ALMOST-CONTINUOUS MAPPINGS

M. K. SINGAL and ASHA RANI SINGAL

(Received August 14, 1968)

1. INTRODUCTION

The object of the present paper is to introduce a new class of mappings called almost-continuous mappings. This class contains the class of continuous mappings and is contained in the class of weakly-continuous mappings (see definition 2.3 below). Almost-continuous mappings turn out to be the natural tool for studying almost-compact spaces (A space is said to be almost-compact if each open cover has a finite subfamily whose closures cover the space) of Alexandroff and Urysohn as also nearly-compact spaces (A space is said to be nearly-compact if every open cover has a finite subfamily the interiors of the closures of whose members cover the space) in as much as every almost-continuous image of an almost-compact space is almost-compact [1]. Various properties of such mappings have been discussed in section 2. Section 3 is concerned with almost-open and almost-closed mappings obtained as generalisations of open and closed mappings respectively. In the last section, the notion of almost-quasi-compact mappings has been introduced and the relations of such mappings with other types of mappings introduced in sections 2 and 3 have been investigated.

A set A is called *regularly-open*, if it is the interior of its own closure or equivalently, if it is the interior of some closed set. A is called *regularly-closed*, if it is the closure of its own interior or equivalently, if it is the closure of some open set.

2. ALMOST-CONTINUOUS MAPPINGS

Definition 2.1. A mapping $f: X \rightarrow Y$ is said to be almost-continuous at a point $x \in X$, if for every neighbourhood M of f(x) there is a neighbourhood N of x such that $f(N) \subset M^{-0}$. It is easy to see that the neighbourhoods M and N can be replaced by open neighbourhoods.

Remark 2.1. It is clear that if $f: X \to Y$ is continuous at a point $x \in X$, then it is almost-continuous at x. But the converse of this statement may not be true, as the following example shows.

Example 2.1. Let R be the set of real numbers and let \mathfrak{T} consist of ϕ , R and the complements of all countable subsets of R. Let $X = \{a, b\}$ and let $\mathfrak{T}^* = \{X, \phi, \{a\}\}$. Let $f:(R,\mathfrak{T}) \to (R,\mathfrak{T}^*)$ be defined as follows: $f(x) = \begin{cases} a \text{ if } x \text{ is rational,} \\ b \text{ if } x \text{ is irrational.} \end{cases}$. Then f is almost-continuous at each point of R, but f is not continuous at $x \in R$ if x is rational.

M. K. SINGAL and ASHA RANI SINGAL

Theorem 2.1. For a mapping $f: X \to Y$, the following are equivalent:

(a) f is almost-continuous at $x \in X$.

(b) For each regularly-open neighbourhood M of f(x), there is a neighbourhood N of x such that $f(N) \subset M$.

は日本語の日本

(c) For each net $\{x_{\lambda}\}_{\lambda \in D}$ converging to x, the net $\{f(x_{\lambda})\}_{\lambda \in D}$ is eventually in every regularly open set containing f(x).

Proof. $(a) \Rightarrow (b)$. If f is almost-continuous at x and M is a regularly-open neighbourhood of f(x), then there is a neighbourhood N of x such that $f(N) \subset M^{-0} = M$.

 $(b) \Rightarrow (c)$. Let $\{x_{\lambda}\}_{\lambda \in D}$ be a net converging to x and let U be any regularly-open set containing f(x). Since f is almost-continuous, there is an open set M containing xsuch that $f(M) \subset U$. Now, since M is an open set containing x and the net $\{x_{\lambda}\}_{\lambda \in D}$ converges to x, therefore there is a $\lambda_0 \in D$ such that $\lambda \ge \lambda_0 \Rightarrow x_{\lambda} \in M$. The set D is directed by $i \ge i$. Thus, for all $\lambda \ge \lambda_0, f(x_{\lambda}) \in f(M) \subset U$. Hence the net is eventually in U.

 $(c) \Rightarrow (a)$. Suppose that f is not almost-continuous at x. Then there is an open set V containing f(x) such that for every open set U containing x, $f(U) \cap (Y \sim V^{-0}) \neq \phi$. This implies that $U \cap f^{-1}(Y \sim V^{-0}) \neq \phi$ for every open set U containing x. The family \mathfrak{U} of all open sets U containing x is directed by set inclusion. For each $U \in \mathfrak{U}$ choose a point x_U belonging to $U \cap f^{-1}(Y \sim V^{-0})$. Then $\{x_U\}_{U \in \mathfrak{U}}$ is a net in X which converges to x and is such that no $f(x_U)$ is in V^{-0} . Thus $\{f(x_U)\}_{U \in \mathfrak{U}}$ is not eventually in the regularly-open set V^{-0} , which is a contradiction.

