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1. INTRODUCTION

The object of the present paper is to introduce a new class of mappings called
almost-continuous mappings. This class contains the class of continuous mappings and
is contained in the class of weakly-continuous mappings (see definition 2.3 below).

Almost-continuous mappings turn out to be the natural tool for studying almost-compact
spaces (A space is said to be almost-compact if each open cover has a finite subfamily
whose closures cover the space) of Alexandroff and Urysohn as also nearly-compact
spaces (A space is said to be nearly-compact if every open cover has a finite subfamily
the interiors of the closures of whose members cover the space) in as much as every
almost-continuous image of an almost-compact space is almost-compact and every almost-
continuous open image of a nearly-compact space is nearly-compact [1]. Various
properties of such mappings have been discussed in section 2. Section 3 is concerned
with almost-open and almost-closed mappings obtained as generalisations of open and
closed mappings respectively. In the last section, the notion of $almost-quasi-\infty m\mu ct$

mappings has been introduced and the relations of such mappings with other types of
mappings introduced in sections 2 and 3 have been investigated.

A set $A$ is called regularly-open, if it is the interior of its own closure or
equivalently, if it is the interior of some closed set. $A$ is called regularly-closed, if it is the
closure of its own interior or equivalently, if it is the closure of some open set.

2. ALMOST-CONTINUOUS MAPPINGS

Definition 2.1. A mapping $f:X\rightarrow Y$ is said to be almost-continuous at a point
$x\epsilon X$, if for every neighbourhood $M$ of $f(x)$ there is a neighbourhood $N$ of $x$ such
that $f(N)\subset M^{-0}$ . It is easy to see that the neighbourhoods $M$ and $N$ can be replaced
by open neighbourhoods.

Remark 2.1. It is clear that if $f:X\rightarrow Y$ is continuous at a point $x\epsilon X$, then it
is almost-continuous at $x$. But the converse of this statement may not be true, as the
following example shows.

Example 2.1. Let $R$ be the set of real numbers and let $\mathfrak{T}$ consist of $\phi,$ $R$ and
the complements of all countable subsets of $R$ . Let $X=\{a, b\}$ and let $\mathfrak{T}^{*}=\{X, \phi, \{a\}\}$ .
Let $f:(R, \mathfrak{T})\rightarrow(R, \mathfrak{T}^{*})$ be defined as follows: $f(x)=\left\{\begin{array}{l}a if x is rational,\\b if x is irrational. Then f is almost-\end{array}\right.$

continuous at each point of $R$, but $f$ is not continuous at $x\epsilon R$ if $x$ is rational.
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Theorem 2.1. For a mapping $f:X\rightarrow Y$, the following are equivalent:

$(a)f$ is almost-continuous at $x\epsilon X$.
$(b)$ For each regularly-open neighbourhood $M$ of $f(x)$ , there is a neighbourhood

$N$ of $x$ such that $f(N)\subset M$.
$(c)$ For each net $\{x_{\lambda}\}_{\lambda\epsilon D}$ converging to $x$, the net $\{f(x_{\lambda})\}_{\lambda\epsilon D}$ is eventually in

every regularly open set containing $f(x)$ .

Proof. $(a)\sim(b)$ . If $f$ is almost-continuous at $x$ and $M$ is a regularly-open
$neighbourh\infty d$ of $f(x)$ , then there is a neighbourhood $N$ of $x$ such that $f(N)\subset M^{-0}=M$.

$(b)\sim(c)$ . Let $\{x_{\lambda}\}_{\lambda\text{\’{e}} D}$ be a net converging to $x$ and let $U$ be any regularly-open
set containing $f(x)$ . Since $f$ is almost-continuous, there is an open set $M$ containing $x$

such that $f(M)\subset U$. Now, since $M$ is an open set containing $x$ and the net $\{x_{\lambda}\}_{\lambda\cdot D}$

converges to $x$, therefore there is a $\lambda_{0}\epsilon D$ such that $\lambda\geq\lambda_{0}\sim x_{\lambda}\epsilon M$. The set $D$ is directed
by $‘\geq’.$ Thus, for all $\lambda\geq\lambda_{0},f(x_{\lambda})\epsilon f(M)\subset U$. Hence the net is eventually in $U$.

$(c)\sim(a)$ . Suppose that $f$ is not almost-continuous at $x$. Then there is an open
set $V$ containing $f(x)$ such that for every open set $U$ containing $x,$ $ f(U)\cap(Y\sim V^{-0})\neq\phi$ .
This implies that $ U\cap f^{-1}(Y\sim V^{-0})\neq\phi$ for every open set $U$ containing $x$. The family
$U$ of all open sets $U$ containing $x$ is directed by set inclusion. For each $ U\epsilon Uch\infty\Re$ a
point $x_{U}$ belonging to $U\cap f^{-1}(Y\sim V^{-0})$ . Then $\{x_{U}\}_{U\epsilon 11}$ is a net in $X$ which converges
to $x$ and is such that no $f(x_{U})$ is in $V^{-0}$ . Thus $\{f(x_{U})\}_{U\epsilon u}$ is not eventually in the
regularly-open set $V^{-0}$ , which is a $ntradiction$ .

