FITEGEEA N

ALMOST-CONTINUOUS MAPPINGS

M. K. SiNcAL and AsHA RANI SINGAL

(Received August 14, 1968)

1. INTRODUCTION

The object of the present paper is to introduce a new class of mappings called
almost—continuous mappings. This class contains the class of continuous mappings and
is contained in the class of weakly—continuous mappings (see definition 2.3 below).
Almost-continuous mappings turn out to be the natural tool for studying almost—compact
spaces (A space is said to be almost—compact if each open cover has a finite subfamily
whose closures cover the space) of Alexandroff and Urysohn as also nearly-compact
spaces (A space is said to be nearly-compact if every open cover has a finite subfamily
the interiors of the closures of whose members cover the space) in as much as every
almost—-continuous image of an almost-compact space is almost—compact and every almost—
continuous open image of a nearly-compact space is nearly—compact [17]. Various
properties of such mappings have been discussed in section 2. Section 3 is concerned
with almost-open and almost—closed mappings obtained as generalisations of open and
closed mappings respectively. In the last section, the notion of almost-quasi-compact
mappings has been introduced and the relations of such mappings with other types of
mappings introduced in sections 2 and 3 have been investigated.

A set A is called regularly-open, if it is the interior of its own closure or
equivalently, if it is the interior of some closed set. A is called regularly—closed, if it is the
closure of its own interior or equivalently, if it is the closure of some open set.

2. ALMOST-CONTINUOUS MAPPINGS

Definition 2.1. A mapping f: X=Y is said to be almost-continuous at a point
xeX, if for every neighbourhood M of f(x) there is a neighbourhood N of x such
that f(N) c M. It is easy to see that the neighbourhoods M and N can be replaced
by open neighbourhoods.

Remark 2.1. It is clear that if f: X — Y is continuous at a point xeX, then it
is almost—continuous at x. But the converse of this statement may not be true, as the
following example shows.

Example 2.1. Let R be the set of real numbers and let T consist of ¢, R and
the complements of all countable subsets of R. Let X={q, b} and let I*={X, ¢, {a} }.

Let f:(R, %) — (R, Z*) be defined as follows: f (x)={a if # is rational, Then f is almost—

b if x is irrational.
continuous at each point of R, but f is not continuous at xeR if x is rational.
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Theorem 2.1. For a mapping f: X — Y, the following are equivalent :

(a) f is almost—continuous at xeX.

(b) For each regularly-open neighbourhood M of f(x), there is a neighbourhood
N of x such that f(N) c M.

(c¢) For each net {x:}..p converging to x, the net {f(x:)}ip ts eventually in
every regularly open set containing f(x).

Proof. (a)=(b). If f is almost—continuous at x and M is a regularly-open
neighbourhood of f(x), then there is a neighbourhood N of x such that f(N)c M—°=M.

(b)= (c). Let {x:}ip be a net converging to x and let U be any regularly-open
set containing f(x). Since f is almost-continuous, there is an open set M containing x
such that f(M) c U. Now, since M is an open set containing x and the net {x;}ip
converges to %, therefore there is a 2,¢eD such that 4 > 2, = x;eM. The set D is directed
by ‘>’ Thus, for all 1= 2, f(x:)ef(M)c U. Hence the net is eventually in U.

(c)=»(a). Suppose that f is not almost—continuous at x. Then there is an open
set V containing f(x) such that for every open set U containing x, f(U) N (Y~V -0 #4.
This implies that U N f~1 (Y~V =% +¢ for every open set U containing x. The family
U of all open sets U containing x is directed by set inclusion. For each Uell choose a
point xy belonging to U N f~1 (Y~V ~%. Then {#;}yq is a net in X which converges
to x and is such that no f(x,) is in V-°% Thus {f(x)}yas is not eventually in the
regularly—open set V% which is a contradiction.

Definition 2.2. A mapping f: X — Y is said to be almost—continuous if it is

almost—continuous at each point x of X.

Remark 2.2. An almost-continuons mapping may fail to be continuous. The
mapping f of example 2.1 is an almost—continuous mapping which is not continuous.
The following is another example of such a mapping.

Example 2.2. Let (R, ) be the space of example 2.1 and let Il denote the usual
topology for R. Let i be the identity mapping of (R, U) onto (R, %). Then 7 is almost—
continuous but not continuous (at any point !).