Definition 2.2. A mapping $f: X \to Y$ is said to be almost-continuous if it is almost-continuous at each point x of X.

Remark 2.2. An almost-continuous mapping may fail to be continuous. The mapping f of example 2.1 is an almost-continuous mapping which is not continuous. The following is another example of such a mapping.

Example 2.2. Let (R, \mathfrak{T}) be the space of example 2.1 and let \mathfrak{U} denote the usual topology for R. Let i be the identity mapping of (R, \mathfrak{U}) onto (R, \mathfrak{T}) . Then i is almost-continuous but not continuous (at any point !).

Remark 2.3. The inverse of an almost-continuous one-to-one mapping may fail to be almost-continuous. In fact, the inverse of the mapping i of example 2.2 is not almost continuous (at any point !).

Theorem 2.2. For a mapping $f : X \rightarrow Y$, the following are equivalent:

(a) f is almost-continuous.

(b) Inverse image of every regularly-open subset of Y is an open subset of X.

(c) Inverse image of every regularly-closed subset of Y is a closed subset of X.

(d) For each point x of X and for each regularly-open neighbourhood M of f(x), there is a neighbourhood N of x such that $f(N) \subset M$.

- (e) $f^{-1}(A) \subset [f^{-1}(A^{-0})]^0$ for every open subset A of Y.
- (f) $[f^{-1}(B^{-0})]^- \subset f^{-1}(B)$ for every closed subset B of Y.

(g) For any point $x \in X$ and for any net $\{x_{\lambda}\}_{\lambda \in D}$ which converges to x, the net $\{f(x_{\lambda})\}_{\lambda \in D}$ is eventually in each regularly-open set containing f(x).

Proof. (a) \Rightarrow (b). Let U be any regularly-open subset of Y and let $x \in f^{-1}(U)$. Then $f(x) \in U$. Therefore there exists an open set V in X such that $x \in V$ and $f(V) \subset \overline{U}^0 = U$. Thus, $x \in V \subset f^{-1}(U)$ and therefore $f^{-1}(U)$ is a neighbourhood of x. Hence $f^{-1}(U)$ is open.

 $(b) \Rightarrow (c)$. Let A be any regularly-closed subset of Y. Then $Y \sim A$ is regularlyopen and therefore $f^{-1}(Y \sim A)$ is open, that is, $X \sim f^{-1}(A)$ is open. Hence $f^{-1}(A)$ is closed.

 $(c) \Rightarrow (d)$. Since *M* is regularly-open, therefore $Y \sim M$ is regularly-closed, and consequently $f^{-1}(Y \sim M)$ is closed, i.e., $f^{-1}(M)$ is open. Also, $x \in f^{-1}(M) = N$ (say). Then *N* is a neighbourhood of *x* such that $f(N) \subset M$.

 $(d) \Rightarrow (e)$. Let $x \in f^{-1}(A)$. Then \overline{A}^0 is a regularly-open neighbourhood of f(x), since A is open. Then, there exists an open neighbourhood N of x such that $f(N) \subset A^{-0}$. Thus, $x \in N \subset f^{-1}(A^{-0})$. This means that $x \in [f^{-1}(A^{-0})]^0$. Hence $f^{-1}(A) \subset [f^{-1}(A^{-0})]^0$.

 $(e) \Rightarrow (f)$. Since $Y \sim B$ is open, therefore $f^{-1}(Y \sim B) \subset [f^{-1}(\overline{Y \sim B})^0]^0$. This implies that $[X \sim f^{-1}(\overline{Y \sim B})^0]^- \subset f^{-1}(B)$, i.e., $[f^{-1}(B^{0-1})]^- \subset f^{-1}(B)$.