Definition 2.2. A mapping $f:X\rightarrow Y$ is said to be almost-continuous if it is
almost-continuous at each point $x$ of $X$.

Remark 2.2. An almost-continuons mapping may fail to be continuous. The
mapping $f$ of example 2.1 is an almost-continuous mapping which is not $ntinuous$.
The following is another example of such a mapping.

Example 2.2. Let $(R, \mathfrak{T})$ be the space of example 2.1 and let $\mathfrak{U}$ denote the usual
topology for $R$ . Let $i$ be the identity mapping of $(R, \mathfrak{U})$ onto $(R, \mathfrak{T})$ . Then $i$ is almost-
continuous but not continuous (at any point !).

Remark 2.3. The inverse of an almost-continuous $one-toane$ mapping may fail
to be $almost\prec:ontinuous$ . In fact, the inverse of the mapping $i$ of example 2.2 is not

almost continuous (at any point !).

Theorem 2.2. For a mapping $f$ : $X\rightarrow Y$, the following are equivalent:

$(a)f$ is almost-continuous.
$/h1$ $r_{uop\nu cp}imnm’$) $f_{pp\nu\alpha},$ $mm/Jn\nu h-n1,pm$ ctth $cztnf1^{\Gamma}:QnunAmc\prime\prime h\circ p\prime nfY$
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$(c)$ Inverse image of every regularly-closed subset of $Y$ is a closed subset of $X$.
$(d)$ For each point $x$ of $X$ and for each regularly-open neighbourhood $M$ of

$f(x)$, there is a neighbourhood $N$ of $x$ such that $f(N)\subset M$.
$(e)f^{-1}(A)\subset[f^{-1}(A^{-0})]^{0}$ for every open subset $A$ of Y.
$(f)$ ($\Gamma^{1}(B^{-0})]^{-}\subset f^{-1}(B)$ for every closed subset $B$ of Y.
$(g)$ For any point $x\epsilon X$ and for any net $\{x_{\lambda}\}_{\lambda\text{\’{e}} D}$ which converges to $x$, the net

$\{f(x_{\lambda})\}_{\lambda_{D}}$ is eventually in each regularly-open set containing $f(x)$ .
Proof. $(a)\sim(b)$ . Let $U$ be any $regularly\prec$)$oen$ subset of $Y$ and let $x\epsilon f^{-1}(U)$ .

Then $f(x)\epsilon U$. Therefore there exists an open set $V$ in $X$ such that $x\epsilon V$ and $ f(V)\subset$

$\overline{U}^{0}=U$. Thus, $x\epsilon V\subset f^{-I}(U)$ and therefore $f^{-1}(U)$ is a neighbourhood of $x$. Hence
$f^{-1}(U)$ is open.

$(b)\sim(c)$ . Let $A$ be any regularly-closed subset of Y. Then $Y\sim A$ is regularly-
open and therefore $f^{-1}(Y\sim A)$ is open, that is, $X\sim f^{-1}(A)$ is open. Hence $f^{-1}(A)$ is
closed.

$(c)\Rightarrow(d)$ . Since $M$ is regularly-open, therefore $Y\sim M$ is regularly-closed, and
consequently $f^{-1}(Y\sim M)$ is closed, $i$ . $e.,$ $f^{-1}(M)$ is open. Also, $x\epsilon f^{-1}(M)=N$ (say).
Then $N$ is a neighbourhood of $x$ such that $f(N)\subset M$.

$(d)\sim(e)$ . Let $x\epsilon f^{-1}(A)$ . Then $\overline{A}^{0}$ is a regularly-open $neighbourh\infty d$ of $f(x)$ ,
since $A$ is open. Then, there exists an open neighbourhood $N$ of $x$ such that $f(N)\subset A^{-0}$ .
Thus, $x\epsilon N\subset f^{-1}(A^{-0})$ . This means that $x\epsilon[f^{-1}(A^{-0})]^{0}$ . Hence $f^{-1}(A)\subset[f^{-1}(A^{-0})]^{0}$ .

$(e)\sim(f)$ . Since $Y\sim B$ is open, therefore $f^{-1}(Y\sim B)\subset[f^{-1}(\overline{Y\sim B)}^{0}]^{0}$ . This
implies that $[X\sim f^{-1}(\overline{Y\sim B})^{0}]^{-}\subset f^{-1}(B),$ $i.e.,$ $[f^{-1}(B^{0-})]^{-}\subset f^{-1}(B)$ .