Remark 2.3. The inverse of an almost—-continuous one-to-one mapping may fail

to be almost—continuous. In fact, the inverse of the mapping ¢ of example 2.2 is not

almost continuous (at any point !).
Theorem 2.2. For a mapping f : X = Y, the following are equivalent :

(a) f is almost—continuous.
(b) Inverse image of every regularly-open subset of Y is an open subset of X.
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(¢) Inverse image of every regularly—closed subset of Y is a closed subset of X.

(d) For each point x of X and for each regularly-open neighbourhood M of
f(x), there is a neighbourhood N of x such that f(N) c M.

(e) fH(A)c [f"1(A ) for every open subset A of Y.

(f) FHB-01~ < f1(B) for every closed subset B of Y.

(&) For any point xeX and for any net (%}, which converges to x, the net
{f(X)}ap is eventually in each regularly-open set containing f(x).

Proof. (a)= (). Let U be any regularly-open subset of Y and let xef~1(U).
Then f(x) eU. Therefore there exists an open set V in X such that xV and fiV)c
U°=U. Thus, xV c f~t(U) and therefore J~1(U) is a neighbourhood of x. Hence
f1(U) is open.

(b)=(c). Let A be any regularly—closed subset of Y. Then Y~A is regularly—
open and therefore f~! (Y~A) is open, that is, X~f-! (A) is open. Hence f-1(A) is
closed.

(c)=(d). Since M is regularly-open, therefore Y~M is regularly—closed, and
consequently f~!(Y~M) is closed, i.e., f~'(M) is open. Also, xef 1 (M)=N (say).
Then N is a neighbourhood of x such that f(N)c M.

(d)=(e). Let xef1(A). Then A° is a regularly—open neighbourhood of f(x),
since A is open. Then, there exists an open neighbourhood N of x such that FUN)C A,
Thus, 2N C f~1(A~°). This means that xe [f~*(A-9]° Hence STHA)c 1A

()= (f). Since Y~B is open, therefore f-'(Y~B)c [f-! (Y~B)°. This
implies that [ X~ f~1(Y~B)]-c f~!(B),i.e.,, [f~ (B°)]~ c f1(B).

(f)=(g). Let N be any regularly-open set containing f(x. Then, Y~N
being closed, [f~(( Y~N)-)]-cC f~1(Y~N ). Since Y~N is regularly—closed, therefore
FHUY~N)"cX~f*(N). This means that f~1(N)c [f*(N)]°. Thus SY(N) isan
open set containing x. Since the net {x,}.., converges to x, therefore there exists A,eD
such that for all 2>2, (D is directed by =) x;¢f~*(N). This means that Jf(x)eN
for all 2 > 4, i.e, the net {f(x)}1p is eventually in V.

(g)=(a). By using (c) of theorem 2.1, it is clear that f is almost—continuous.

This completes the proof of the theorem.

Definition 2.3. A mapping f: X > Y is said to be weakly—continuous if for
each point xeX and each neighbourhood V' of f(x), there exists a neighbourhood U

of x such that f(U)cV [2]. It is easy to see that the ‘neighbourhoods’ in the
definition can be replaced by ‘open neighbourhoods'.
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Remark 2.4. Obviously, every almost—continuous mapping is weakly—continuous.
But a weakly—continuous mapping may fail to be almost-continuous. The following is

an example.

Example 2.3. Let (R, ¥) be the space of example 2.1. Let X={a, b, ¢} and let
$*={g, X, {a}, {c}, {a,c}}. Let f be the mapping of (R, T) into (X, T¥) defined as

follows :

f(x)={;)z llff ’;‘ 1lss li-?;;ct)irgﬁ;ﬂ Then f is a weakly—continuous mapping which is not

almost-continuous (at any rational point).

However, we have the following :

Theorem 2.3. If f: X — Y is a weakly-continuous open mapping, then f is
almost—continuous.

Proof. Let xeX and let M be any neighbourhood of x. Since f is Weakly—
continuous, there is an open neighbourhood N of x such that f(N )c M. Since f is open,
therefore f(N) is open. Then f(N) < M~° and consequently f is almost—continuous.

Corollary 2.1. An open mapping is almost-continuous iff it is weakly-
continuous.

Definition 2.4. A space is said to be semi-regular if for each point x of the
space and each open set U containing x, there is an open set V such that x:VcV™°
cU (3).

Theorem 2.4. If f is an almost-continuous mapping of a space X into a
semi-regular space Y, then f is continuous.