 $(f) \Rightarrow (g)$. Let N be any regularly-open set containing f(x). Then, $Y \sim N$ being closed, $[f^{-1}((Y \sim N)^{0^{-}})]^{-} \subset f^{-1}(Y \sim N)$. Since $Y \sim N$ is regularly-closed, therefore $[f^{-1}(Y \sim N)]^{-} \subset X \sim f^{-1}(N)$. This means that $f^{-1}(N) \subset [f^{-1}(N)]^{0}$. Thus $f^{-1}(N)$ is an open set containing x. Since the net $\{x_{\lambda}\}_{\lambda \in D}$ converges to x, therefore there exists $\lambda_{0} \in D$ such that for all $\lambda \geq \lambda_{0}$ (D is directed by ${}^{\circ} \geq {}^{\circ}$) $x_{\lambda} \in f^{-1}(N)$. This means that $f(x_{\lambda}) \in N$ for all $\lambda \geq \lambda_{0}$, i.e., the net $\{f(x_{\lambda})\}_{\lambda \in D}$ is eventually in N.

 $(g) \Rightarrow (a)$. By using (c) of theorem 2.1, it is clear that f is almost-continuous.

This completes the proof of the theorem.

Definition 2.3. A mapping $f: X \to Y$ is said to be weakly-continuous if for each point $x \in X$ and each neighbourhood V of f(x), there exists a neighbourhood U of x such that $f(U) \subset \overline{V}$ [2]. It is easy to see that the 'neighbourhoods' in the definition can be replaced by 'open neighbourhoods'.

M. K. SINGAL and ASHA RANI SINGAL

Remark 2.4. Obviously, every almost-continuous mapping is weakly-continuous. But a weakly-continuous mapping may fail to be almost-continuous. The following is an example.

Example 2.3. Let (R, \mathfrak{T}) be the space of example 2.1. Let $X = \{a, b, c\}$ and let $\mathfrak{T}^* = \{\phi, X, \{a\}, \{c\}, \{a, c\}\}$. Let f be the mapping of (R, \mathfrak{T}) into (X, \mathfrak{T}^*) defined as follows:

 $f(x) = \begin{cases} a \text{ if } x \text{ is rational,} \\ b \text{ if } x \text{ is irrational.} \end{cases}$ Then f is a weakly-continuous mapping which is not almost-continuous (at any rational point).

However, we have the following :

Theorem 2.3. If $f: X \to Y$ is a weakly-continuous open mapping, then f is almost-continuous.

Proof. Let $x \in X$ and let M be any neighbourhood of x. Since f is weaklycontinuous, there is an open neighbourhood N of x such that $f(N) \subset \overline{M}$. Since f is open, therefore f(N) is open. Then $f(N) \subset M^{-0}$ and consequently f is almost-continuous.

Corollary 2.1. An open mapping is almost-continuous iff it is weaklycontinuous.

Definition 2.4. A space is said to be semi-regular if for each point x of the space and each open set U containing x, there is an open set V such that $x \in V \subset V^{-0} \subset U$ [3].

Theorem 2.4. If f is an almost-continuous mapping of a space X into a semi-regular space Y, then f is continuous.

Proof. Let $x \in X$ and let A be an open set containing f(x). Since Y is semiregular, there is an open subset M of Y such that $f(x) \in M \subset M^{-0} \subset A$. Now, since f is almost-continuous, therefore there is an open subset U of X containing x such that $f(x) \in f(U) \subset M^{-0}$. Thus U is an open set containing x such that $f(U) \subset A$. Thus f is continuous at x. Since x is arbitrary, it follows that f is continuous.

Theorem 2.5. If f is an open continuous mapping of X onto Y and if g is a mapping of Y into Z, then $g \circ f$ is almost-continuous iff g is almost-continuous.

Proof. First, let $g \circ f$ be almost-continuous. Let A be a regularly-open subset of Z. Since $g \circ f$ is almost-continuous, therefore $(g \circ f)^{-1}(A)$ is open, that is, $f^{-1}(g^{-1}(A))$ is open. Also, f is open. Therefore $f[f^{-1}(g^{-1}(A))]$ is open, that is, $g^{-1}(A)$ is open and consequently g is almost-continuous.

Now, let g be almost-continuous and let S be any regularly-open subset of Z. Then $g^{-1}(A)$ is an open subset of Y. Since f is continuous, therefore $f^{-1}(g^{-1}(A))$

is an open subset of X, i.e., $(g \circ f)^{-1}(A)$ is an open subset of X. Hence $g \circ f$ is almost-continuous.

Theorem 2.6. Every restriction of an almost-continuous mapping is almost-continuous.