$(f)\sim(g)$ . Let $N$ be any regularly-open set containing $f(x)$ . Then, $Y\sim N$

being closed, $[f^{-1}((Y\sim N)^{0-})]^{-}\subset f^{-1}(Y\sim N)$ . Since $Y\sim N$ is regularly-closed, therefore
$[f^{-1}(Y\sim N)]^{-}\subset X\sim f^{-1}(N)$ . This means that $f^{-1}(N)\subset[f^{-1}(N)]^{0}$ . Thus $f^{-1}(N)$ is an
open set containing $x$. Since the net $\{x_{\lambda}\}_{\lambda\epsilon D}$ converges to $x$, therefore there exists $\lambda_{0}\epsilon D$

such that for all $\lambda\geq\lambda_{0}$ ($D$ is directed by $s\geq$ ) $x_{\lambda}\epsilon f^{-1}(N)$ . This means that $J(x_{\lambda})\epsilon N$

for all $\lambda\geq\lambda_{0},$ $i.e.$ , the net $\{f(x_{\lambda})\}_{\lambda\epsilon D}$ is eventually in $N$.
$tg)o(a)$ . By using $(c)$ of theorem 2.1, it is clear that $f$ is almost-continuous.
This completes the $pr\infty f$ of the theorem.

Definition 2.3. A mapping $f$ : $X\rightarrow Y$ is said to be weakly-continuous if for
each point $x\epsilon X$ and each neighbourhood $V$ of $f(x)$ , there exists a neighbourhood $U$

of $x$ such that $f(U)\subset\overline{V}$ [2]. It is easy to see that the ‘neighbourhoods’ in the
definition can be replaced by ‘open neighbourhoods’.
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Remark 2.4. Obviously, every almost-continuous mapping is weakly-continuous.

But a weakly-continuous mapping may fail to be almost-continuous. The following is

an example.

Example 2.3. Let $(R, \mathfrak{T})$ be the space of example 2.1. Let $X=\{a, b, c\}$ and let
$\mathfrak{T}^{*}=\{\phi, X, \{a\}, \{c\}, \{a, c\}\}$ . Let $f$ be the mapping of $(R, \mathfrak{T})$ into (X, $\mathfrak{T}^{*}$ ) defined as

follows:
$f(x)=\{bifxisirrationa1aifxisrational,$ . Then $f$ is a weakly-continuous mapping which is not

almost-continuous (at any rational point).

However, we have the following:

Theorem 2.3. If $f:X\rightarrow Y$ is a weakly-continuous open mappjng, then $f$ is
almost-continuous.

Proof. Let $x\epsilon X$ and let $M$ be any neighbourhood of $x$. Since $f$ is weakly-
continuous, there is an open neighbourhood $N$ of $x$ such that $f(N)\subset\overline{M}$ . Since $f$ is open,

therefore $f(N)$ is open. Then $f(N)\subset M^{-0}$ and consequently $f$ is almost-continuous.

Corollary 2.1. An open mapping is almost-continuous iff it is weakly-

continuous.

Definition 2.4. A space is said to be semi-regular if for each point $x$ of the
space and each open set $U$ containing $x$, there is an open set $V$ such that $x_{-}^{-}\prime V\subset V^{-0}$

$\subset U[3]$ .
Theorem 2.4. If $f$ is an almost-continuous mapping of a space $X$ into a

semi-regular space $Y$, then $f$ is continuous.

Proof. Let $x\epsilon X$ and let $A$ be an open set containing $f(x)$ . Since $Y$ is semi-

regular, there is an open subset $M$ of $Y$ such that $f(x)\epsilon M\subset M^{-0}\subset A$ . Now, since
$f$ is almost-continuous, therefore there is an open subset $U$ of $X$ containing $x$ such

that $f(x)\epsilon f(U)\subset M^{-0}$ . Thus $U$ is an open set containing $x$ such that $f(U)\subset A$ .
Thus $f$ is continuous at $x$. Since $x$ is arbitrary, it follows that $f$ is continuous.

Theorem 2.5. If $f$ is an open continuous mapping of $X$ onto $Y$ and if $g$

is a mapping of $Y$ into $Z$, then $g\circ f$ is almost-continuous iff $g$ is almost-continuous.

Proof. First, let $gof$ be almost-continuous. Let $A$ be a regularly-open subset of
$Z$. Since $g\circ f$ is almost-continuous, therefore $(g\circ f)^{-1}(A)$ is open, that is, $f^{-1}(g^{-1}(A))$

is open. Also, $f$ is open. Therefore $f[f^{-1}(g^{-1}(A))]$ is open, that is, $g^{-1}(A)$ is open

and consequently $g$ is almost-continuous.

Now, let $g$ be almost-continuous and let $S$ be any regularly-open subset of $Z$.
Then $g^{-1}(A)$ is an open subset of $Y$. Since $f$ is continuous, therefore $f^{-1}(g^{-1}(A))$
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is an open subset of $X,$ $i.e.,$ $(g\circ f)^{-1}(A)$ is an open subset of $X$. Hence gof is almost-
continuous.

Theorem 2.6. Every restnction of an almost-continuous mapping is abnost-
continuous.