Proof. Let xX and let A be an open set containing f(x). Since Y is semi-
regular, there is an open subset M of Y such that f(x)eM c M~ c A. Now, since
f is almost—continuous, therefore there is an open subset U of X containing x such
that f(x) e f(U)c M~ Thus U is an open set containing x such that f(U)c A.
Thus f is continuous at x. Since x is arbitrary, it follows that f is continuous.

Theorem 2.5. If f is an open continuous mapping of X onto Y and if g
is a mapping of Y into Z, then gof is almost-continuous iff g is almost—-continuous.

Proof. First, let gof be almost—continuous. Let A be a regularly-open subset of
Z. Since gof is almost-continuous, therefore (gof)™(A) is open, that is, ft(g~*(A4))
is open. Also, f is open. Therefore f[f~*(g7*(A))] is open, that is, g7'(A) is open
and consequently g is almost-continuous.

Now, let g be almost—continuous and let S be any regularly-open subset of Z
Then g~'(A) is an open subset of Y. Since f is continuous, therefore f (g !(A))
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is an open subset of X, i.e., (gof)"1(A) is an open subset of X. Hence gof is almost—

continuous.

Theorem 2.6. Every restriction of an almost-continuous mapping is almost—
continuous.

Proof. Let f be an almost—continuous mapping of X into Y and let A be any
subset of X. For any regularly—open subset S of Y, (f/ A)1(S)=A Nf1(S). But, f
being almost—continuous, f~*(S) is open and hence A N f~!(S) is a relatively open subset
of A, i.e, (f/ A)1(S) is an open subset of A. Hence f/ A is almost-continuous.

Theorem 2.7. Let f map X into Y and let x be a point of X. If there exists
a neighbourhood N of x such that the restriction of f to N is almost-continuous at
x, then f is almost-continuous at x.

Proof. Let U be any regularly-open set containing f(x). Since f/ N is almost-
continuous at x, therefore, there is an open set V; such that xeNNV,; and f(NNV,)cU.
The result now follows from the fact that NNV, is a neighbourhood of x.

Corollary 2.1. Let f map X into Y and let {G;: AeA} be an open cover of X.
If for each Zed, f/ G, is almost-continuous at each point of G then f is almost-
continuous.

Theorem 2.8. If f is a mapping of X into Y and X=X,UX,, where X
and X, ave closed and f/ X, and f/ X, are almost-continuous, then f is almost-

continuous.

Proof. Let A be a regularly—closed subset of Y. Then, since f/ X; and f/ X;
are both almost—continuous, therefore (f/ X;)"'(A) and (f/ X;)'(A) are both closed
in X, and X, respectively. Since X; and X, are closed subsets of X, therefore (f/ X;)™!
(A) and (f/X,)™ (A) are also closed subsets of X. Also, f~1(A)=(f/ Xi) 1 (A)U(f/ X,)™?
(A). Thus f~'(A) is the union of two closed sets and is therefore closed. Hence f is

almost—continuous.

Theorem 2.9. If fis a mapping of X into Y and X=X, U Xz, and if /X,
and f/ X, are both almost—continuous at a point x belonging to XiNX,, then f is
- almost-continuous at x.

Proof. Let U be any regularly-open set containing f(x). Since xeX;NX; and
f/ X1, f/ X are both almost—continuous at x, therefore there exist open sets V,; and
V. such that xX;NV, and f(X;NV,)cU, and xX:NV, and f(X:NV,)cU. Now,
since X=X;UX,, therefore f(ViNVy)=f(XinViNV)UAX:NViNV)CF(XinNV) US
(X2NVy)cU. Thus, ViNV:(=V) is an open set containing x such that f(V)cU and
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hence f is almost—continuous at x.

Thorem 2.10. Let f.:X.—> X, be almost—continuous for each acl and let f :
T1X,— [IX: be defined by setting f((x.))=(fu(xa)) for each point (x.) el X,. Then f is
ael

ael ael

almost—continuous.

Proof. Let (x.) eH X. and let O* be a regularly-open subset of I/ X, containing
f((xa)). Then there is a member 17 O‘ of the defining base of the product topology on
g X such that f((x.)) eH O.cO* and O:=X: for all ael except for a finite number of
indices ay, i=1,2, - --,n(say) and O, is an open subset of X;,i=1,2,:-,n. Now,
since O* is regularly—open, therefore [T0;’c O*. Thus, each a;, fo; (%«;) eO,iCOZi and fo,
being almost—continuous, there is an open subset U,; of X, such that x.; eUs.; and f;
(Xa;) €fo; (Uag)© O Thus, ITU where U,=X, when a#a;, i=1,2,--#n, is an open

set containing (x.) such that f (H U.)c O*. Hence f is almost-continuous.

