VARIOUS HAMILTON’S CANONICAL FORMALISMS
AS NON-CONNECTION METHODS FOR VARIOUS
CONNECTION GEOMETRIES IN THE LARGE.

TsuRUSABURO TAKAsU
(Received Sept. 19, 1968)

In a paper T. Takasu, [1], the present author has introduced non—connection
methods for some connection geometries in th large based on canonical equations of
Hamiltonian types of II-geodesic curves in the present author’s sense. It was a six pages
extraction as a preliminary report. The present paper is a detailed exposition of it. The
main resuls are as follows. §1. “An extension of the duality exposed in the excellent
book H. Hund, to the case depending on higher order derivatives” adding new
formulas to the Hamilton’s canonical formalism so that the Hamiltonian H and the
Lagrangian L for (x%,y,) are the Lagrangian and the Hamiltonian for (x;, y?) respectively
owing to the new relations (1.28), p. 22. The case M=1 is particularly note-worthy. § 2.
“Another Duality in the Hamilton’s Canonical Formalism” is added introducing another
Hamiltonian $ and another Lagrangian & (corresponding to §) given by (2.1), p. 25,
(2.14), (2.15) and p. 27 being led to new canonical eqnations (2.34), (2.40), p. 31, 32 of
Hamiltonian types. The case of M=1 is particularly note-worthy. § 3. “Hamilton’s
Canonical Formalism in terms oj Global Coordinates of the Present Author”, making a
sequel to T. Takasu, [1]. §4. “The Hamiltonian Equations in the Large.” It is
remarkable that the extremals cover several paths (e.g. Il-geodesic curves covering II-
geodesic affine paths). The case M=1 of §4 is particularly note-worthy. §5. “The
Groups of Extended Hamilton’s Canonical Transformations.” The case M =1 is particularly
note-worthy. §6 ‘“The Relation between the Hamilton’s Formalism of §4 and the
Present Author’s Non-Connection Methods for Some Connection Geometries in the
Large”, each forming another method for the other. The case M=1 is particularly
note-worthy.

A paper T. Takasu, [9], which is a unification of and by the present
principle, is under preparation and will be read in the Autumn Meeting of the Japan.
Math. Soc. in the middle of Oct. 1968 in Tokyo.

§1. Hamilton’s Canonical Formalism depending on Higher
Order Derivatives.

We will start with the duality exposed in the excellent book of H. Rund
adding new dualities spoken of under §1 of the Introduction above.
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We shall now base our theory on the n-dimensional differentiable manifold
U U.(x) (in current notation) provided with the local coordinates
(1.0 B, gty =1,2, 0, 1), \ XA =1,2,m),

which is denoted by X,.. A relation of the two sides will be established later by
and (1.28). A set of # equations of the type

(1.1) =2 (o), ‘ xi=1: (),

where r is an arbitrary parameter, represents a curve C in X,. If the functions

are of Class C!, we can form the derivatives
(1.2) #=dxi/dr, } #y=dx,/dv,

which we shall regard as the components of the tangent vector to C.

Suppose now that we are given a function
. D ) )
L, 2, -, &), | Hlmds, o, %), (T. Takasu, (9,10))

of which we shall now assume that it is of class C?® in its (M+1)#n arguments (in
fact, all our final conclusions can be established for C? functions)
) . an
(xl’ xip oo 9x1)' ’ (xl9 Xas oo ,xl)°

For two arbitrary points Py, P, on C corresponding to parameter values 7, and 7,

respectively, we can then form the integral ' .
1 Q) a1 an
13 I =f L (x?, %2, -+ , x%) dr. ‘ I= f H (x;, %3, -+ , x3) dr.
70 7o

It will be assumed that the values of I be invariant (cf. A. Kawaguchi, [1]; M.
Kawaguchi, [1], p. 724. under an arbitrary parameter transformation of the type

(1.4) g=o0(7),
the function ¢ being of class C* such that
(1.5) 6=do/dc>0.
This assumption implies that our theory is to be invariant under transformations

of the local coordinates

x* X2
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as well as under trasformations of the parameter t subject to the condition It

is assumed ¥ that the

. . (M)
Lagrangian L (x?, %%, -, x%),

[¢')]
] Hamiltonian H\x., %, -+ , %2,

say, s positively homogeneous of the fiirst degree in

(L6) &% L (%, 24 &, - , %9

= AL (2, &4, %2, e 20), 2 > 0,

so that

L7y AL G2, 2, - 39
(1) 5%

(M) v ees
=L (x%, %%, -+ , x%), 3H(x;,x3,

. . . (”)
Xt H(xl, sz X, °** ’xl)

M)
=2H(xx, 5\.72, -.x.b eer ,xl)’ 2>0’

@ -
Xi) - .
s AR xl‘_____H(xb Xiy ot xZ),

0%,

where the partial derivatives themselves are now positively homogeneous of degree

2ero in
X2

Hence

1.8 0’L (xl’ila ,(.:1)) x> =0

18 wor
which entails

2L \_
(19) det (522 ) =0.

If we write
(110)  p.20L (i, &, -, 2) / i,
we can not express
xl
as functions of

o)
(xl’ xl’ Y x‘a pl)

xi.
[¢'9]
azH(xz,A"«'z, ) xﬂx =0
ox, 0%, VT

det (%%) =(.

def

. an .
DP#=0H (2, %2, ++* %3) / 0%y

2

. (¢:9)
(xb Xis oo 5 Xay Pl)'

1) This restriction on L (H) is not as serve as may appear to be the case at first sight; a
homogeneous Lagrangian (Hamiltonian) can always be obtained from an arbitrary problem in the
calculus of variations. (Cf. Section 7 of Chap. 2 of H. Rund, [12]). Other cases shall be studied later.
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(Indeed the right-hand side of (1.10) is homogeneous of degree zero in
Xx2.) %2.)
Substituting (1.10) in (1.7), we obtain

)
(L11) —L (x4 %, -+ , £+ p, #4=0. — H (%3, 500, +++ » 23) o+ D# 5, =0,

Thus the left-hand side of (1.11) can not serve as Hamiltonian (Lagrangian) function.

We have, then, to seek for suitable canonical variables and a corresponding
Hamiltonian. Lagrangian.

This is achieved by means of the so—called fundamental tensor, whose components are

o) (€3]
(1.12) g',“, (xl, .721, ceey, xl) an g‘"” (x/b xl tty xl) ¢
M)
d_éf 1 32L(x1,£‘, --',x‘l) dif%azH(x2>j¢b ""xl)
z 0%+ 0% ' - 0%, 0%, )

It is easily verified that the
B ‘ 8"
form a
covariant ‘ contravariant

tensor of rank 2 as a result of the invariance of

an (¢°9]
L (xl’ XA, oo s xl) l H(xb X, **t 5 X2)

under arbitrary coordinate transformation.

We note that

, @n ) )
Buv (xz’ PRI | 1 g% (X2, X2, o+, X4)

are positively homogeneous of degree zero in

X2, X2,
so that
- or v, 35
8oy (8, &, -+, &) 2u=), og ”(x"’f*"°"x*)ic,,?_-0,
ox* ox,
(1.13) e an) ) an
agy (x ’3.7 5t X )5@#:0’ ag* (%1, Jf'x, ’xl,fi‘u=0,
0x° 0%4
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where we have made use of the fact that according to definition (1.12), the derivative

0gy og*
0%’ 0%,

are symmetric in the three indices g, v, o.

Let us consider the case
can) ) an
(114)  det {g (4%, &, -, 29} %0 | det {g® (2, 1y -+ , %)} 70

only.

Owing to (1.14), the matrix

(gpv (xb i‘b M ’xl) )

. [¢9) )
(g;w (xlxxl’ ter axl)) l

has the inverse

. o)
(ghv (xh X2s *** s (xﬂ;) ) . an

)
(gyv (xl,xd, b ’xz)) : ar |
gy» (x/b xl, tt xl) gl” (xb x.l’ ttt x1)=55-

M) )
(1,15) o (xz’ A eee, Jg) o (3, 2,0+, x)=0o.

Since

oL (xb 7.52, TN xl)

. ) [¢-9)
gya (x‘,xl, b ,x‘) |

are homogeneous of degree zero in (),

o)
.y

af)
gr(xh, x4, .-, x4) 8w (%1, X1y -+, %3)

must also be homogeneous of degree zero in (%).

