < >)$ is $a$ PTR, and $h,$ $u$ are in $S$ with $h\neq u$ .
Define a ternary operation $\{$ $\}$ as follows:

$\{amb\}=a$ $if<amb>=<ahu>$
$=<ahu>\iota f<amb>=a$

$=<amb>if$ $<amb>\neq<ahu>,$ $<amb>\neq a$ .
Then the system $(S, \{ \})$ is a planar ternary ring satisfying $\{ahu\}=a$ for all $a$ .

Proof. We note that $(S$, { } $)$ is a new coordinatization of the projective plane
induced by $(S, < >)$ . It is obtained by the coordinate transformation which changes
$(a, <ahu>)$ to ( $a,$ $a^{1},$ $(a, a)$ to $(a, <ahu>)$ on every line $[a]$ and leaves $c\infty rdinates$

of all other points unchanged. Thus $(S, \{ \})$ is a PTR. Now $\{ahu\}=a$ , sinoe in the
above definition $m=h,$ $b=u$ and $<amb>=<ahu>$ .

Proposition 29. In Proposition 28, if $u$ is a left zero of $(S, < >)$ , then
($S$, $\{$ $\}$ is $a$ PTR with a left zero $u$ and a right unity $h$ associated with $u$ .

Proof. If $<umb>=<uhu>$ , then $b=u$ and $\{umb\}=u=b$ . If $\{umb\}=u$ , then
$b=u$ and $\{umb\}=<uhu>=u=b$ . For other cases $\{umb\}=<umb>=b$ .

Combining Proposition 9 and Proposition 28, we can construct a PTR with a
left zero $u$ and right unity $h$ associated with $u$ .
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Applying the construction of Proposition 20 to the PTR with a left zero $v$ and
a right unity $g$ associated with $v$ thus obtained, we can obtain a PTR with a left zero
$v$ and a unity $g$ assoeiated with the left zerc $v$ .

Proposition 30. Suppose $(S, < >)$ is $a$ PTR satisfying $<ahu>=a$ for all
$a$ in $S$ and two fixed elements $h\neq u$ . Define

$\{amb\}=<amb>tfm\neq u$ ,

$\{aub\}=<aud>$ , where $d$ is determined $from<bud>=b$ .
Then $(S$ , { } $)$ is $a$ PTR satisfying $\{ahu\}=a$ and $\{aua\}=a$ for all $a$ in $S$.

Proof. $(S$ , { } $)$ is obtained by changing the coordinates of the line through
the points $(u)$ and $(a, a)$ to $[u, a]$ . Now, sinoe $h\neq u$ , $\{ahu\}=<ahu>=a$ for all $a$ by
assumption, and $\{aua\}=<aud>$ , where $<aud>=a$ . Henoe $\{aua\}=a$ for all $a$ in $S$ .

Proposition 31. Suppose $(S, < >)$ is $a$ PTR satisfying $<ahu>=a$ and
$<aua>=a$ for all $a$ in $S$ and two fixed elements $h\neq u$ . Define $\{amd\}=b$ , where $b$

is determined from $<aub>=<amd>$ . Then the system $(S$ , { } $)$ is $a$ PTR with
right zero $u$ and right unity $h$ associated with $u$ .

Proof. $(S$, { } $)$ is obtained by the coordinate transformation used in Proposition
8. Sinoe $\{ahu\}=b$ is determined from $<aub>=<ahu>=a$, and $<aua>=a$, we
have $b=a$ , henoe $\{ahu\}=a$ for all $a$ . Now $\{aud\}=\prime d$, because $<aub>=<aud>$
implies $b=d$.

Combining Propositions 28, 30, and 31, we can construct a PTR with right zero
$u$ and right unity $h$ associated with $u$ .

Proposition 32. Let $(S, < >)$ be $a$ PTR, and let $u$ be a fixed element in $S$ .
Define

$\{amu\}=<amt>$ , where $t$ is determined $from<umt>=u$,

$\{amt\}=<amu>$ , if $t$ satisfies $<umt>=u$ ,

$=<amt>$ , $if<umt>\neq u$ .
Then, $(S$, { } $)$ is $a$ PTR satisfying $\{umu\}=u$ for all $m$ in $S$ .

Proof. We note that $(S$, { } $)$ is obtained by the $c\infty rdinate$ transformation
which changes $[m, t]$ through the point $(u, u)$ to $[m, u],$ $[m, u]$ to $[m, t]$ , and leaves
the coordinates of other lines unchanged. Now $\{umu\}=<umt>=u$ for $aUm$ , because
$t$ is determined from $<umt>=u$.

Proposition 33. Let $(S, < >)$ be $a$ PTR satisfying $<upu>=u$ for all $p$

and a fixed element $u$ . Let $g$ be an element of $S$ distinct from $u$ . Then, for a given
$n$, there is a unique solution $m$ satisfying $<gmu>=n$ .