Theorem 2.11. Let h: X — I{Xﬂr be almost—continuous. For each ael, define
fai: X — X, by setting f.(x)=(h(x))e. Then f. is almost-continuous for all ael.

Proof. Let P, denote the projection of X into X.. Then P.oh=f, for each a.
Now P, is open and continuous for each a and % is almost—continuous. Therefore by
theorem 2.5, P.oh is almost-continuous, i.e., f, is almost-continuous for each a.

Definition 2.5. A point x of a subset A of a space is called a boundary point
of A if it is not an interior point of A [4].

Theorem 2.12. The set of all points of X at which f: X —Y is not almost-
continuous is identical with the union of the boundaries of the inverse images of
regularly—open subsets of Y.

Proof. Suppose f is not almost—continuous at a point xeX. Then there exists a
regularly-open set V such that f(x) eV and for every open set U containing x, we have
FUN(Y~V)# ¢. Thus, for every open set U containing x, we must have U N
[X~f-1(V)]#¢. Therefore x cannot be an interior point of f~*(V). But x belongs
to f~1(V). Hence x is a point of the boundary of f~* (V).

Now, let x belong to the boundary of f~1(G) for some regularly-open subset G
of Y. Then f(x) belongs to G. If f is almost—continuous at x, then there is an open
set U such that x belongs to U and f(U)cG. Thus xUc f*(f(U))c f(G)
Therefore x is an interior point of f~1(G), which is a contradiction. H ence f is not
almost-continuous at %.

Definition 2.6. A space is called a Urysohn space if for every pair of distinct

points x and y, there exist open sets U and V such that xeU, yeV and UNV=¢ [5].
Theorem 2.13. If f is a weakly-continuous, one-to-one mapping of X onto Y
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and if X is compact and Y is Urysohn, then f is open.
Proof. Let A be an open subset of X. Then X~A, being a closed subset

of the compact space X, is compact. Since every weakly—continuous image of a compact
space is almost-compact, therefore f(X~A), is almost—compact [6]. Since f is one-to—
one, therefore, f (X~A)# Y~f(A), whence Y~f(A) is almost—compact. Since Y is a
Urysohn space, therefore Y~f(A) is closed and hence f(A) is open.

Corollary 2.2. If f is an almost—continnous, one-to-one mapping of X onto
Y and if X is compact and Y is Urysohn, then f is open.

Proof. Every almost—continuous mapping is weakly—-continuous.

Defiuition 2.7. A space X is said to be almost-regular if for each regularly-
closed set A and each point x¢A, there are disjoint open sets U and V such that
xU, ACV [7].

Theorem 2.14. If f is an almost-continuous, closed mapping of a regular

space X onto a space Y such that f~1(y) is compact for each point yeY, then Y is
almost-regular.

Proof. Let A be a regularly—closed subset of Y and suppose that y¢A. Then,
SN f1(A)=¢,f1(A) is closed by the almost continuity of f and f1(y) is compact.
Since X is regular, there exist disjoint open sets G and H such that S HA)CG, f~1(y)
CH. Now, let P={z:f"!(z2)cG} and Qu={z:f'(2)cH}. Then, yeP, ACQ, PNQ=4¢.
Also since f is closed, therefore P and Q are open. Hence Y is almost-regular.

Theorem 2.15. If f is an almost-continuous, closed mapping of a normal
space X onto a space Y, then any two disjoint regularly—closed subsets of Y can be
strongly separated.

Proof. Let A and B be two disjoint regularly—closed subsets of Y. Then ft(A)
and f~(B) are disjoint, closed subsets of the normal space X and therefore there exist
open sets G and H such that GNH=¢, f! (A)CG, f~{B)cH. Let P={y: f1(y)cG}
and Q={y: f'(y)cH}. Then, since fis closed, therefore P and Q@ are open sets.
Also, AcP,Bc@ and PN Q=¢. Hence the result.

3. ALMOST-OPEN AND ALMOST-CLOSED MAPPINGS.
Definition 3.1. A mapping f: X —> Y is said to be almost-open if the image
of every regularly—-open subset of X is an open subset of Y.