Proof. Let f be an almost-continuous mapping of X into Y and let A be any subset of X. For any regularly-open subset S of Y, $(f/A)^{-1}(S)=A \cap f^{-1}(S)$. But, f being almost-continuous, $f^{-1}(S)$ is open and hence $A \cap f^{-1}(S)$ is a relatively open subset of A, i. e., $(f/A)^{-1}(S)$ is an open subset of A. Hence f/A is almost-continuous.

Theorem 2.7. Let f map X into Y and let x be a point of X. If there exists a neighbourhood N of x such that the restriction of f to N is almost-continuous at x, then f is almost-continuous at x.

Proof. Let U be any regularly-open set containing f(x). Since f/N is almostcontinuous at x, therefore, there is an open set V_1 such that $x \in N \cap V_1$ and $f(N \cap V_1) \subset U$. The result now follows from the fact that $N \cap V_1$ is a neighbourhood of x.

Corollary 2.1. Let f map X into Y and let $\{G_{\lambda} : \lambda \in \Lambda\}$ be an open cover of X. If for each $\lambda \in \Lambda$, f/G_{λ} is almost-continuous at each point of G_{λ} , then f is almost-continuous.

Theorem 2.8. If f is a mapping of X into Y and $X=X_1 \cup X_2$, where X_1 and X_2 are closed and f/X_1 and f/X_2 are almost-continuous, then f is almost-continuous.

Proof. Let A be a regularly-closed subset of Y. Then, since f/X_1 and f/X_2 are both almost-continuous, therefore $(f/X_1)^{-1}(A)$ and $(f/X_2)^{-1}(A)$ are both closed in X_1 and X_2 respectively. Since X_1 and X_2 are closed subsets of X, therefore $(f/X_1)^{-1}(A)$ and $(f/X_2)^{-1}(A)$ are also closed subsets of X. Also, $f^{-1}(A) = (f/X_1)^{-1}(A) \cup (f/X_2)^{-1}(A)$. Thus $f^{-1}(A)$ is the union of two closed sets and is therefore closed. Hence f is almost-continuous.

Theorem 2.9. If f is a mapping of X into Y and $X=X_1 \cup X_2$, and if f/X_1 and f/X_2 are both almost-continuous at a point x belonging to $X_1 \cap X_2$, then f is almost-continuous at x.

Proof. Let U be any regularly-open set containing f(x). Since $x \in X_1 \cap X_2$ and $f/X_1, f/X_2$ are both almost-continuous at x, therefore there exist open sets V_1 and V_2 such that $x \in X_1 \cap V_1$ and $f(X_1 \cap V_1) \subset U$, and $x \in X_2 \cap V_2$ and $f(X_2 \cap V_2) \subset U$. Now, since $X = X_1 \cup X_2$, therefore $f(V_1 \cap V_2) = f(X_1 \cap V_1 \cap V_2) \cup f(X_2 \cap V_1 \cap V_2) \subset f(X_1 \cap V_1) \cup f(X_2 \cap V_2) \subset U$. Thus, $V_1 \cap V_2 (=V)$ is an open set containing x such that $f(V) \subset U$ and

hence f is almost-continuous at x.

Thorem 2.10. Let $f_{\alpha}: X_{\alpha} \to X_{\alpha}^{*}$ be almost-continuous for each $\alpha \in I$ and let $f: \prod_{\alpha \in I} X_{\alpha} \to \prod_{\alpha \in I} X_{\alpha}^{*}$ be defined by setting $f((x_{\alpha})) = (f_{\alpha}(x_{\alpha}))$ for each point $(x_{\alpha}) \in \prod_{\alpha \in I} X_{\alpha}$. Then f is almost-continuous.

Proof. Let $(x_{\alpha}) \in \prod_{\alpha \in I} X_{\alpha}$ and let O^* be a regularly-open subset of $\prod X_{\alpha}^*$ containing $f((x_{\alpha}))$. Then there is a member $\prod O_{\alpha}^*$ of the defining base of the product topology on $\prod X_{\alpha}^*$ such that $f((x_{\alpha})) \in \prod O_{\alpha}^* \subset O^*$ and $O_{\alpha}^* = X_{\alpha}^*$ for all $\alpha \in I$ except for a finite number of indices $\alpha_i, i=1, 2, \cdots, n$ (say) and $O_{\alpha_i}^*$ is an open subset of $X_{\alpha_i}^*, i=1, 2, \cdots, n$. Now, since O^* is regularly-open, therefore $\overline{\prod O_{\alpha}^{*0}} \subset O^*$. Thus, each $\alpha_i, f_{\alpha_i}(x_{\alpha_i}) \in O_{\alpha_i}^* \subset \overline{O_{\alpha_i}^*}$ and f_{α_i} being almost-continuous, there is an open subset U_{α_i} of X_{α_i} such that $x_{\alpha_i} \in U_{\alpha_i}$ and $f_{\alpha_i}(x_{\alpha_i}) \in f_{\alpha_i}(U_{\alpha_i}) \subset \overline{O_{\alpha_i}^{*0}}$. Thus, $\prod_{\alpha \in I} U_{\alpha}$ where $U_{\alpha} = X_{\alpha}$ when $\alpha \neq \alpha_i, i=1, 2, \cdots n$, is an open set containing (x_{α}) such that $f(\prod U_{\alpha}) \subset O^*$. Hence f is almost-continuous.