Proof. Let $f$ be an almost-continuous mapping of $X$ into $Y$ and let $A$ be any
subset of $X$. For any regularly-open subset $S$ of $Y,$ $(f/A)^{-1}(S)=A\cap f^{-1}(S)$ . But, $f$

being almost-continuous, $f^{-1}(S)$ is open and hence $A\cap f^{-1}(S)$ is a relatively open subset
of $A,$ $i.e.,$ $(f/A)^{-1}(S)$ is an open subset of $A$ . Hence $f/A$ is almost-continuous.

Theorem 2.7. Let $f$ map $X$ into $Y$ and let $x$ be a point of X. If there exists
a neighbourhood $N$ of $x$ such that the restriction of $f$ to $N$ is almost-continuous at
$x$, then $f$ is almost-continuous at $x$.

Proof. Let $U$ be any $regularly-\triangleleft pen$ set containing $f(x)$ . Since $f/N$ is almost-
continuous at $x$, therefore, there is an $0\mu n$ set $V_{1}$ such that $x\epsilon N\cap V_{1}$ and $f(N\cap V_{1})\subset U$.
The result now follows from the fact that $N\cap V_{1}$ is a neighbourhood of $x$.

Corollary 2.1. Let $f$ map $X$ into $Y$ and let $\{G_{\lambda} : \lambda\epsilon\Lambda\}$ be an open cover of $X$.
If for each $\lambda\epsilon\Lambda,$ $f/G_{\lambda}$ is almost-continuous at each Point of $G_{\lambda}$ , then $f$ is almost-
continuous.

Theorem 2.8. If $f$ is a mapping of $X$ into $Y$ and $X=X_{1}\cup X_{2}$ , where $X_{1}$

and $X_{2}$ are closed and $f/X_{1}$ and $f/X_{2}$ are almost-continuous, then $f$ is almost-
continuous.

Proof. Let $A$ be a regularly-closed subset of $Y$. Then, since $f/X_{1}$ and $f/X_{2}$

are both almost-continuous, therefore $(f/X_{1})^{-1}(A)$ and $(f/X_{2})^{-1}(A)$ are both closed
in $X_{1}$ and $X_{2}$ respectively. Since $X_{1}$ and $X_{2}$ are closed subsets of $X$, therefore $(f/X_{1})^{-1}$

$(A)$ and $(f/X_{2})^{-1}(A)$ are also closed subsets of $X$. Also, $f^{-1}(A)=(f/X_{1})^{-1}(A)\cup(f/X_{2})^{-1}$

$(A)$ . Thus $f^{-1}(A)$ is the union of two closed sets and is therefore closed. Hence $f$ is
almost-continuous.

Theorem 2.9. If $f$ is a mapping of $X$ into $Y$ and $X=X_{1}\cup X_{2}$ , and if $f/X_{1}$

and $f/X_{2}$ are both almost-continuous at a point $x$ belonging to $X_{1}\cap X_{2}$ , then $f$ is
almost-continuous at $x$.

Proof. Let $U$ be any regularly-open set containing $f(x)$ . Since $x\epsilon X_{1}\cap X_{2}$ and
$f/X_{1},f/X_{2}$ are both almost-continuous at $x$, therefore there exist open sets $V_{1}$ and
$V_{2}$ such that $x\epsilon X_{1}\cap V_{1}$ and $f(X_{1}\cap V_{1})\subset U$, and $x\epsilon X_{2}\cap V_{2}$ and $f(X_{2}\cap V_{2})\subset U$. Now,
since $X=X_{1}\cup X_{2}$ , therefore $f(V_{1}\cap V_{2})=f(X_{1}\cap V_{1}\cap V_{2})\cup f(X_{2}\cap V_{1}\cap V_{2})\subset f(X_{1}\cap V_{1})\cup f$

$(X_{2}\cap V_{2})\subset U$ Thus, $V_{1}\cap V_{2}(=V)$ is an open set containing $x$ such that $f(V)\subset U$ and
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henoe $f$ is almost-continuous at $x$.
Thorem 2.10. Let $f_{\alpha}$ : $X_{a}\rightarrow x$ : be almost-continuous for each $\alpha\epsilon I$ and let $f$ :

$\prod_{a\epsilon I}X_{\alpha}\rightarrow\prod_{\alpha\epsilon I}X_{a}$ be defined by setting $f((x_{a}))=(f\alpha(x_{a}))$ for each point $(x_{\alpha})\epsilon\prod_{aeI}X_{a}$ . Then $f$ is

almost-continuous.