We shall define the components of an analogue of the “canonical momentum” by
) (¢:9)
(1-16)2) y#d_;fx.#(-iéfgfw (x”, .’)'C“, RS xz) i‘”. l y‘u (-1—2%" d=9fg,u, (xl, x.b R x]) xv'

Since (1.12) can be written out as

_ 9L oL L ,_ 0H oH , ;; ®°H
(1-17) gpv—" ax-“ ax.v ax.”‘ ax-y 1) g”‘ - ax/‘ ax'y aj‘rﬂ a.'f,',, ’

if follows from (1.7) and (1.8) that the definition is equivalent to

_ 0L e H

3) e .
(1.18) =L s

2), 3) will be seen later in (1.27).
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Thus
y: and p, y* and p*

differ only by the multiplication factor

L. H.
The equation may be solved uniquely for the
i %2

as functions of

" an - @)
(xb Xy *** ,xbyl) (x ,xZ’ i ,x‘,yl)

as a consequence of (1.14). For, it follows from (1.16) by differentiation with respect to

x %,
that
¢ 2 2

by virtue of (1.13). Thus the Jacobian of [1.16) is simply the matrix:

0Yu| _ . 0V | _ | g |-
(1.20) 'Wf = |&wl; ‘ o5 lg® |3
and hence, by virtue of (1.13) and [1.16) we may write
) an
(1.21) = {x*, X2, -+, X2, Ya)- ‘ xa=¢ (%2, X2, -+, X1, ¥2).
For, owing to (1.14), the matrix

) . n
(8pv (xz, "Cz’ tt xz) ) ’ (g'w (xls Xas o sxl))

has the inverse

. M)
(gpv (xll Xis =** xl) ) :
D [09)

gyv (xh xla b ,xx)g’“' (xla x.la R x1)=6: 5

(gpy (xl’ x.l, oot ’(;3) ) H
o) an
(1.22) g'"“ (x‘, x.l; *ts xl) g/w (xl’ jl: " xl)_—_&: 5
thus, if we multiply by

. (¢:9) . C )
g (xbxi) o0t )xl)’ ‘ &uy (xl’xb ot »x.l)’

it results that
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. can
g (xl’x LAY xl)yﬁ
. o . an
=g (xl, 2R R xi) Gus (xl’ X2, e xl) x*
=5 e =4,

and by virtue of [1.20) and (1.13), we have

)
x=xv (y,,,x/‘,x/‘, ’xﬂ)’

(1.23)

so that

M)
(124) j“:gﬂv (xzx X2, e ’xg)yﬂ
M)

=g (xly x (y’ x*, 55,1, ”(.M’)x”)’
xl, Tt xl) Veus

%

which is of the form
(1.25) x»._.¢,» (%2, %2, -+ ’(;'3, 2. ’

Hence the functions
¢u (xl’jfl e ,(;ll), ,'Vx) j

are of class C?2

g,u-v (x)s "elr A

)
’ xl) y”
[¢¢

=g (xh X2y o
=5: x:':jv’

(€0}

x.v =x.v (y Hy Xu, :Ep’ AR x.u):

. an
=& (xb Xyttt xl) y

an
= (xh X2 (y", Xps Xps * .(.u’)x")’
%2: b ’xl)y'uy

. .0 (M)
=, (X3, %3+, 22, ¥Y).

(¢ 9]

¢v (xl; xla "0ty xbya)

By virtue of (1.25), the (1.22) may be written as

(€.p]
(1.26) g (x4, X%, -+, 2%, ¥,) Bie %‘,:’c‘,
e x2) =02,

From [1.16) it follows that
i ’
are positively homogeneous of the first degree in
x
The (1.21) becomes now by to
an
(1.27) ar=gm (2%, %%, -+ , 2) ¥,

From (1.27), we infer that the

2 22 o'y
g‘"’ (x » XSy oo ’xzsyl)

are positively homogeneous of degree zero in the

)
8w (X2, %z, -+ ,xx,y‘)g""(gz,xx,
vee, x1)=5:.

Qn
Xy =8&p» (xl’ Xyt xz) y".

) an
uv (xl’ Xay *t0 5 X2, Y )

) )
» X2) 1% (X2 %2, +

21

)

M xx) i't
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Yue ‘ yh.

Now let us prove that
. an . ) ) an . Q)
(1.28) g[“" (x‘, x’l, ey x1)=g"” (xb Xis*** xl)- ‘ g/w (xb Xis *** xl)'-—:gpv (xl’ xl’ R xj)'

From (1.26), we habe namely
Xt KX, =07 %" X,

fo F =03 & 27
. (M) . ) .
=g;w (x17 xls tt xl) x”g’"’ (yla Xis s xl) Xos

_.__.gyv (xl’ ﬁz, CETIN xl\’ x.“ gyo (xl, 562, e ,xl)x'a,

so that

L an o an L on L o on
g/w(x s X1s "'xl)g,ua(x ,x,"',x1)=5;. [ g/w(xyxla ---,xl)gll"(x’x’... ’xl)=5:.

Comparing this with (1.15), we see (1.28).
N.B, By virtue of (1.28), the gives
. ) (M) . . (M) »
x/t=g,uv (xl, xl, R xl) xu-—:g/w (xl, Xas*°° xl) xu,
whose inverse is
9'5"=g‘"” (xh x.b Tt x]) Xos

which is nothing other than the right-hand side of [1.16)). Thus the two sides of

are consistently related by

. . (M) . 3 3 (M) .
(116 y.=%.=8w (x*,x‘,(-f;; , X4) X | yr=xr=g" (X3, X2, ++* ,(%) z
=G (X1, X2, +++ , X2) X, ; =gm (2}, &2, -+, X)) Ky

Again it is easily verified that fhe

Wz y*

are components of a
covariant contravariant
vector, its

contravariant covariant

counter-part possessing the components
y =z, V=%,

while the
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. (M)
g™ (x, X2, -, x4, y3)
represents a
contravariant

tensor of rank 2.

3] (M> 2
gpv (xb Xy e ,xby )

covariant

23

Also, in view of the homogeneiety relations (1.7) and (1.8), we find by multiplication of

(1.7) by
x* and x¥
that
(129)  L(xh, 22, e, 20
oD
=g (X, X2, o+, X2) X0 7.
Thus, for

L positive,

%, and %,

n

H2 (xl, x.h St xl)
[¢:3)

=gl“’ (xl, xl; ee

H positive,

we can write fundamental integral (1.3) in the form

‘!'1 ”
(1.30) I= j (@ (3, 2, -, 20) dardr} .
]

The identity (1.29) suggests that we should define the

Hamiltonian

Junction

o)
H(x%, %%, -+, x4, 3))

by the relation

(L300 HEw, 2, %)

dof vpv (42 22 3
=8 (x’x"" ’x’yl)y/‘yv'

We can prove the equality

(1.32) HE (x4, 32, .

=yzy1=-7213’1=gpv-"'5"x"=gppy"y”=L2 (xh;v.l, coe

4) Cf. (1.26) of H. Rund, (12).

' Lagrangian
an
’ xZ, yl)

‘ L (12, &1, -

@n
L2 (xz,xl, e ,xbyl)
def 22 2 v
=&p» (xbxl, X2 Y )ylly .

an . an .
s x}):Hz (xl’ xl’ oo, xl, yl)zgyvy.“yl):yi xl

§ (
I= f l{g[w (xb x.l’ Tt ;1)) dxydx,}%.
%0

(¢)3] .
> X2, y1)=L2 (xl’ Xy ***

N x;) Ji',, .’\'7,,.

(€]
N x;).
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Indeed gives
(1-33) x.” =g[1v y‘u, x'v=g[lv y'u’

so that we have
L2=gﬂu x"” x.”"—"yxﬁ.fi H2=g,uv :?# x‘p=yl ’2-2
=2 (% ¥o) (& Y:) =8 Yo Y. =g (ep ¥°) (&0v Y7 )=8oc ¥° ¥'-

For the signs of H and L in (1.31), we stipulate that the signs of L and H
must coincide; thus

an aan
(1.34) H(x*, %, -, x‘(,j};;) L (%2, %2, -+, xz,(.yl’;)
=L (x*, &%, -+, &%) =H (%3, %3, -+, %)
. an . an . ) . an
=L (xla xl, Sty xl, 9[’2 (xla xl’ ttty xz:yl) ) =H(x1’x2’ e s X2y 9[)‘ (xz, xz, oo xl;ya) )
by (1.21).
Next let us prove the relation
(1.35)
- ) . aan . can . Qan
aH(x ,x‘ xl yl) =__0L(xx,xz,'“,xx,yl). aL(xhxb"' ’xl,yl) =__aH(x2!x1:"' 1x1,y1).
ox* ox* 0x, 0%y

For this, we differentiate (1.34) with respect to

x, the y; { X, the ¥

being held constant for the purpose of partial differentiation, and we obtain

o0H _ oL , 9L 3¢’ oL _ 9H . 3H dg,
dx*  Ox* = 0%’ Ox* 0x, Bx,, 0x, 0x,
(139 oL ) oH
- V2
o L ax/‘( ay1> ax,, ax,. (L oy >

where we have used and (1.21). But, since H (L) is positively homogeneous of the
first degree in y,(y%), we have

oH oL _
(1.37) gy =H, Vg =k
0*H _ oH 0L aL
(1.38) J’z axﬂyx — axp » J’ ax ayz ax
so that (1.36) becomes
oH oL , 2(dH | oL _oH , 2( L
(1.39) ox*  ox* L( ox* H> \ 0%, 0%, +}_I< 0x, L) ’
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or, if we use (1.34) once more, the relation (1.39) follows.