Proof. By III, $<uxy>=u,$ $<gxy>=n,$ $g\neq u$ has a unique solution pair $x=m$ ,
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$y=t$. Then $<umt>=u$ . But $we_{A}^{s}have<umu>=u$ by assumption. Thus $t=u$ and
$<gmu>=n$ .

Proposition 34. Let $(S, < >)$ be $a$ PTR satisfying $<umu>=u$ for all $m$

and a fixed element $u$ . Let $g$ be a fixed element of $S$ distinct from $u$ . Define
$\{gnt\}=m$ , where $m$ is determined $from<gnt>=<gmu>$ ,

{ant} $=<ant>$ , if $a\neq g$.
Then $(S$, { } $)$ is $a$ PTR satisfying $\{umu\}=u$ and $\{gmu\}=m$ for all $m$ in $S$.

Proof. {gnu} $=m=n$, because $<gmu>=<gnu>$ implies $m=n$ by Proposition
33. Now $\{unu\}=<unu>=n$ because $g\neq u$ . The system is obtained by the $c\infty rdinate$

transformation which changes $(g, <gmu>)$ to $(g, m)$ on the line $[g]$ and leaves all the
other $c\infty rdinates$ unchanged.

Proposition 35. In Prop0siti0n 34, if $u$ is the left 2ero (then $<umu>=u$ is
obviously satisfied), then the resulting system $(S, \{ \})$ is $a$ PTR with the left 2ero
$u$ and left unity $g$ associated with $u$ .

Proof. $\{unt\}=<unt>=t$ for all $t$ , as $g\neq u$ and $u$ is the left zero of $(S, < >)$ .
Combining the constructions of Propositions 9, 34, and 35, we can construct

a PTR with left zero $u$ and left unity $g$ associated with $u$ .
Proposition 36. Suppose $g\neq u$ are in $S$ and $(S, < >)$ is $a$ PTR satisfying

$<umu>=u$ $and<gmu>=m$ for all $m$ . Define
$\{aub\}=<aut>$ , where $t$ is determined $from<gut>=b$,

$\{amb\}=<amb>$ , if $m\neq u$ .
Then, $(S$ , { } $)$ is $a$ PTR satisfying $\{umu\}=u$ for all $m$ , {gnu} $=n$ for all $n$ , and
$\{gub\}=b$ for all $b$ .

Proof. 1) For. $m=u,$ $\{uuu\}=<uut>$ , where $t$ is determined by $<gut>=u$ .
Sinoe we have $<guu>=u$ by assumption, it follows that $t=u$ . Thus $\{uuu\}=u$ as
$<uuu>=u$ . If $m\neq u$ , then $\{umu\}=<umu>=u$ by assumption. 2) By definition
$\{gub\}=<gut>=b$, as $t$ is determined from $<gut>=b$ . $3$) If $n=u$ , then $\{guu\}=u$ by
2). If $n\neq u$ then {gnu} $=<gnu>=n$ by assumption.

We note that $(S$ , { } $)$ is obtained by the $c\infty rdinate$ transformation which
changes the coordinates $[u, t]$ of the line through $(u)$ and $(g, m)$ to the coordinates

$[u, m]$ and leaves all other $c\infty rdinates$ unchanged.

Proposition 37. Suppose $g\neq u$ are in $S$, and $(S, < >)$ is $a$ PTR satisfying
$<umu>=u$ for all $m$ , $<gnu>=n$ , for all $n$ , and $<gub>=b$ for all $b$ . Define
$\{amb\}=d$, where $d$ is determined $from<aud>=<amb>$ . Then $(S$, { } $)$ is $a$ PTR
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with right zero $u$ , left unity $g$ associated with $u$ , and for all $m$ in $S,$ $\{umu\}=u$ .
Proof. Note that $(S$, { } $)$ is obtained by the coordinate transformation used

in Proposition 8. 1) As $<aud>=<aub>$ implies $d=b,$ $\{aub\}=b$ for $aUa,$ $b$ . $2$) Because

$d=<gud>=<gnu>=n$ , {gnu} $=n,$ $3$) Sinoe $<uud>=<umu>=u=<uuu>$ implies
$d=u$ , we have $\{umu\}=u$ .

Combining Propositions 32, 34, 36, and 37, we can obtain a PTR with right
zero $u$ and left unity $g$ associated with $u$ . Furthermore if the construction in Proposition
19 is applied to this PTR with right zero $u$ and a left unity $k(=g)$ associated with $u$ .
we can obtain a PTR with right zero $u$ and unity $k$ associated with $u$ .

$\ovalbox{\tt\small REJECT}\rightarrow$
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