Proof. Let $(x_{a})\epsilon\prod_{\alpha\epsilon I}X_{\alpha}$ and let $o*$ be a regularly-open subset of $\Pi X_{\alpha}\omega ntaining$

$f((x_{\alpha}))$ . Then there is a member $\prod_{a\epsilon I}O_{\alpha}$ of the defining base of the product topology on

$\prod_{a\epsilon I}X_{\alpha}^{\cdot}$ such that $f((x.))\epsilon\prod_{\alpha\epsilon I}O:cO^{*}$ and $O_{a}^{*}=X_{\alpha}^{*}$ for all $\alpha\epsilon I$ except for a finite number of

indices $\alpha_{i},$ $i=1,2,$ $\cdots$ , $n(say)$ and $\sigma_{\alpha i}$ is an open subset of $X:_{i},$ $i=1,2,$ $\cdots$ , $n$ . Now,

since $0*$ is $regularly\triangleleft$)$\iota aen$ , therefore $\overline{\Pi O_{\alpha}}^{0}\subset O^{*}$ . Thus, each $\alpha_{i},$

$f_{\alpha_{i}}(x_{\alpha_{i}})\epsilon O;_{i}\subset\overline{O_{\alpha i}}$ and $f_{a_{i}}$

being almost-continuous, there is an open subset $U_{a_{i}}$ of $X_{\alpha_{i}}$ such that $x_{\alpha_{i}}\epsilon U_{\alpha_{i}}$ and $f_{ai}$

$(x_{\alpha_{i}})\epsilon f_{a_{i}}(U_{a_{i}})\subset\overline{O_{\alpha i}}^{0}$ . Thus, $\prod_{a\epsilon I}U_{\alpha}$ where $U_{a}=X_{\alpha}$ when $\alpha\neq\alpha_{i},$ $i=1,2,$ $\cdots n$ , is an open

set containing $(x_{\alpha})$ such that $f(\prod_{a\epsilon I}U_{\alpha})\subset O^{*}$ . Hence $f$ is almost-continuous.

Theorem 2.11. Let $h:X\rightarrow\prod_{a\epsilon I}X_{a}$ be almost-continuous. For each $\alpha\epsilon I$, define
$f_{a}$ : $X\rightarrow X_{a}$ by setting $f_{\alpha}(x)=(h(x,1)_{a}.$ Then $f_{a}$ is almost-continuous for all $\alpha\epsilon I$.

Proof. Let P. denote the projection of $X$ into $X_{\alpha}$ . Then $P_{\alpha}\circ h=f_{\alpha}$ for each $\alpha$ .
Now $P_{\alpha}$ is open and continuous for each $\alpha$ and $h$ is almost-continuous. Therefore by

theorem 2.5, $P_{a}\circ h$ is almost-continuous, $i.e.,$ $f_{a}$ is almost-continuous for each $\alpha$ .
Definition 2.5. Apoint $x$ of a subset $A$ of a space is called a boundary Point

of $A$ if it is not an interior point of $A[4]$ .

Theorem 2.12. The set of all points of $X$ at which $f:X\rightarrow Y$ is not almost-
continuous is identical with the union of the boundaries of the inverse images of
regularly-open subsets of Y.

Proof. Suppose $f$ is not almost-continuous at a point $x\epsilon X$. Then there exists a

regularly-open set $V$ such that $f(x)\epsilon V$ and for every open set $U$ containing $x$, we have
$ f(U)\cap(Y\sim V)\neq\phi$ . Thus, for every open set $U$ containing $x$, we must have $ U\cap$

$[X-f^{-1}(V)]\neq\phi$ . Therefore $x$ cannot be an interior point of $f^{-1}(V)$ . But $x$ belongs

to $f^{-1}(V)$ . Hence $x$ is a point of the boundary of $f^{-1}(V)$ .
Now, let $x$ belong to the boundary of $f^{-1}(G)$ for some regularly-open subset $G$

of Y. Then $f(x)$ belongs to $G$ . If $f$ is almost-continuous at $x$, then there is an open

set $U$ such that $x$ belongs to $U$ and $f(U)\subset G$ . Thus $x\epsilon U\subset f^{-1}(f(U))\subset f^{-1}(G)$ .
Therefore $x$ is an interior point of $f^{-1}(G)$ , which is a contradiction. $H$ ence $f$ is not

almost-continuous at $x$.
Definition 2.6. A space is called a Urysohn space if for every pajr of distinct

points $x$ and $y$ , there exist open sets $U$ and $V$ such that $x\epsilon U,$ $y\epsilon V$ and $\overline{U}\cap\overline{V}=\phi[5]$ .
Theorem 2.13. If $f$ is a weakly-continuous, $one-to$-one mapping of $X$ onto $Y$
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and if $X$ is compact and $Y$ is Urysohn, then $f$ is open.
Proof. Let $A$ be an open subset of $X$. Then $X\sim A$ , being a closed subset

of the compact space $X$, is compact. Since every weakly-continuous image of a compact
space is almost-compact, therefore $f(X\sim A)$ , is almost-compact [6]. Since $f$ is one-to-
one, therefore, $f(X\sim A)=Y\sim f(A)$ , whence $Y\sim f(A)$ is almost-compact. Since $Y$ is a
Urysohn space, therefore $Y\sim f(A)$ is closed and hence $f(A)$ is open.

Corollary 2.2. If $f$ is an almost-continnous, $one-to$-one maPping of $X$ onto
$Y$ and if $X$ is compact and $Y$ is Urysohn, then $f$ is open.

Proof. Every almost-continuous mapping is weakly-continuous.