Next, let us prove the relation

(1.35)
(¢ 9] ) Qn " «@an
aH(xz,xi’ ) xl)yl)= — oL (xl’xl) ) xbyz) aL (xb%b ) xhyi)= _aH(xz’xz, ) xl’yl).
0y u Y | oy* oy*

For this, we differentiate (1.34) with respect to
Yu» the x, L ye, the x?

being held constant for the purpose of partial differentiation, and obtain

)
(1.36y SHUALE, 2 9)_ L L (3, %1, e 329Y) _ OH
oY, Yy ay* oy
oL oa¢r 0H a¢,
o oy, + o5, ay
_ ALy 0 (g oH _O0H ,y @ aL>
=, Lo, (H s ). =y TH By (L i)

where we have used and (1.21). But, since H (L) is positively homogeneous of the
first degree in y; (y*), we have

oH _ aH _ oH 2OL _g o, 9L _ 9L
oy T Viay 9 oy, Yoy =l Y Gy oy

so that (1.36) becomes

oH _ oL , 2({0H oL _o0H , 2(dL
9y, 0y, +f( Y, H\) ’ oyr oy +I7( oy L) ’

or, if we use (1.34) once more, being put 2/L=2/H, the relation (1.35) follows.
The case M=1 of §1 is particularly note-worthy.

As for L resp. H, we shall find later the canonical equations of

Hamiltonian types (2.25). Lagrangian types (2.26).

§2 Another Duality in the Hamilton’s Canonical Formalism.
In (1.32), for (1.11) we have found
. . an Qan
(2'1) 32=H2 (xbxb tee 7x2) = H2 (x, fh R xlayl)
. an . an
=g (xz’ xz’ T xxvyl)y!!yf:g/lv (xl,xi, s xl,y’l)y"y"

[ (M) D . (M) . . 3 (M) 2 [ (M)
=gM (X2, Kayeee, X2) X Ky = (X1, ++, x2) X2 ¥ = L2 (23, X2,--+, &%, y) = L3x?, 22,-++, 24).
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Now, quadratic differential forms are always expressible in the forms of the sums
of (generalized) Pfaffians :
. aan,
(2.2) SE(de)2=gm (%3, Xz, ++* , X2) Xp X, (dT)P =0, 01 = 0! @}
)
=g (&%, X2, +++ , x}) X, %, (dr)?

except undergoing » extended as well as doubly extended orthogonal transformations,
where

an \ %)
def . . det . .
(2.3) W= W% (X2, K2, ++* 5 X2) X dlt. wl=°wf, (%2, X2, +++ , x*) %2 d.

Thereby (1.28) and (1.30) (for H=s=L) are taken into consideration.
Set (cf. Art. 3 and T. Takasu, (1])

(2.4) Hi=cH=cJL=1L!, Li=calL=cH=H,

where ¢! and c¢; are arbitrary constants such that

(2.5) cct=1, aa=1,

so that
(2.6) H'H'=H?*=HH,=L,L,=L*<L'.

Thus we have

€l k= H=o =g, | yr=ir=eiLi=eiHi=gri,
where

28  gu=oi ol (w=(l)), | gm=oton (@i=(),

2.9 w) w; =0,

From [2.9), we have
210) yi=gni=w,0,8=0;, H, (0;=(0})), ] yi=g*i=0'w i,=w* L, (0*=(0}).
Since

Qn
(211) H(xz,fz, e, x;,y;)(

e (M)
’ L (x*, X%, -+, 2%, 9%
M)
=H(x;,5c;, e, Xay H(Dz)

an
=L (x* %%, -+, 2%, Lo?)

is of the first degree in

5) T. Takasu, [1].
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Vi, the w; ¥, the w?
must be of zero degree in
Vi i v
so that
@12)  P=Hrw L= N W =L+ il —L

Next, let us prove the relation

. an . an
(2.13) 0H (%3, %2, ++ , %2, 03 H) oL (%, %%, -+, 2% w? L)
' do, ow*
an an
aL (xz,x.z. vee ,xl wi l;)» — aH(xbx.X’ ey X2, g H)
- dw, ) owr )
Multiplying namely (1.35) with (2.12)
09 _ 9w _
0w, dw? ’
we obtain (2.13).
Set further
2.14) 9Ly, i | ey 4,
=Yu I,
then we have also
(215) D= H' ir=wlL'#, j Q=i L =t Hy i
=H?=s2=]2
From [2.14) and (2.15), we have
(2.16) D=y, xr=L=y"x,

=gp»93”56”=g,w,y"y" ‘_gF x."

=Yu Y

_ Subsequently it will become convenient to introduce w, (x*, &%, +++

an
-+, %) such that

Qa0

217 ¢ 2 gt OD ol [ e 2D ; -
17) ¢ wu (@, 82,00 Ay =0} (22, &2+, %), CL " (X3, %z, +o+ , X2)=

f (7, X2, -

v =8"" Y)Y

an .
, X*) and w* (x;, %1,

)
,» X%,
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so that
(2.18) H=w,3'=w,y*=L=w*%,=w"y,
=(H, H)Y =(H' HY2. ‘ =L Lyt =(L, Ly},
From [2.16], we have
3P =5y, & +y, oix, B8 =Gyt &, y¥ 3,

7 2 T Tl
(2.19) o=af Ddr=) 69 dr O=5f2dr= _fas dr
To To ‘1'0 ‘ro
k3] 71 71 T
= [ oyadr e+ {320 ae = [y sude+ [yn o, e
7o ] 70 T
1'1 71 d fl Tl d
=I5y,,xf‘ dr+fy,,(71—_5xﬂ dr =f oyt x, dr+fyﬂ6—l;5x,, dr
fo fo To TO
Tl rl ?1 rl
= [y, dr det (0w, = [(aye 4y det yr om3]
TO z'o
T 1
- faxﬂ $, dr, ~ f 5x, 3 dr,
70 fo

1
0= f (Oy» &, — 0%, ) dr.
]

71
220 0= f [0y, 4#—ox+ 3, ) de.
%0

Hence
(2.21) 5g=6yl‘ 2.7"—5}(" j)‘u, 68=5y” .'i',l—ax,. j)/l,
Y. and x* y* and x,
Thus we obtain the Hamilton’s global

being considered as canonical conjugates.

canonical equations :
0D _.. 0% __. £ _. e _ .
(2.22) a—y— ——-xﬂ, —axT - _-)I‘ ' —_— '_'y”

o

of the extremals
‘2'1 1'1 ‘rl
5f (5)? dr=f5(s')2 dr=2f $5drde=0
70 70 70
for all values of dr, i.e. of the extremals

S=ar+c.

From [2.18), we have

(2.23) H=w, i,

(a,c: const.),

L=wrz,.
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Hence
!'1 ‘rl
5 f Hdr= jaH dr

71

= f (0w, 2"+ w, 0%) dr
71 7 d

= f (0w, 2+ dr+f wﬂc—h—_ﬁx“ dr

T fo

?1 '1

= IJw,, i+ dr+ (@, 02+,

Tl
- I ox* @, dr

1

= f (Ow, % — 63 0] de =0,

so that we may put

21 T1
6 [ Lac= IELdr
T TD
71
- f (Bt &, + wt 0%,) dr
‘I'l TI d
= f dw* %, dr+ Iw”—ﬁx“ dr
dr
Tl t
- f dwk &, dr + (# 6%,) 0
71
— f 0x, w* dr

71
= j (S ,— 6%, &¥] dr=0,

SL="0w* %,— %, i,

(2.24) SH=6w, i* — 1+ o, '
whence follows the Hamilton’s canonicat equations :

=-—(:op‘

(2.25)

oH _., oH __. } oL . oL

=X~ —_—w — = .
dw, Yoxr T F do* 7" ox,

of the extremals (/I-geodesic curves in the present author’s sense, T. Takasu, [T])
os= éf sdr—f asdr—-J‘ ;,i as dr—[ésJ,o =0.
%0 70
The left- \ The right-
hand side becomes to the Lagrangian canonical equations :

oH . 0H

= — e
Fre Fo> Ox, -

(2.26)

owing to (1.35).
N.B. Along the Il-geodesic curves ds=0 there holds :