Definition 3.2. A mapping f: X - Y is said to be almost-closed if the image
of every regularly—closed subset of X is a closed subset of Y.

Remark 3.1. A one-to-one mapping is almost-open iff it is almost—closed.
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Remark 3.2. Obviously, every open (closed) mapping is almost-open (almost—closed).
But the converse of this statement is not necessarily true as is shown by the following
example.

Example 3.1. Let (R, ¥) and (R, 1), be the spaces of example 2.2. Let i be the
identity mapping of (R, %) onto (R, 11). Then, ¢ is almost-open and almost—closed but
it is neither open nor closed.

Definition 3.3. A mapping f: X — Y is said to be O-continuous if for each
point xeX and each meighbourhood U of f(x), there is a neighbourhood V of x such
that f(V)cU [8].

Remark 3.3. It is clear that every f#-continuous mapping is weakly-continuous.
A 6-continuous mapping may fail to be almost continuous. In fact, the mapping f defined
in example 2.3 is f-continuous but not almost—continuous. We do not know, however,
whether every almost—-continuous mapping is f-continuous or not.

Theorem 3.1. If f is a one-to—one, 6—continuous mapping of X onto Y and
if X is almost-compact, Y is Urysohn, then f is almost-open. ‘

Proof. Let A be a regularly-open subset of x. Then X~A, being a regularly-
closed subset of the almost—compact space X is itself almost-compact. Also, it is known
that the f—continuous image of an almost-compact space is almost-compact [8]. Therefore
F(X~A) is an almost-compact subset of the Urysohn space Y and is therefore closed.
Thus f{X~A)=Y~ f(A) is closed, whence f(A) is open and consequently f is an
almost-open mapping.

Theorem 3.2. If f: X =Y is an almost—closed mapping of X onto Y, then
for every regularly-open subset G of X and for every point yeY such that f~' (y)CG,
we have, ye [ f(G)]° ‘

Proof. Since G is regularly-open, therefore X~G is regularly—closed. Since fis
almost—continuous, therefore f(X~G) is closed. Since f~!(y)CG, therefore y¢ f(X~G).
Hence there must exist an open set U containing y such that UN f(X~G)=¢. Then
yeUC f(G) and consequently y is an interior point of f(G).

Corollary 3.1. If f: X— Y is an almost-closed mapping of X onto Y, then
for each set SCX and for each point xeX, such that f~'(f(x)) C S°, we have, fl(x)
e [F(S°)7°.

The following two theorems give sufficient conditions for an almost—closed rﬂapping
to be continuous.

Theorem 3.3. If f is an almost-closed mapping of an almost-regular space
X onto a compact space Y with regularly-closed point inverses, then f is continuous.




ALMOST-CONTINUOUS MAPPINGS 71

Proof. Suppose f is not continuous at a point x¢X. Then there exists an open
set M containing f(x) such that f(N)N Y~M=+¢ for every open set NN containing x.
Since f is almost—closed and N is regularly—closed therefore f(N) is closed. Also Y~M
is closed. Thus {f(N)N(Y~M): N is open and xeN} is a family of closed subsets of
Y. Also this family must have finite intersection property, for if there exists a finite
number of open seti Ny, +-+, N, such that xeN; for each i=1, .-+, n z:nd if ‘ri [F(N:)N
(Y~M)]=¢ then n N; is an open set containing ¥ and (Y~M)N f ({QINi) c(Y~M)n

f(ﬁlNi-)c (Y~M) N [‘ri (N =‘r§1(Y~M) N (f(N:))=¢, which is a contradiction.
Therefore {fIN)N(Y~M): N is open and xcN} is a family of closed subsets of Y
with finite intersection property. Since Y is compact, N {f(N) N (Y~M): N is open
and xeN}+#¢. Let ¥ belong to this intersection. Then ¥’ # f(x). Therefore xef=*(y').
But f-!(y) is regularly-closed and X is almost-regular. Therefore there exist disjoint
open sets U and V such that xeU, f-(y)cV. But VNU=¢ = VN U=¢. Therefore
¥ ¢f(U). But this is a contradiction to the fact that y' belongs to f (NYN Y~M for
every open set N containing x. Hence f must be continuous at x. But x is an arbitrary
point of X. Therefore f is continuous.