Theorem 2.11. Let $h: X \to \prod_{\alpha \in I} X_{\alpha}$ be almost-continuous. For each $\alpha \in I$, define $f_{\alpha}: X \to X_{\alpha}$ by setting $f_{\alpha}(x) = (h(x))_{\alpha}$. Then f_{α} is almost-continuous for all $\alpha \in I$.

Proof. Let P_{α} denote the projection of X into X_{α} . Then $P_{\alpha} \circ h = f_{\alpha}$ for each α . Now P_{α} is open and continuous for each α and h is almost-continuous. Therefore by theorem 2.5, $P_{\alpha} \circ h$ is almost-continuous, i. e., f_{α} is almost-continuous for each α .

Definition 2.5. A point x of a subset A of a space is called a boundary point of A if it is not an interior point of A [4].

Theorem 2.12. The set of all points of X at which $f: X \rightarrow Y$ is not almostcontinuous is identical with the union of the boundaries of the inverse images of regularly-open subsets of Y.

Proof. Suppose f is not almost-continuous at a point $x \in X$. Then there exists a regularly-open set V such that $f(x) \in V$ and for every open set U containing x, we have $f(U) \cap (Y \sim V) \neq \phi$. Thus, for every open set U containing x, we must have $U \cap [X \sim f^{-1}(V)] \neq \phi$. Therefore x cannot be an interior point of $f^{-1}(V)$. But x belongs to $f^{-1}(V)$. Hence x is a point of the boundary of $f^{-1}(V)$.

Now, let x belong to the boundary of $f^{-1}(G)$ for some regularly-open subset G of Y. Then f(x) belongs to G. If f is almost-continuous at x, then there is an open set U such that x belongs to U and $f(U) \subset G$. Thus $x \in U \subset f^{-1}(f(U)) \subset f^{-1}(G)$. Therefore x is an interior point of $f^{-1}(G)$, which is a contradiction. H ence f is not almost-continuous at x.

Definition 2.6. A space is called a Urysohn space if for every pair of distinct points x and y, there exist open sets U and V such that $x \in U$, $y \in V$ and $\overline{U} \cap \overline{V} = \phi$ [5]. **Theorem 2.13.** If f is a weakly-continuous, one-to-one mapping of X onto Y

and if X is compact and Y is Urysohn, then f is open.

Proof. Let A be an open subset of X. Then $X \sim A$, being a closed subset of the compact space X, is compact. Since every weakly-continuous image of a compact space is almost-compact, therefore $f(X \sim A)$, is almost-compact [6]. Since f is one-to-one, therefore, $f(X \sim A) = Y \sim f(A)$, whence $Y \sim f(A)$ is almost-compact. Since Y is a Urysohn space, therefore $Y \sim f(A)$ is closed and hence f(A) is open.

Corollary 2.2. If f is an almost-continuous, one-to-one mapping of X onto Y and if X is compact and Y is Urysohn, then f is open.

Proof. Every almost-continuous mapping is weakly-continuous.

Definition 2.7. A space X is said to be almost-regular if for each regularlyclosed set A and each point $x \notin A$, there are disjoint open sets U and V such that $x \notin U, A \subset V$ [7].

Theorem 2.14. If f is an almost-continuous, closed mapping of a regular space X onto a space Y such that $f^{-1}(y)$ is compact for each point $y \in Y$, then Y is almost-regular.