(2.27) H=0. ‘ L=o0.
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The (1.34) and (2.12) give

. an . . an .
(2.28) 9] (%2, X2y oo+ xa,yz)=y,, xu.=yﬂyu_—;2 (a2, &4, «oe | xx’yz) =y* %,
3 (M) . (M) .. (K) 33 (M)
= (xx,xz, s, XA, (2, B e 2 ) =9 (2, 2, -+, 22, ¥ (X2, X2, o+, X2, ¥%))
. an . an .
=gy (X2, Xz, oo+, X3) X & =g (K, X, e XN K, K,
. an . [¢79)
=gpu (xl’ Xis ey xbyi) y“y"- =g”” (xl’ xli tty xlsyl)ypyw
a% —_ v v . an - 62 — o . an 0y
(2.29) a).f,, —g"‘ (xb Xas*** xl) Xy, W—gw (xl, xl> R xz) X%
since
g” { &
are homogeneous of zero degree in
i, j i
and
PO _ (g, e PE o .
(2.30) ax_p ax_v —g/‘ (xl’ xl: ’ xl)' ‘ _a}ﬂ—ax-u——g‘uy (x ’ X ’ ’ X ).
Now, let us prove the relation
(2.31)
. D ) an . an . an
0D (X2, X2y s 200, y2) _ _ OR (%, %2, -+, 25, 9%) | O (x4, &2, -+, X4, y%) — 0D (x0, %1, -, 22, )
ox* ox* ’ 0%, 0x, )
For this, we differentiate with respect to
x#, the y; ( x,, the y?

being held constant for the purpose of partial differentiation, and obtain

0 _ 98 , 98 g 2 _ D . 99 a4,
232) o = o o o 3%, ox, | 0%, ox,
_ 98 v 8 (g oH _® ., v 8 [, oL
=%w T o (# 9 ) ox, T Hox, (z oy )

by (2.29), where we have used and (8.21). But, since H (L) is positively homogeneous
of the first degree in y;(y%), we have

oH _ 2H _ oH ‘ oL _, ., &L _ oL

a
Yoy Tl Y ayma =

'_'__“H: A A, T T AT
Yo VY 39, Oy

so that (2.32) becomes
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ox* oxt L\ay.,/) 0%,  0%a tH oy*
or, if we use (1.34) once more, being put 2/H=2/L, the relation (2.31) follows.

% _ 0%, 2(0H 1 0 _ 9D, 2( 0L )

Now, let us prove

o)

an) M) . M) "
(2-33) al@ (xz’ jb X -y2)=a'8 (xl, £19 ot xl’yl)' as (xl’ xl,.,.’ x‘:}’z)__ — 'b (xb X't xbyl).

Yy 0y oy oy*
H=H2=[%*=2.
<
a@ (xb xb '”(-;ll)’ yl)___ _ZH aH as (xzﬁ ﬁl’,.., xil’)yj)= — zLj_L_
0Yu 0Yu oy* ay*
=(_2H)(_8L (%2, %2, ...(kuz),yz)> —(— 2L)(—— OH (x;, Xz, -+ ,%),yl )
\ Y, oy*
OL (5. B3 v A2 3 OH (10 %, v, o
=2H (x s X% ,x)y) =2L (xlsxb ’xbyl)
0V ay*
and
62 (xl,xx,"' ,(xM?,yR) =—2L—a£— a@ (xb-x'l'“ 7(§i’yl) =___2H aH
0Yu 0Yu oy* oy*
o _0H (e _ oL
=(=2L) ( 0y, ) =( ZH)( oyt )
2 g1 .. By oL (x*, %3, o o 2
___ZLGH(x,x, ,x,y) =2H (x, s ’xay_)
0V, ayx
by (1.35)'. Eliminating
oH oL ‘ oL oH
T T t Ty TP e

we obtain (2.33).

By virtue of (2.31) and (2.33), the (2.22) becomes to the global Lagrangian
equations

9 _. D _

oL _ .. o
(2.34) S =in G

Sye T o

v,

the first of which follows from at once and the second are nothing other than
the Euler-Lagrange equations of (2.19), where

dor 98  d 0% w0 _d 9

@35) W=~ owe Yok, T de ok,

T d¥-1 4% 1”—1 d¥=* 09

+(= dT e +(-1) g

+
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Since
H=w, x", L=w*zx,,

. a0 a_ 2 2 . )
D (X3, X2, o+, 22, y2) = H?=5*=K2=8 (x4, %%, .-+ , x4, y%),

we have
3 09=HoH=H (6w, i — iz &), " 308=LoL=L (bw* #,— 6%, i),

whence follows

109 _p 109 __ g 108 _,. 108 _ .

Jor the extremals (“ll-geodesic curves” T. Takasu, ) 8s=0:
(2.37) 09 =0. | 58=0.
In the special case, where
(2.38) r=s, H=K=19 9¥g/2, {&g/2,
(2.39) yi=w; ] Y=g
as will be read out from (2.10), the (2.36) becomes fqr to

R _dx, o8 _  dow

D _dr 9 __ do _ _
(240) - . dw* ds’ ox, ds’

dw, ds’  dx ds’

which are Hamiltonw’s canonical equations of the 1l-geodesic curves.

‘ Next, let us prove the following relations as counter-parts of (2.31)

an

(2.41) 09 (%2, X1, +++ , %2, 0 H)
' dw,
‘ ~ )
| __ 0% (x* X% -, 2t @* L)
- ow, )

Utilizing namely (2.12), we obtain

9 _ 9 dy. _ &
0w, 0y, 0w, 0y,

Thus (2.41) follows from (23.3).

~ )
0% (x4, %%« , x4, 0t L)

6) Cf. (4.29) in H. Rund, [12], p. 172.

dw*

-~ )
— _a® (xl,xzy *tt s Xay, O H).
dw#

o _ a8 gy _ R
dw*  dy* dw*  oy*
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Next, let us deduce the Hamiltow’s canonical equations of the 1l-geodesic curves
os=0:

o4z Dl .t H)_ dx, 3% (13, 32, e , 2 L) _ d
’ dw* ds dw, ds

as the counter-part of

09 _ _ dor 38 _ _ do,
(243) ox, ds ’ ox* ds '

o _ 0D _ 4. . do,
= o T
by (2.31) and
By (2.41), we bave
09 ;. o8 _ ..
(2.44) so-=L, o =H &»
by (2.35). by (2.39) and (2.37).
The decomposes to
29 _ dx, 0% _ dx
N A Doy~ ds

in the case [2.38), which is (2.42).
The case M=1 of §2 is particularly note~worthy.

§3. Hamilton’s Canonical Formalism in terms of Global Coordinates
of the Present Author and Two Allied Dualities.

Set
(3.1) 0=y, = Ho, # { 0=yt dy= Lot i,

utilizing the relation (2.10) and considering the special case [2.38), (2.39), where we may
consider (by virtue of {2.7) and [2.38]):
(3.2) W, A=Y, Y =02

Then straight forward calculation gives us the following relations

(3.3) % D o (B A, 0 )= 0 (it A 20 )
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dw,

ox*

where e. g. o? di»=0 owing to the zero degree homogeneiety of w, in % and

ox*

(3.4) Ay‘vdéfw“ —a& { A =Ew, (e .

Since is written in invariant forms, and are global in the
differentiable manifold X,= U U. (¥c). The factor o, resp. w* maps the local paths
(35)  B4AL =0 | ok A9 i, 2,=0

into the global paths

d o_ _ —
(3.6) £9=0, w=cds, fw_cs+d,

where ¢ and d are constants. For [3.6), we may write down
(3.7) , dg¥ cds.
The paths (3.6) are linear combinations of by the coefficients w*(w?).
As we have assumed (1.14), the
(3.8) ds =g, (x*, X%, --- , x*) dx* dx*

is always expressible in the form [2.2), where (2.3) are linearly independent. The
admissibility of ¢; and ¢ in (2.4), and is in concordance with the introduction
of the constant vectors ¢=(¢;) and ¢=(c!) in Hence we may set

def def def def
39  ar=co, yi=cly,, §=c%, ’ o'=cw, yi=cy?, §i=cé,

and for [3.1), (3.2), [3.3), [3.4) and [3.6) respectively we may write

(3.10) ol =y} 2 d. j wi=9} &; de.