Defiuition 2.7. A space $X$ is said to be almost-regular if for each regularly-
closed set $A$ and each point $x\not\in A$ , there are disjoint open sets $U$ and $V$ such that
$x\epsilon U,$ $A\subset V[7]$ .

Theorem 2.14. If $f$ is an almost-continuous, closed mapping of a regular
space $X$ onto a space $Y$ such that $f^{-1}(y)$ is compact for each point $y\epsilon Y$, then $Y$ is
almost-regular.

Proof. Let $A$ be a regularly-closed subset of $Y$ and suppose that $y\ell A$ . Then,
$f^{-1}(y)\cap f^{-1}(A)=\phi,f^{-1}(A)$ is closed by the almost continuity of $f$ and $f^{-1}(y)$ is compact.
Since $X$ is regular, there exist disjoint open sets $G$ and $H$ such that $f^{-1}(A)\subset G,$ $f^{-1}(y)$

$\subset H$. Now, let $P=\{z:f^{-1}(z)\subset G\}$ and $Q_{y}=\{z:f^{-1}(z)\subset H\}$ . Then, $y\epsilon P,$ $A\subset Q,$ $ P\cap Q=\phi$ .
Also since $f$ is closed, therefore $P$ and $Q$ are open. Hence $Y$ is almost-regular.

Theorem 2.15. If $f$ is an almost-continuous, closed mapping of a normal
space $X$ onto a space $Y$, then any two disjoint regularly-closed subsets of $Y$ can be
strongly separated.

Proof. Let $A$ and $B$ be two disjoint regularly-closed subsets of Y. Then $f^{-1}(A)$

and $f^{-1}(B)$ are disjoint, closed subsets of the normal space $X$ and therefore there exist
open sets $G$ and $H$ such that $G\cap H=\phi,f^{-1}(A)\subset G,f^{-1}(B)\subset H$. Let $P=\{y:f^{-1}(y)\subset G\}$

and $Q=\{y:f^{-1}(y)\subset H\}$ . Then, since $f$ is closed, therefore $P$ and $Q$ are open sets.
Also, $A\subset P,$ $B\subset Q$ and $ P\cap Q=\phi$ . Hence the result.

3. ALMOST-OPEN AND ALMOST-CLOSED MAPPINGS.

Definition 3.1. A mapping $f:X\rightarrow Y$ is said to be almost-open if the image
of every regularly-open subset of $X$ is an open subset of Y.

Definition 3.2. A mapping $f:X\rightarrow Y$ is said to be almost-closed if the image
of every regularly-closed subset of $X$ is a closed subset of Y.

Remark 3.1. A $one-to$-one mapping is almost-open iff it is almost-closed.
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Remark 3.2. Obviously, every open (closed) mapping is almost-open (almost-closed).

But the $nverse$ of this statement is not necessarily true as is shown by the following
example.

Example 3.1. Let $(R, \mathfrak{T})$ and $(R, \mathfrak{U})$ , be the spaces of example 2.2. Let $i$ be the
identity mapping of $(R, \mathfrak{T})$ onto $(R, \mathfrak{U})$ . Then, $i$ is almost-open and almost-closed but
it is neither open nor closed.

Deflnition 3.3. A mapping $f:X\rightarrow Y$ is said to be $\theta$-continuous if for each
point $x\epsilon X$ and each neighbourhood $U$ of $f(x)$ , there is a neighbourhood $V$ of $x$ such
that $f(\overline{V})\subset\overline{U}[8]$ .

Remark 3.3. It is clear that every $\theta$-continuous mapping is weakly-continuous.
$A$ $\theta$-continuous mapping may fail to be almost continuous. In fact, the mapping $f$ defined
in example 2.3 is $\theta$-continuous but not almost-continuous. We do not know, however,

whether every almost-continuous mapping is $\theta$-continuous or not.

Theorem 3.1. If $f$ is a $one-to-one$, O-continuous mapping of $X$ onto $Y$ and

if $X$ is almost-compact, $Y$ is Urysohn, then $f$ is almost-open.

Proof. Let $A$ be a regularly-open subset of $x$. Then $X\sim A$ , being a regularly-

closed subset of the almost-compact spaoe $X$ is itself almost-compact. Also, it is known
that the $\theta$-continuous image of an almost-compact space is almost-compact [8]. Therefore
$f(X\sim A)$ is an almost-compact subset of the Urysohn spaoe $Y$ and is therefore closed.
Thus $f|X\sim A$ ) $=Y\sim f(A)$ is closed, whence $f(A)$ is open and consequently $f$ is an
almost-open mapping.

Theorem 3.2. If $f:X\rightarrow Y$ is an almost-closed mapping of $X$ onto $Y$, then

for every regularly-open subset $G$ of $X$ and for every point $y\epsilon Y$ such that $f^{-1}(y)\subset G$ ,

we have, $y\epsilon[f(G)]^{0}$ .
Proof. Since $G$ is regularly-open, therefore $X\sim G$ is regularly-closed. Since $f$ is

almost-continuous, therefore $f(X\sim G)$ is closed. Since $f^{-1}(y)\subset G$, therefore $\nu ff(X\sim G)$ .
Hence there must exist an open set $U$ containing $y$ such that $ U\cap f(X\sim G)=\phi$ . Then
$y\epsilon U\subset f(G)$ and $n\mathfrak{B}quentlyy$ is an interior point of $f(G)$ .