Proof. Let A be a regularly-closed subset of Y and suppose that $y \notin A$. Then, $f^{-1}(y) \cap f^{-1}(A) = \phi$, $f^{-1}(A)$ is closed by the almost continuity of f and $f^{-1}(y)$ is compact. Since X is regular, there exist disjoint open sets G and H such that $f^{-1}(A) \subset G$, $f^{-1}(y) \subset H$. Now, let $P = \{z : f^{-1}(z) \subset G\}$ and $Q_y = \{z : f^{-1}(z) \subset H\}$. Then, $y \in P$, $A \subset Q$, $P \cap Q = \phi$. Also since f is closed, therefore P and Q are open. Hence Y is almost-regular.

Theorem 2.15. If f is an almost-continuous, closed mapping of a normal space X onto a space Y, then any two disjoint regularly-closed subsets of Y can be strongly separated.

Proof. Let A and B be two disjoint regularly-closed subsets of Y. Then $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint, closed subsets of the normal space X and therefore there exist open sets G and H such that $G \cap H = \phi$, $f^{-1}(A) \subset G$, $f^{-1}(B) \subset H$. Let $P = \{y : f^{-1}(y) \subset G\}$ and $Q = \{y : f^{-1}(y) \subset H\}$. Then, since f is closed, therefore P and Q are open sets. Also, $A \subset P, B \subset Q$ and $P \cap Q = \phi$. Hence the result.

3. ALMOST-OPEN AND ALMOST-CLOSED MAPPINGS.

Definition 3.1. A mapping $f: X \rightarrow Y$ is said to be almost-open if the image of every regularly-open subset of X is an open subset of Y.

Definition 3.2. A mapping $f: X \rightarrow Y$ is said to be almost-closed if the image of every regularly-closed subset of X is a closed subset of Y.

Remark 3.1. A one-to-one mapping is almost-open iff it is almost-closed.

Remark 3.2. Obviously, every open (closed) mapping is almost-open (almost-closed). But the converse of this statement is not necessarily true as is shown by the following example.

Example 3.1. Let (R, \mathfrak{T}) and (R, \mathfrak{U}) , be the spaces of example 2.2. Let *i* be the identity mapping of (R, \mathfrak{T}) onto (R, \mathfrak{U}) . Then, *i* is almost-open and almost-closed but it is neither open nor closed.

Definition 3.3. A mapping $f: X \to Y$ is said to be θ -continuous if for each point $x \in X$ and each neighbourhood U of f(x), there is a neighbourhood V of x such that $f(\overline{V}) \subset \overline{U}$ [8].

Remark 3.3. It is clear that every θ -continuous mapping is weakly-continuous. A θ -continuous mapping may fail to be almost continuous. In fact, the mapping f defined in example 2.3 is θ -continuous but not almost-continuous. We do not know, however, whether every almost-continuous mapping is θ -continuous or not.

Theorem 3.1. If f is a one-to-one, θ -continuous mapping of X onto Y and if X is almost-compact, Y is Urysohn, then f is almost-open.

Proof. Let A be a regularly-open subset of x. Then $X \sim A$, being a regularlyclosed subset of the almost-compact space X is itself almost-compact. Also, it is known that the θ -continuous image of an almost-compact space is almost-compact [8]. Therefore $f(X \sim A)$ is an almost-compact subset of the Urysohn space Y and is therefore closed. Thus $f(X \sim A) = Y \sim f(A)$ is closed, whence f(A) is open and consequently f is an almost-open mapping.

Theorem 3.2. If $f: X \to Y$ is an almost-closed mapping of X onto Y, then for every regularly-open subset G of X and for every point $y \in Y$ such that $f^{-1}(y) \subset G$, we have, $y \in [f(G)]^0$.

Proof. Since G is regularly-open, therefore $X \sim G$ is regularly-closed. Since f is almost-continuous, therefore $f(X \sim G)$ is closed. Since $f^{-1}(y) \subset G$, therefore $y \notin f(X \sim G)$. Hence there must exist an open set U containing y such that $U \cap f(X \sim G) = \phi$. Then $y \in U \subset f(G)$ and consequently y is an interior point of f(G).

Corollary 3.1. If $f: X \to Y$ is an almost-closed mapping of X onto Y, then for each set $S \subset X$ and for each point $x \in X$, such that $f^{-1}(f(x)) \subset \overline{S}^0$, we have, $f(x) \in [f(\overline{S}^0)]^0$.

The following two theorems give sufficient conditions for an almost-closed mapping to be continuous.

Theorem 3.3. If f is an almost-closed mapping of an almost-regular space X onto a compact space Y with regularly-closed point inverses, then f is continuous.