(3.11) ol wi=y’ y}=0d},

(3.12) gg, ‘"_;=mg (AR 3 )= w} (Bt A% 0 ),

(3.13) A3 02 g‘;’: , Aw i‘_ffw;_aa_‘;i,
a¥t _d o' _ d*,_ d oi_

A YT & dsds

(3.15) déi=wt=clds, & =cls+d(clct=1). déi=wi=c, ds,§i=cis+d,, (cci=1).
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The extremals represented by (3.14) has been called by the present author (T.
Takasu, (1)) the Il-geodesic curves; they are global in X,= U U, (xw>) and behave as

Jor meet and join as well as for the extremal ds=0 like straight lines.

The Euler-Lagrange equation for the extremal problem

(B.16) 3 f H(Eé e, &) ds=0 65 £, & ds=0
for
. M) . [€. 97N o ) . ) .
(3'17) J(f,f,"‘,é):?]l (E:E: eee E)‘El .17(5,5,"',5)=77l (5;5, "‘,5)’?
become
M d 0/ -
(3-18) —-a—sl~ dS =0, 'a—E—‘— dS n =0,

where (cf. (2.34))

e aJ d aa# def a_[ d 8_[
Z‘Lf —— . = T _ s -3 ) s
(3.19) U R wE e ds T
x-t ot gy _d¥t ap
H=1) S 22 (=Yt .
a5 D o)

The and (3.17) give the Lagrangian canonical equations

B20)  SHew, SE=d = L=

of the Il-geodesic curves, which are global in X,= U U, (¥w), so that we have

(3:21) SH="52" a"# 661+ a;;f‘ o' 0.4=2L 3+ 3L f o
8H=77 OEC+$Z 677[, =77L 551+El 5771’

whence follows

(3.22)  8_y=2&; ot (7t 85,—€, opY) 8 L=268" 3+ (i) 081 —EL o)

by integration by parts of

(323 & f " W ds= f "oyl ds. 5 f "ds= f 8.0 ds.
If we pu: 0 ° 0

def 2

(3.24) 8 L=E, ot —it 68y, OH =& oy — 1y 68,
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then (3.22) becomes
(3.25) S_J[+ 0 L=2¢, 67'. 8P+ 6 =2 oy

From (3.22) and 3.24), we read out the canonical equations

(3.26) L=t Y=y 0 g, Dy,

of the Hamilton’s types of the ll-geodesic curves.
(3.20) and [3.26) give two dualities.
The case M=1 of §3 is particularly note-worthy.

§4. The Hamilton-Jacobi Equation in the Large.

In our differentiable manifold X,= U U, (), let us consider a 1-parameter family
of hypersurfaces

(41) S(&)=2, | S@E)=2,
where the functions S ore of class C?, while 3 denotes the parameter of the family.
It will be supposed that covers the region X, (&)= Lan (Xeay) Simply.
aa E,:‘S‘ forms a field of covariant vectors; we associate with the
latter a field of wnit covariant (contravariant) vectors 7: (') (in terms of our metric of

The derivatives

the tangent spaces 7» of X, (§)) by putting

(4.2) 7]l=¢(51’ él’ o ,(fl)) aaES 771=¢(Ez:él’ ’EL) a; ’
where ¢ (¢) is defined by
(4.3) ¢={¢J/(El’ él’ eee ’(lgl)’ ae ) }-.1 . ¢={OI/(E" él’ ’ el’ aet )}-1 °

The _#(/) being supposed positively homogeneous of the first degree in . (7"
(cf. [2.16), (2.36)), we have

. an . an
(4-4) .Z(El’ él», i ’El: 771)=1° ‘ J/(El’ 5‘) ee ’E‘, 771)=1-
The contravariant (covariant) vector 7' (p;) corresponding to 7; (') is given by

(4-5) n '—glj (El: Eh te (9 El’ l) v" \ l—glj (fl éi ’ sl vl)
= (€1, &1, o ) =7t (&, &, 5 )
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Since
(4’6) 04(-:77[ él: .["—“vl él)
we have
. an . on
(47) 7]l= aal/(sl’ El’ ) ft, 771) . n= a_Z (El, EL, sery 5‘, 77;) )
& &t
As (4.2) tells us, the field
7' Nt
is transversal to the family of hypersurfaces
For an arbitrary vector
7 7’
tangent to the member of satisfies the condition
oS _ _ oS _,_
(4.8) o8, =0, ger 7 =0,
so that
(4.9) 7.7 =0
by (4.2). From and we obtain
. [¢’p] . [(¢.9]
(4.10) aJ/(El’ 'Sls:“ ,El’ vl) 771:0. a[(&l, el" f" ’El; 77’) 7/-l=0.
0§, ot

We can thus construct a congruence K of II-geodesic curves transversal to the
family by solving the system of first order ordinary differential equations

411) Lo 1 61, oo 6 A (g, 86
in where

(412)  ds=_H(E & e s b0 d2), | ds= 2L E, - &, dey),
and we must always have

(413 (68 B B = pe o 8 )

%oll(el, gl’ e ’(;)l’ 771)=a‘/($z, é.l, e :(‘é)l’ %il ).
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Let I represent a II-geodesic curve of the congruence K of transversals which
joins a pair of points Py, and P lying on two hypersurfaces of the family (4.13), which
correspond to the parameter values &, and 2 respectively. Denote by

414) C: &1=&(s) 1= (s)

an arbitrary curve of class C' nowhere tangent to the family [4.1)}, which also joins the
points Py and P. The curve C will intersect all members of at points corresponding
to the values of ¥ lying between ¥, and X' ; thus X can be regarded as a function of s
such that

ds _ aS ; dX _ 3S
(4.15) = & ’ s = oa &

where £, (&%) represents the components of the tangent veetors of C.

Substituting from (4.2), we see that can be written in the form
(4.16) dZ' = ¢t yt &, I ax _ g1, &L,

But by virtue of [1.18),[4.4)] and (4.13), we have

(¢'9) an
(417) 771244[(51,{:1, 9El) J(Sl,él,"',é) ‘ 7;:[(Sl’él’," tt) -Z(E E‘ ,El)

% an a¢t s
= (e E fé’? 1) M (Er, &y v, ED (e Ez, o DLEE, - E)
w 2
BEWICRREN 1) S VICN NN )
aéz o [ 65‘
so that (14.16) becomes
dE _ i 0 M G0k 6 A3 g 0468 L8
(4.18) =¢1 H &, o0, &) g, { =gl LEE, -, ) g,
ds ae, 355

We shall now assume that the family is such that ¢ (¢) is constant over
each hypersurface, i.e. that ¢ (¢) is a function of X only. Then we can show that the
family can, without loss of generality, be represented in such a way that

4.19) ¢ (5)=1. j é(5)=1.
However, it then follows from that the function S (&) (S(&!)) must satisfy the
following first degree partial differential equation :

(4’20) j(él) él, v ;(gl)a iS“‘>=1.

. on as _
aEl J/(Sl) ély ot ’él, a—sz>'—1'
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Clearly, this is the Hamilton—Jacobii equation.

The (4.2) becomes

P
(3.17) and give

(4.21) p=-95 ‘ 095

: ds ' ;. 0S
(422) c,l/— ZGZ—WS ds_ } .Z"?L §l= aE" fl
i.e.
s I s
(4.23) s= [ pas=x-5, | s= [ sas=x-z,
(3.19)=(4.17) and give
_adJf _ oS _ o _ oS
4.24 =" = 22 =4 = ,
( ) Ui afl asl ’ /il a&l asl
from which (4.22) results by multiplication by & (£).
(3.19)=(4.17) and give
o d 0H _ OH . d 0L _ o/
(4.25) n —ds ————aél agl . l m= dS agz aél N
give
d 0H _OH _ d oL o/f _
(4.26) ds ael 8—6"'— . dS afl aEL 0
which is nothing other than the Euler—Lagrange equations
From (4.22), we obtain
(4.27) A= z'é-z+;71 & _Z“ﬂz .S.‘+1']; g
_0H z OH 0L a0l
%, §+aE & 6515 65‘5
by (3.10) and

As [3.1), (3.7), (4.22) and (4,23) show, for
&; (standing in place of x,),

we have

&' (standing in place of x?),

39
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Hds=w=dS=dt=cds, J{=c. Lds=w=dS=dé=cds, f=c.

The case M=1 of §4 is particularly note-worthy.

§5. The Relation between the Hamilton’s Formalism of § 4 and the
Present Author’s Non—-Connection Methods for Some Connection
Geometries in the Large.