Corollary 3.1. If $f:X\rightarrow Y$ is an almost-closed mapping of $X$ onto $Y$, then

for each set $S\subset X$ and for each pojnt $x\epsilon X$, such that $f^{-1}(f(x))\subset\overline{S}^{0}$ , we have, $f(x)$

$\epsilon[f(\overline{S}^{0})]^{0}$ .
The following two theorems give sufficient conditions for an almost-closed mapping

to be continuous.

Theorem 3.3. If $f$ is an almost-closed mapping of an almost-regular space
$X$ onto a compact space $Y$ with regularly-closed point inverses, then $f$ is continuous.
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Proof. Suppose $f$ is not continuous at a point $x\epsilon X$. Then there exists an open
set $M$ containing $f(x)$ such that $ f(N)\cap Y-M\neq\phi$ for every open set $N$ containing $x$.
Sinoe $f$ is almost-closed and $N$ is regularly-closed therefore $f(\overline{N})$ is closed. Also $Y\sim M$

is closed. Thus { $f(\overline{N})\cap(Y\sim M):N$ is open and $x\epsilon N$ } is a family of closed subsets of
Y. Also this family must have finite intersection property, for if there exists a finite

number of open sets $N_{1}$ , $\cdot$ .. , $N_{n}$ such that $x\epsilon N_{i}$ for each $i=1,$ $\cdots$ , $n$ and if $\cap[f(\overline{N}_{i})\cap$

$(Y\sim M)]=\phi$ then $\bigcap_{\ell=1}^{*}N_{i}$ is an open set $\omega ntainingx$ and $(Y\sim M)\cap f(\bigcap_{\ell=1}^{\cdot}N_{i})\subset(Y\sim M)\cap\ell=1$

$ f(\dot{\cap^{\iota}}N_{i}^{-})\subset 1(Y\sim M)\cap[\bigcap_{=1}^{n}f(\overline{N}_{i})]=\bigcap_{\ell=1}^{n}(Y\sim M)\cap(f(\overline{N}_{i}))=\phi$ , which is a $ntradiction$ .
Therefore { $f(\overline{N})\cap(Y\sim M):N$ is open and $xcN$ } is a family of closed subsets of $Y$

with finite intersection property. Sinoe $Y$ is compact, $\cap\{f(\overline{N})\cap(Y\sim M):N$ is open
and $x\epsilon N$ } $\neq\phi$ . Let $y^{\prime}$ belong to this intersection. Then $y^{\prime}\neq f(x)$ . Therefore $x\epsilon f^{-1}(y^{\prime})$ .
But $f^{-1}(y)$ is regularly-closed and $X$ is almost-regular. Therefore there exist disjoint
open sets $U$ and $V$ such that $x\epsilon U,f^{-1}(y^{\prime})\subset V$. But $ V\cap U=\phi\sim V\cap\overline{U}=\phi$ . Therefore
$y^{\prime}\ell f(\overline{U})$ . But this is a contradiction to the fact that $y^{\prime}$ belongs to $f(\overline{N})\cap Y\sim M$ for
every open set $N$ containing $x$. Henoe $f$ must be continuous at $x$. But $x$ is an arbitrary
point of $X$. Therefore $f$ is continuous.

Definition 3.4. A mapping $f$ of $X$ into $Y$ has at worst a removable
discontinuity at a point $x\epsilon X$ if there is a point $y\epsilon Y$ such that for each neighbourhood
$V$ of $y$ , there is a neighbourhood $U$ of $x$ such that $f(U-\{x\})\subset V$.

Theorem 3.4. If $f$ is an almost-closed mapping of an almost-regular space $X$

onto a space $Y$ with regularly-closed point inverses, then if $f$ has at worst a removable
discontinuity at $x_{0}\epsilon X$ then $f$ is continuous at $x_{0}$ .

Proof. If $x_{0}$ is isolated in $X$, the result is obviously true. Assume that $x_{0}$ is
non-isolated and that $f$ is not continuous at $x_{0}$ . Let $\gamma$ be the point of $Y$ determined by
the hypothesis. Sinoe $y\neq f(x_{0})$ and $f^{-1}(y)$ is regularly closed, an open neighbourhood $U$

of $x_{0}$ exists such that $ f^{-1}(y)\cap\overline{U}=\phi$ . Then, because $\overline{U}$ is regularly-closed, therefore
$f(\overline{U})$ is closed and henoe a neigbourhood $V$ of $y$ exists for which $ V\cap f(\overline{U})=\phi$ . There
is a $neighb,urh\infty dW$ of $x_{0}$ such that $f(W-\{x_{0}\})\subset V$. Sinoe $x_{0}$ is non-isolated, $ U\cap$

$(W-\{x_{0}\})\neq\phi$ . Henoe $\phi\neq f(W-\{x_{0}\})\cap f(\overline{U})\subset V\cap f(\overline{U})$ , which is a contradiction.