ALMOST-CONTINUOUS MAPPINGS

Proof. Suppose f is not continuous at a point $x \in X$. Then there exists an open set M containing f(x) such that $f(N) \cap Y \sim M \neq \phi$ for every open set N containing x. Since f is almost-closed and N is regularly-closed therefore $f(\overline{N})$ is closed. Also $Y \sim M$ is closed. Thus $\{f(\overline{N}) \cap (Y \sim M) : N \text{ is open and } x \in N\}$ is a family of closed subsets of Y. Also this family must have finite intersection property, for if there exists a finite number of open sets N_1, \dots, N_n such that $x \in N_i$ for each $i=1, \dots, n$ and if $\bigcap_{i=1}^n [f(\overline{N_i}) \cap$ $(Y \sim M)] = \phi$ then $\bigcap_{i=1}^n N_i$ is an open set containing x and $(Y \sim M) \cap f(\bigcap_{i=1}^n N_i) \subset (Y \sim M) \cap$ $f(\bigcap_{i=1}^n N_i^{-}) \subset (Y \sim M) \cap [\bigcap_{i=1}^n f(\overline{N_i})] = \bigcap_{i=1}^n (Y \sim M) \cap (f(\overline{N_i})) = \phi$, which is a contradiction. Therefore $\{f(\overline{N}) \cap (Y \sim M) : N \text{ is open and } x \in N\}$ is a family of closed subsets of Ywith finite intersection property. Since Y is compact, $\cap \{f(\overline{N}) \cap (Y \sim M) : N \text{ is open}$ and $x \in N\} \neq \phi$. Let y' belong to this intersection. Then $y' \neq f(x)$. Therefore $x \in f^{-1}(y')$. But $f^{-1}(y')$ is regularly-closed and X is almost-regular. Therefore there exist disjoint open sets U and V such that $x \in U, f^{-1}(y') \subset V$. But $V \cap U = \phi \Rightarrow V \cap \overline{U} = \phi$. Therefore $y' \notin f(\overline{U})$. But this is a contradiction to the fact that y' belongs to $f(\overline{N}) \cap Y \sim M$ for every open set N containing x. Hence f must be continuous at x. But x is an arbitrary point of X. Therefore f is continuous.

Definition 3.4. A mapping f of X into Y has at worst a removable discontinuity at a point $x \in X$ if there is a point $y \in Y$ such that for each neighbourhood V of y, there is a neighbourhood U of x such that $f(U - \{x\}) \subset V$.

Theorem 3.4. If f is an almost-closed mapping of an almost-regular space X onto a space Y with regularly-closed point inverses, then if f has at worst a removable discontinuity at $x_0 \in X$ then f is continuous at x_0 .

Proof. If x_0 is isolated in X, the result is obviously true. Assume that x_0 is non-isolated and that f is not continuous at x_0 . Let y be the point of Y determined by the hypothesis. Since $y \neq f(x_0)$ and $f^{-1}(y)$ is regularly closed, an open neighbourhood Uof x_0 exists such that $f^{-1}(y) \cap \overline{U} = \phi$. Then, because \overline{U} is regularly-closed, therefore $f(\overline{U})$ is closed and hence a neigbourhood V of y exists for which $V \cap f(\overline{U}) = \phi$. There is a neighbourhood W of x_0 such that $f(W - \{x_0\}) \subset V$. Since x_0 is non-isolated, $U \cap$ $(W - \{x_0\}) \neq \phi$. Hence $\phi \neq f(W - \{x_0\}) \cap f(\overline{U}) \subset V \cap f(\overline{U})$, which is a contradiction.

4. ALMOST-QUASI-COMPACT MAPPINGS.

Definition 4.1. A mapping $f: X \to Y$ is said to be almost-quasi-compact if it is onto and if A is open whenever $f^{-1}(A)$ is regularly-open.

Remark 4.1. An onto mapping f is almost-quasi-compact iff S is closed whenever $f^{-1}(S)$ is regularly-closed.

Remark 4.2. Clearly, every quasi-compact map is almost-quasi-compact. But an almost-quasi-compact mapping may fail to be quasi-compact. The following is an example.