In T. Takasu, [5], I established non-connection-methods for linear connections
in the large bringing respective geometries to the “Erlanger Programm”, the transformation
group parameters being adequate functions of the (local) coordinates and in T. Takasu,
[1] I extended them further doubly to the case, where the transformation group para-
%), =
dx/dz, etc.; r=curve parameter). In this §5, I will recapitulate the case of M=1 of
I. (Doubly) extended affine geometry, II. (Doubly) extended Euclidean geometry, III. Other
20 (doubly) extended geometries indicated on p. 31 of T. Takasu, [8], IV. Geometry of
Finsler-Craig-Synge-Kawaguchi spaces, all by Hamilton’s Canonical Formalism, since I
am now in the situation to emphasize that the global Hamilton’s canonical equations
(2.22) (which become to the) global Lagrangian equations (2.34) by (2.31) and (2.33),

should be utilized in the case M=0, since in this case (1.11) does mnot serve as

meters are adequate functions of the (local) coordinates (x) as well as of (%, %, -+

Hamiltonian (Lagrangian) function.”

I. (Doubly) Extended Affine Geometry based on
Hamilton’s Canonical Formalism.

I.1. A New Method of Treatment of II-Geodesic Curves by Means of
Hamilton’s Canonical Formalism. Consider

dof . S det . an
(I' 1) wé(’)ﬂ (xz’ xl’ Tt xl) dx”’ wéo)” (xh X5 *o* xl) dxﬂs

(2’ “, ...=1’ 2,0, n),
which is global in the differentiable manifold X,= U U, of class Cv,
v=npositive integer, v=co, r=w,

where open subset U, is the domain of the local coordinates x.), since (I.1) is written

in an invaricant form.

7) Cf. (1.1D).
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Let x'=x%(r) be a parametrized curve, where r is an arbitrary parameter (e.g.
the canonical parameter (T. Takasu, [7), Art. 12; [8], Art. 14)). Set

L2)  de, (2 &, e 1) 2# dr, e on (12, 2a, - - %0) £, T,
(I.3) ’ Sdgw,, (23, %2, +on ,(a]g‘)) xt=y,xr, | @dgw" (%2, 2y +e ,(xMI)) Eu=Y" X
/
where
(L. 4) 0,2y, 1 wr Ly,

Then the Euler-Lagrangian equation for the extremal problem

(1.5) af 2dc=0 5f Ddr =
79 70
becomes

(L 6) 08 _drof _d o8 09 09 _d 9

ox* di\ox* dr oir 0%, dr 0x, T dr Bic',,
d*-1 9% L at
+"'+("1)M_1Wu—1 g?‘“j':o- + e (=1 dz-M—l (M) ] 0.
Define y, (y#) by
d_e_f ag d 82 def a:Z) d 3{)
(L7 Vo= "axr " dr okr e yr= 73:# “dr 0%, + e
d"t 59 L d*t 3
+(—1)M-1W—£g)“ +(=1)*" dTM"l é}%

for (1. 3) anew, then (I'3) and (1. 6) give

09
" =X
0%y =5" oy*

y

1. 8) ;’; =, %%: » i 9 _
u

forming the canonical equations (2.34) of Lagrangian types as in the case of (2.22).
When the points 79, 7; in (2.19) and the curve C passing through o, 7; belong to one
and the same domain U, of local coordinates, the (I.8) are canonical equations of the
local geodesic curve C, and otherwise the curve C is a lI-geodesic (the geodesic incl.)
curve corresponding to
0, (&, &, e s 2, w0 (Kay Fay e 5 X

which is (global and) an extremal of (I.5).

Theorem. For that the extremals 09 (x%,---, :)=0 and 08 (1, %*, ---)=0 coincide,
it is necessary and sufficient that

(L.9) 5 (v, #1)=0.
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Proof. From we obtain
OR=0 (Y, %*)=0y, X +y, 0%*=3, 0 X"+, 0%* =3, ox*+y, 0%*,

(I. 10) 58 (x‘", 7'5‘”, eer )=5 (yp 3\'7‘”)—5‘5 (x"’ yﬂ)’
where
(I.11) 0D =0y, X" —0x" Y,

The (I. 10) gives our [Theoreml
Cor. $H=const. along the extremals 6H=0.

Proof. From (1. 10), it follows that

dg _ d(y.#") A9 (%, 34 o
dr dr ’ dr
From (3.10), (3.14), we obtain
1.12) d§'=w'=y. 3* dr=y! dx*= dr=¢ Ldr,
so that
(1.13) §1=1 3, dun =yl xr—§ 2 dyl =yl 27— f dy} fedn»

=y, dx*— [f (dy, dx*),
the condition for that the repeated integral may be converted into the double integral,
i.e. that the integrand is continuous, being evidently satisfied. Now

(I. 14) ¢ _ dy, dx* . d*

dr? dr dr Vu dw2 -’

Since both terms on the right-hand side are written in invariant forms, if we take a
transformation #*=2x*(x*) such that d%g* / dr2=0, from (I.14), we must have

(L. 15) dy, der=0,
in which case (I.13) becomes of the form
=y Zr 4+ yt, (¥:=const.).

Writing 4, &, & and a@ for g, £, % and y respectively, we obtain the formulas of (doubly)

extended affine transformation of the present author (T. Takasu, [6],[2:6] p. 872; [5],
(3.2), p. 63):

(I. 16) gz':‘allz (5, é: b ’(g3 Sh‘l‘a‘f, ( l aflt | * 0)
accompanied by
(1. 17) dEl=al (8, €, -, &) der,

M)

(1. 18) da}(& 8, 8den=0, (. (15)),
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along the 1l-geodesic line—elements.

From (I.16) and (I.17), we obtain the necessary condition

(I. 19) das (&, €, -, &) r=0
Jor the 1l-geodesic line—elements.
The & and the & will be called the II-geodesic parallel coordinates.
Setting
(I. 20) ds¥de=dr, (. (1.12))
from (I.12), we obtain
(1. 21) E=cl(s—s,), d&=8 dr=c'ds.

Since d&'="c'ds, d&'=c'ds, from (I. 17), we see that ¢’ undergo the transformation

(¢29)]
b

&) ct,

where ¢! are constant on summation with respect to .

(I. 22) c=d (g, &, -

The (I. 21) tells us that the II-geodesic curves behave as for meet and join like
straight lines. The s may be called the affine length.

N.B. The y! in (1.12) and the p!(x) in (1.14) wundergo the extended ajfine
transformation ai. Thus there exists a} (x, ) such that
o, (x, %) at (x, %)=p, (x), (M=1,e.g)
since multiplication factor % (x, %) gives
a; (x, £)=of (x. %) pj; (x).

1.2. (Doubly) Extended Affine Geometry. That the fofality of the (doubly)
extended affine transformations (1. 16) forms a group may be shown by utilizing (L. 19)
quite as in p. 64 of T. Takasu, [5]. This group will be called the (doubly) extended
affine group and the geometry under it the (doubly) extended affine geometry.

From §3 ((3.1)43.15)), we see that the non—connection method for the (doubly)
extended affine geometry is thus deduced from the Hamilton’s canonical formalism.

II. (Doubly) Extended Euclidean Geometry by the Hamilton’s
Canonical Formalism.

11. 1. (Doubly) Extended Euclidean Geometry based on Canonical Equations
of the Hamiltonian Types of II-Geodesic Curves. When the fundamental quadratic
differential form of the (doubly) extended Euclidean geometry is
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(IL1) dst=gu, (4, 3, -+, 2P) dxrdre, (| guw] % 0),
it is always expressible in the form
(II. 2) dSt=w' o', (w‘=wf, (%2, %2, - ,(’;3) dxﬂ)’

but for undergoing (doubly) extended orthogonal transformations

(IL 3) aL (&%, 35, 1), (dh Gh=On, @b af =),
If we adopt (II. 2) for (IL. 1), the results of I hold still and we have
(I1. 4) =o' @'=d& d§'=ds*=(c* ¢*) 0?, (@'=c' w),
so that
(IL. 5) ctc=1.

The (doubly) extended affine gronp becomes in this case to the (doubly) extended
Euclidean group and the (doubly) extended affine geometry to the (doubly) extended
Euclidean geometry (T. Takasu, ).

The (II. 2) shows further that
(1. 6) guw=0', l.

In this way, the Hamilton’s canonical formalism leads to the (doubly) extended
Fuclidean geometry.

III. Other (Doubly) Extended Geometries by Hamilton’s
Canonical Formalism.

All other (doubly) extended geometries corresponding to the branches enlisted on
p- 31 of T. Takasu, may be treated similarly (mutatis mutandis) directly or indirectly
by means of Hamilton’s canonical formalism. (The detail is under preparation.)

IV. Geometry of Finsler-Craig—Synge-Kawaguchi Spaces
treated by Hamilton’s Canonical Formalism.

These spaces are based on a certain integral
1 an
(IV. 1) s= f F(x, % -, % dr, (k=dx/ dr,etc)
70

satisfying the so—called Zermero’s conditions for parameter-invariancy (cf. M. Kawaguchi,
(1), p. 724, *gy;):
an

(IV. 2) gyy (x, x., eee ,(.;l))zM}?2 F(y)p F(p)v+élp éy'l‘*ép* (‘%v: (F=F(x) x.’ *tty x) ).