Definition 3.4. A mapping f of X into Y has at worst a removable
discontinuity at a point xeX if there is a point yeY such that for each neighbourhood
V of y, there is a neighbourhood U of x such that f(U—{x})CV.

Theorem 3.4. If f is an almosi—closed mapping of an almost-regular space X
onto a space 'Y with regularly—closed point inverses, then if f has at worst a removable
discontinuity at x,ecX then f is continuous at xo.

Proof. If x, is isolated in X, the result is obviously true. Assume that x, is
non-isolated and that f is not continuous at %. Let ¥ be the point of Y determined by
the hypothesis. Since y+# f(x) and f~1(y) is regularly closed, an open neighbourhood U
of x, exists such that f~1(y) N U=¢. Then, because U is regularly—closed, therefore
f(O) is closed and hence a neigbourhood V of y exists for which V n f(U)=¢. There
is a neighbourhood W of x, such that f(W—{x})cV. Since %, is non-isolated, UN
(W—{x%))#¢. Hence ¢+ f(W—{%]}) N f(U)c VN f(U), which is a contradiction.

4. ALMOST-QUASI-COMPACT MAPPINGS.
Definition 4.1. A mapping f: X — Y is said to be almost-quasi-compact if it
is onto and if A is open whenever f~1(A) is regularly-open.

Remark 4.1. An onto mapping f is almost—quasi-compact iff S is closed
whenever f~1(S) is regularly-closed.
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Remark 4.2. Clearly, every quasi-compact map is almost-quasi-compact. But an
almost—quasi-compact mapping may fail to be quasi-compact. The following is an example.

Example 4.1. Let (R,%) be the space of example 2.1. Let X={a,b} and let
I*={X, ¢, {a}}. Let f be a mapping of (R, ) onto (X, T*) defined as follows :

_ fa if x is rational,
fla= {b if x is irrational.

Then f is almost—quasi-compact but not quasi-compact.

Theorem 4.1. A mapping f of X onto Y is almost-quasi-compact iff the
image of every regularly-open inverse set is open.

Proof. First, let f be almost—quasi-compact and let A be any regularly-open
inverse set. Then since f1[f(A)] =A is regularly-open, therefore f(A) is open.
Conversely, if f~1(S) be regularly-open, then because f~1(S) is a regularly-open inverse
set, therefore f[f~1(S)] is open, that is S is open and hence f is almost—quasi-compact.

Corollary 4.1. A mapping f of X onio Y is almost-quasi-compact iff the
image of every regularly—closed inverse set is closed.

Theorem 4.2. If f is a one-to—one mapping of X onto Y, then the following
properties are equivalent :

(a) f is almost-open.

(b) f is almost—closed.

(¢) f is almost-quasi—compact.

(d) f' is almost—continuous.

Proof. (a)=(b). Let A be a regularly—closed subset of X. Then X~A is
regularly-open. Therefore f(X~A) is open, that is, Y~ f(A) is open. Thus f(A) is
closed and consequently f almost—closed.

(b)= (c). Let f~1(S) be regularly—closed. Then, f(f1(S)) is closed, that is, S
is closed and hence f is almost—quasi-compact.

(c)=(d). Let U be a regularly-open subset of X. Then f(f(U))=U i

regularly-open. Hence f(U) is open, that is, (f~*)~*(U) is open and therefore f~! is
almost-continuous.

-
»

(d)=(a). If A is a regularly-open subset of X. Then (f~!)~'(A) is an open
subset of Y and thus f is almost-open.

Theorem 4.3. Suppose that f maps X onto Y and g maps Y onto Z. Then
if f is almost-continuous and if gof is open (resp. closed, quasi-compact) then g is
almost-open (resp. almost—closed, almost—quasi—compact).

Proof. Suppose first that f is almost—continuous and gof is open (closed). Let S
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be any regularly-open (regularly—closed) subset of Y. Since f is almost—continuous,
therefore f=!(S) is an open (closed) subset of X. Now, gof is open (closed). Therefore
(gof)(f71(S)) is open (closed). But (gof)(f~1(S))=g(S). Thus g(S) is open (closed).
Hence g is almost-open (almost—closed).

Now, let f be almost-continuous and let gof be quasi-compact. Let £71(S) be a

regularly-open subset of Y. Then, by almost-continuity of S (g1 (S)) is open. But
S71(g71(9)) is (gof)* (S). Therefore, since gof is quasi-compact, S must be open whence
& is almost—quasi—compact.

(13
(23]
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