Example 4.1. Let (R, \mathfrak{T}) be the space of example 2.1. Let $X = \{a, b\}$ and let $\mathfrak{T}^* = \{X, \phi, \{a\}\}$. Let f be a mapping of (R, \mathfrak{T}) onto (X, \mathfrak{T}^*) defined as follows:

$$f(x) = \begin{cases} a & \text{if } x \text{ is rational,} \\ b & \text{if } x \text{ is irrational.} \end{cases}$$

Then f is almost-quasi-compact but not quasi-compact.

Theorem 4.1. A mapping f of X onto Y is almost-quasi-compact iff the image of every regularly-open inverse set is open.

Proof. First, let f be almost-quasi-compact and let A be any regularly-open inverse set. Then since $f^{-1}[f(A)] = A$ is regularly-open, therefore f(A) is open. Conversely, if $f^{-1}(S)$ be regularly-open, then because $f^{-1}(S)$ is a regularly-open inverse set, therefore $f[f^{-1}(S)]$ is open, that is S is open and hence f is almost-quasi-compact.

Corollary 4.1. A mapping f of X onto Y is almost-quasi-compact iff the image of every regularly-closed inverse set is closed.

Theorem 4.2. If f is a one-to-one mapping of X onto Y, then the following properties are equivalent:

- (a) f is almost-open.
- (b) f is almost-closed.
- (c) f is almost-quasi-compact.
- (d) f^{-1} is almost-continuous.

Proof. $(a) \Rightarrow (b)$. Let A be a regularly-closed subset of X. Then $X \sim A$ is regularly-open. Therefore $f(X \sim A)$ is open, that is, $Y \sim f(A)$ is open. Thus f(A) is closed and consequently f almost-closed.

 $(b) \Rightarrow (c)$. Let $f^{-1}(S)$ be regularly-closed. Then, $f(f^{-1}(S))$ is closed, that is, S is closed and hence f is almost-quasi-compact.

 $(c) \Rightarrow (d)$. Let U be a regularly-open subset of X. Then $f^{-1}(f(U)) = U$ is regularly-open. Hence f(U) is open, that is, $(f^{-1})^{-1}(U)$ is open and therefore f^{-1} is almost-continuous.

 $(d) \Rightarrow (a)$. If A is a regularly-open subset of X. Then $(f^{-1})^{-1}(A)$ is an open subset of Y and thus f is almost-open.

Theorem 4.3. Suppose that f maps X onto Y and g maps Y onto Z. Then if f is almost-continuous and if $g \circ f$ is open (resp. closed, quasi-compact) then g is almost-open (resp. almost-closed, almost-quasi-compact).

Proof. Suppose first that f is almost-continuous and $g \circ f$ is open (closed). Let S

be any regularly-open (regularly-closed) subset of Y. Since f is almost-continuous, therefore $f^{-1}(S)$ is an open (closed) subset of X. Now, $g \circ f$ is open (closed). Therefore $(g \circ f)(f^{-1}(S))$ is open (closed). But $(g \circ f)(f^{-1}(S)) = g(S)$. Thus g(S) is open (closed). Hence g is almost-open (almost-closed).

Now, let f be almost-continuous and let $g \circ f$ be quasi-compact. Let $g^{-1}(S)$ be a regularly-open subset of Y. Then, by almost-continuity of f, $f^{-1}(g^{-1}(S))$ is open. But $f^{-1}(g^{-1}(S))$ is $(g \circ f)^{-1}(S)$. Therefore, since $g \circ f$ is quasi-compact, S must be open whence g is almost-quasi-compact.

REFERENCES

- [1] M. K. SINGAL & ASHA MATHUR : On nearly-compact spaces, To appear.
- [2] N. LEVINE : A decomposition of continuity in topological spaces, Amer. Math. Monthly, 1961, 44-46.
- [3] M. H. STONE : Applications of the theory of boolean rings to general topology, Trans. Amer. Math. Soc., 41, 375-481, 1937.
- [4] R. VAIDYANATHASWAMY: Set topology, Second edition, N. Y. 1960.
- [5] P. URYSOHN. Über die Mächtigkeit der zusammenhängenden Mengen, Math. Ann., 94. 262-295 (1925).
- [6] MAMATA KAR : Weak-continuity and weak*-continuity, To appear.
- [7] M. K. SINGAL & SHASHI PRABHA ARYA: On almost-regular spaces, Matematicki Vesnik, 6 (21) 1, 1969.
- [8] S. V. FOMIN: Dokl. Akad. Nauk SSSR, 32, 1941, 114.

Faculty of Mathematics, University of Delhi, Delhi, INDIA.