4. ALMOST-QUASI-COMPACT MAPPINGS.

Definition 4.1. A mapping $f:X\rightarrow Y$ is said to be $almost-quasi-compact\prime f$ it
is onto and if $A$ is open whenever $f^{-1}(A)$ is regularly-open.

Remark 4.1. An onto mapping $f$ is $almost-quasi\prec ompact$ iff $S$ is closed
whenever $f^{-1}(S)$ is regularly-closed.
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Remark 4.2. Clearly, every quasi-compact map is $almost-quasi\prec ompact$ . But an
$almost-quasi\prec ompact$ mapping may fail to be quasi-compact. The following is an example.

Example 4.1. Let $(R, \mathfrak{T})$ be the space of example 2.1. Let $X=\{a, b\}$ and let
$\mathfrak{T}^{*}=\{X, \phi, \{a\}\}$ . Let $f$ be a mapping of $(R, \mathfrak{T})$ onto (X, $\mathfrak{T}^{*}$ ) defined as follows:

$f(x)=\left\{\begin{array}{l}a if x is rational,\\b if x is irrational.\end{array}\right.$

Then $f$ is $almost-quasi$-compact but not quasi-compact.

Theorem 4.1. A mapping $f$ of $X$ onto $Y$ is $almost-quasi$-compact iff the
image of every regularly-open inverse set is open.

Proof. First, let $f$ be $almost-quasi$-compact and let $A$ be any regularly-open
inverse set. Then sinoe $f^{-1}[f(A)]=A$ is regularly-open, therefore $f(A)$ is open.
Conversely, if $f^{-1}(S)$ be regularly-open, then because $f^{-1}(S)$ is a regularly-open inverse
set, therefore $f[f^{-1}(S)]$ is open, that is $S$ is open and henoe $f$ is $almost-quasi-compact$ .

Corollary 4.1. A mapping $f$ of $X$ onto $Y$ is $almost-quasi$-compact iff the
image of every regularly-closed inverse set is closed.

Theorem 4.2. If $f$ is a $one-to$-one mappi $\kappa^{\sigma}$ of $X$ onto $Y$, then the following
proPerties are equivalent:

$(a)f$ is almost-open.
$(b)f$ is almost-closed.
$(c)f$ is $almost-quasi-compact$.
$(d)f^{-1}$ is almost-continuous.

Proof. $(a)\sim(b)$ . Let $A$ be a regularly-closed subset of $X$. Then $X\sim A$ is
regularly-open. Therefore $f(X\sim A)$ is open, that is, $Y\sim f(A)$ is open. Thus $f(A)$ is
closed and consequently $f$ almost-closed.

( $bI\sim(c)$ . Let $f^{-1}(S)$ be regularly-closed. Then, $f(f^{-1}(S))$ is closed, that is, $S$

is closed and henoe $f$ is $almost-quasi-compact$ .
$(c)\sim(d)$ . Let $U$ be a regularly-open subset of $X$. Then $f^{-1}(f(U))=U$ is

regularly-open. Henoe $f(U)$ is open, that is, $(\Gamma^{1})^{-1}(U)$ is open and therefooe $f^{-1}$ is
almost-continuous.

$(d)\sim(a)$ . If $A$ is a regularly-open subset of $X$. Then $(f^{-1})^{-1}(A)$ is an open
subset of $Y$ and thus $f$ is almost-open.

Theorem 4.3. Suppose that $f$ maps $X$ onto $Y$ and $g$ maps $Y$ onto Z Then
if $f$ is almost-continuous and if $g\circ f$ is open (resp. closed, quasi-compact) then $g$ is
almost-open (resp. almost-closed, $almost-quasi-compact$).

Proof. Suppose first that $f$ is almost-continuous and $g\circ f$ is open (closed). Let $S$
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be any regularly-open $(regularly\prec 10aed)$ subset of Y. Sinoe $f$ is almost-continuous,
therefore $f^{-1}(S)$ is an open (closed) subset of $X$. Now, gof is open (closed). Therefore
$(g\circ f)(f^{-1}(S))$ is open (closed). But $(g\circ f)(f^{-1}(S))=g(S)$ . Thus $g(S)$ is open (closed).
Henoe $g$ is almost-open (almost-closed).

Now, let $f$ be almost-continuous and let $g\circ f$ be $quasi\prec om\mu ct$ . Let $g^{-1}(S)$ be a
regularly-open subset of $Y$. Then, by almost-continuity of $f,$ $f^{-1}(g^{-1}(S))$ is open. But
$f^{-1}(g^{-1}(S))$ is $(g\circ f)^{-1}(S)$ . Therefore, sinoe $g\circ f$ is quasi-compact, $S$ must be open whence
$g$ is $almost\eta uasi\prec ompact$ .
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