The ds? is always expressible in the form
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IV.3) d=0' o, (‘= (K& - 1) dar)

but for undergoing (doubly) extended orthogonal transformations, and thus our theory
applies to the case of Finsler-Craig-Synge-Kawaguchi spaces.

§ 6. The Groups of Extended Hamilton’s Canonical Transformations. ®

Consider the transformation

6) 7'=0'(’p)), l =01 (g5, )
§l=p-t ((I", p.’), P_l=P—l (q.h pj)’

where
¢’ and §/ [ q; and §j

are the local coordinates, (x*(x;) in [1.0] incl) of two points on the extremal I' in X,
corresponding to the

Hamiltonian o Lagrangian a
(62) H(ql’ él PR} ql’g(l)) L (ql’ él’ 05 qi, p?”)
=L(gq%,q"¢" =H(Ql,ijl, s qus qu)
and p;(p7) are defined by [6.12) for as in the case of #%*(y;) in [3.19
Set '
T | T
63) T Lig,at - dhqds, | o%: [ Higu iy, -~ 0 1) d,
. i b
so that
(64)  dY¥ (¢ p)=p. dF'—pi dg". ’ do (qi, p)=p" dg.—p' dq..

Definition. The transformations (6.1) are said to be canonical, when the
functions

qt’ ﬁl ‘ q-l’ ﬁl
are of class C? and when there exists a function

V(g ), | ? (. ),

whose exact differential is given by (6.4).

The function

8) This § is different from pp. 82-99 of H. Rund, [1J, in that M =1 and in the duality.
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; V(g0 | 0 (q, )

will be called the generator or generating funciton of the transformation (6.1).

If we replace p:(p") in (6.5) by means of (6.1) this would give
(67 v (¢.q) | ? (g, 4.

(We shall show soon that (6.1) posses an inverse, so that (6.5) and (6.7) are equivalent.]

Associated with the canonical transformation (6.1), we have, quite as in the case

of (3.26),
the Hamilton’s canonical equations
dpl — aH(qJ’ j22) dpl aL (QJ’ p]
dr ot : dc gy
(6.8 .
dq* _ 0H (¢, p)) dq. _ oL (q;, )
dr opu ’ dr op ’

and quite as in the case of

the Lagrange's canonical equations

dp, _ L (¢, py) ap* _ oH (qg;, p’)
dr aq* ’ dr oq. ’
(6.9) .
dq' _ 0L (¢, p)) dq: _ 0H (g, p%)
dr 6p: ’ dr op )
The Euler-Lagrange equations for the extremal problem
(6.10) 6 f Hd==0 6 fLdr=0
become
61y 0H _d(oH _d oH oL _d¢dL _d oL
oq. dc\oq T dr 0 0 dr\0q" dr ag
d¥-t oH d¥-1 oL
e (1P a(g)] =0. e (=) ey 5;—2}0
Set
et 0H _d 0H : et 0L _ d OL
612) P =T e Ol VIR P
a™— oH d¥-t oL
et (=)t dei—1 éM) e (=1)1 dcE-1 ~aD
q:

for
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(6.13) Hpig, | LEpig
anew, then [6.12) and [[6.13) give
8 0H . _ 0H . _ 0L 1. OL
(6.14) = Pyt qz———aF b= Frak q b

forming canonical equations of Lagrange's type (6.9) and we have

5L = 51);(’1‘ +p;5q‘

0H=0p'q:+ p'oq. ‘
=p:10g' + pi0g*

= p'oq.+ p'oq

i.e.

(6.15)  6H=4 (p'qu)+(p*oq:—qi0p") ‘ OL=03(pig")+(pidq*— g'0py)

or

(6.16) SH+3L =36 (p'a), | SL+6H=5 (piif),
where

(6.17) L giop —pogt, | H®gtap,— piogt,

whence follows the canonical eqnations of Hamilton’s type (6.8):

oH __ . 0H _.,

oL _ oL _ .
(6-18) pl =d. aqL pl’ ap =q.

0q opt

Theorem 1°. In order that the transformation (6.1) be canonical, it is necessary
and sufficient that the Lagrange braket relations

[qj’ qh] =0’ [qjv qlz] =0’
(6.19) (¢7, pr) =46, (g, p) =07,
s, pn) =0 %, p"1=0

be satisfied identically.

Proof. Necessity. From (6.1) and (6.5), we have

(6.20)
(62.1)

(6.22)

dg'="90 ag+ 20 _gp,,

ag’ op;
~ api J apz <
dp;= o £ dg’)+ Fr. p —=Xdpy
ovr
o = G0 dqf+ N Y ap,.

i a(h atiz i
agi= dq + ap dp’,
s apz aﬁj .
dpt—Tan+ a—p’dp”
od o0
d0 = 3 g+ dp
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When these relations are satisfied in the condition (6.4}, we obtain

p _‘7_ i1 5,00 0 04 -, dpt
(838~ )dat+ 5352 dp, (#-3—p )dar+ 5B ap
_or _ 00
=7 dqf+ 35, Y dps, _a_q,dq’+ 7 L
and thus, since the ¢/, py(qs, p’) are regarded as independent variables, we deduce the
relations
- 0 v = 0G: oD
Db —br= s b 5 —p= 5a."
(6.23) q* oq qn qn
aph apn apr apn

In order to find the integrability—conditions of (6.23) and (6.24), we differentiate
(6.23) with respect to ¢’(g;) and p»(p*), after which (6.24) is differentiated with respect
to qi(q;) and p;(p’). We thus find

(625 24 % 15, aq,%q,,-aﬁqu =
(6.26) SZ: gﬁi b ap 3q1 —0= %’ gZ; gg: P aj:g;:— = '3%’
TR TN N I
62 L B h s | P

On recalling the definition of the Lagrange brackets we see that (6.25) requires that

der  OG* ap,_ __Q_q_"; op; =0 der 0; apt _8g; opt _
©29) WPI= 50 og7 g7 og+ an, P= oqn 9q; 9q; Oqn

while (6.26) and (6.27) taken together imply that

V(g p) 0T 0P 9G° b _ s w) o 0gi 0p' _ 94 9p* _ 5
(6'30) [CI’,Ph] aq] aph apn aq] 6.1 [CI}’P] aq ap,, [J" aqj =0},

and that (6.28) can hold only when

st 8g° 3ps _ 0G° 0p: _ dwor 0g; 0P _ 0qi 9Pt _
(631) [ph,p.’] aph ap] ap; apn =0. Eph’pjj ap;i apj apj apn =0.

Thus we see that the conditions (6.19) are necessary.

Sufficiency. We note that (6.29) can be written as




VARIOUS HAMILTON’S CANONICAL FORMALISMS 49

0= (P )Pezgigs o (P aay) P 30
a7 (Bl ) *hegesban 2y (P ) +H aZ,":,h
=azn (5 gZ:‘)" a?;f (5 gzi)’ -aq,,,( q) aq, P‘fg,i)

from which we infer that there exists a function ¢ (¢’, ps)(é (g;, p’)) such that
96 _5 0g° 9 _ 5
632) g7 P ag day 2 3q;

Similarly we deduce from (6.31) that there exists a function ¢ (g7, p;) (¢ (g3, 7))
for which

op _ 5 0g" — i 9
(6:39) an P opn a2

Finally, we see that the condition (6.30) is equivalent to

R — 0 i aq-l — b aql
(6.34) ;= 0bn (p g ) oq’ (1’ “0bn ) o= ap'l (1’ 0q; ) s (‘b ap'b)
and this gives in terms of and [6.33):
&= <6¢)_ 8.{6¢)’ o = o (99 0{3;5)’
Opn \ ¢’/ 0q’ \ Opn " p*\Bg; /) ogs \ op*
or
0 a¢ o6 _ o
apn( ”’> og apa) ‘ ap* ( gy pj)"'ff_q?< ap" \
This again ensures the existence of a function ¥ (g/, p;)(® (g;, p7)) such that
W _ 3¢ o0 _ o
i =_—pj9 ) ‘_='———p'7»
oq7  og) 0 0
(6.35) v “oon
3¢ 99 _ 94
8[),,_ “opn opr o’
Now, from [6.32] and [6.33), we have |
b:dg'—p: dg’ =13i—g—q7bdqj p*dgi—p* dy Pl d‘b
+higldp;—p; g’ +5* gg: dpi—p? dg

= (Fgr—ts) da’+55 dps (g, —") das+ 57"
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which is the defining relation (6.4) of a canonical transformation. Thus we see that the

conditions (6.19) are sufficient.
Lemma 1°. The Jacobian J of (6.19) is non-vanishing.
Proof (for the left-hand side).

g Opn.
50 oF
(6.36) J=det| T "
aqi aph
0ps ops

Here we have chosen our notation such that 7,s indicate the »-th and (n+s)-th rows
respectively, while 7 and 2% indicate the i~th and (#+ A)-th columns. In this determinant
we interchange the first # columns with the second # columns, afrer which the rows
are similarly interchanged. This involves an even number of operations, giving

op; og"
apr  opr
J=det p_ b
op:  oF*
oq* aq*

In this the rows and columns are interchanged so that

op» _ 0P,
ops  og*

(6.37) . J=det
_ aq-s aqs
api aq”

where the minus signs, which have been appended to all the terms of the top right-
hand and bottem left-hand parts of the determinant, do not affect its value since its
order is even, namely 2.

Multiplication of [6.36) by [6.37) yields /2. Since the (,7) element of J2 in its top
left-hand corner is the product of the row of and the columns of [6.37), we see

that this element is

aqz aﬁt N aqn aﬁn — aﬁl aq-l v aﬁn aq"n
oq” 0p; oq" dp; 0q" Op; 0q" dp;
_0q’ dps _0q 3Py _r v o
oq" 0p. Op: oq (a7, ).

It is similarly found that the other parts of J2 are also such brackets, so that we have

(g, p3) (g" q7)

2=4
(6.38) JE=det | b () |°
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in which the indices 7, 4, 7, s have the same significance as in [6.36)

The relation is an identity, which holds for any transformation of the type
(6.1). If, in particular, this transformation happens to be canonical, we may apply the
Lagrange bracket relations to the entities by virtue of Theorem 1°. We then
obtain the determinant of the unit 2x% x 2% matrix, from which we infer that J2=1. Thus
Lemma 1° is proved.

Cor. 1°. Every canonical transformation possesses an inverse.

Cor. 2°. By Lemma 1°, we can solve equations (6.1) for q?, p:(q:, p*) as functions

of qj’p—l (qj:ﬁj)'
i=qt (', P)), q:=q:(ds, P,
(6.30) q'=q" (@', p;) ‘ (s

bi=p: (qj,p'j)’ pz=p1 (qj’ﬁj)’
and hence write the generating functions (6.6) in the forms

640) TEV (@@ @ 59.0:@5)) 523 (q: (g5 B), 4 (057
=¥ (g", ps)- =9 (g3, )

Theorem 2°. The totality of all canonical transformations (6.1) in the 2n
variables

(@, 5 | (@5 1)

constitutes a group.

Proof. Cor 1° and Cor. 2° hold. And moreover, it is almost obvious that the
definition of canonical transformations that the product of two such transformations is

again canonical, while the identity transformation is clearly also of this kind. Thus
Theorem 2° holds.

Theorem 3°. In order that the transformotion (6.1) be canonical, it is necessary
and sufficient that the relations

(6.41) o' _ 9pn 904° _ _ g 3g: _ " 0gi _ _ 9qn
aq” apl ’ 61);, aﬁr,, ? aqn 819 ? 3p" aﬁ’ ’
(6.42) b _ pn  0p: _ g opt _ _dp" 3p* _ oqn
9" 9¢'’ ipn  OF dgn  0g:" ph 04
hold. ®

Proof (for the left-hand side). Necessity. Using the generating functions ¥ (®)
instead of (6.5) we can now repeat the argument leading to Theorem 1° with the roles

9) L. P. Eisenhart-M. S. Knebelman. [1].
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of the two sets of variables (¢/, p;), (¢, ps) interchanged, and in this manner obtain
Lagrange bracket relations corresponding to (6.29), (6.30), (6.31) subject to this interchange.
Thus it is found that the canonical transformations (6.1) is also characterized by the

conditions :
i~ def aqz apl aqz apz _
(6.43) (@ an'E gl b~ 30 S =0,
g’. b ";‘ﬁﬂf__a&__ 9q* op: —=5n
(6'44) [q ’ph] a-j aﬁh a-p—h aqj 5j;
(6.45) BB 200 2 0 e o,

Furthermore, when the equations [6.39) are substituted in (6.1), we obtain 27 identities in
the gt, pi;. Differentiation of these with respect to §* and p, yields the relations

L _ gt g . OF ops o_ 9. g’ . 3Bi o
(6.46) 0= Ga7 o T op; 0 0 oqr g T opy g

(6.47) ss— 0P 99’ | 9pi 0p; o_ 8¢' ¢’ , 03 op

097 Op.  0p; Op’  0q) Ope = 0p; Opk’

together with a similar set, in which (¢, p:), (§%, p:) are interchanged.

The existence of the inverse of (g% p:) allows us to express the necessary
and sufficient conditions that a transformation be canonical in another manner. From
6.39) we firstly have

n— aq
(6.48) dg"= Ea dqt + a 2 dpz,
= 0Pr gaiy D g5
(6.49) dpn e dgi+ %, dp..

Secondly, let us multiply (6.11) by 0p:/0p», (6.12) by 0§‘/dpr, and subtract the resulting
equations from each other. Assuming that (6.1) is canonical transformation, so that [6.10
may be applied, we find

bi s 0§ .z _ (0 9p:i _ ' b '
(6.50) obn aq opn ap: ( 0q’ 0pn opr o’ )dqj

aqi aﬁ«b . Bq% aﬁt \
+(ap, opn  Opn aqj)dp,
= (¢’, pr) dq’+ (Ps, pr) dps=0; dg’=dg".
Similarly, multiplying (6.20) by @p; / 9¢*, (6.21) by 8¢/ dgq*, and again subtract




VARIOUS HAMILTON’S CANONICAL FORMALISMS 53

the resulting equation from each other, we obtain

B i 04" 9ps _ 9¢° 9pi )\ 4o
(6.51) oq" dgt— 8q’° dp i dq’ oq"® oq* ¢ ) dq

L (9 0p; _ 8 3ps
!’( apl ag®  oq" ap,) ap;
=(q’, ") dg’+ (ps, q*) dp;= — 9}, dpy= —dpn.

A comparson of [6.48], with [6.50}, with (6.51) now yields

oq" api 0"
Py T apz - dpi= a6n % " aps b0
aph aph apl 75t aq
7 dql+ apc dpz q + dpz

Now since (g%, p:) can be regarded as a set of independent variables, we may infer from
these identities that

oq" _ opn oG _ _ g
6.52 = £ =— i,
( ) aq"’ api a[)h ap,,
0P _ 3Ph op: _ oq"
(6.53) R

These relations are a neccssary consequence of the necessary conditions (6.10) for the
canonical transformation (6.1).

Sufficiency. Suppose conversely that [6.52) and [6.53] are valid. In the Lagrange
bracket [g7, pn) we substitute for ap;/0p. from and for 0g'/dpn from We

thus obtain

J det 0" apz — 0 aﬁz _ 04" oq™ oq* apz =5
(& P =50 b otm o~ a7 aq T api daT "

the last step resulting from the inverse of [6.46] This relation is the second of the
sufficient conditions for the canonical transformation (6.1). It may be shown simi-
larly that the first and the third conditions [6.10] are consequences of [6.52) and [6.53).
Thus we see that [6.52) and [6.53) are sufficient conditions for the sufficient conditions (6.10)
for the canonical transformations (6.1). It therefore follows from Theoren 1° that
and are necessary and sufficient for that (6.1) be canonical.

Theorem 4°. Ix order that the transformation (6.1) be canonical, it is necessary
and sufficient that the following Poisson bracket relations hold :

6.54)  (5550)=0,(¢" $)=5 (4, =0, (g, 5)=
@, §)=0. (@3, @n)=0.
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Proof (for the left-hand side).

Necessity. In the definition of (g”, g’] let us replace all terms according
to (6.52) and [6.53), which gives

@)= 0~ 5t ) o~ )

so that if we define the Poisson brackets (f, §;) according to the definition as

s =

we obtain
(@ @) = (pr, D).

Similarly two other relations are found, which are again adjoin to the last result:

(6.56) (@, @) =(Bs, br), (@, D) =(@", Bs), (s> Pn) =(g’, G")-
It therefore follows from (6.43)—(6.45) that for a canonical transformation, we must have
(657) (ﬁh P-h)’—_o, (@, ﬁj)=5’;’ (qj, @")=0.

Thus the conditions (6.54)=(6.57) are necessary.

Sufficiency. Conversely, let us suppose that we are given a transformation (6.54)=
(6.57) for which these relations are satisfied, Multiplying the second of by dq*/dp;,

we obtain

(6.58) oq* _ 8g" 3p; 0q* _ 3F° 3p; aq*
. opr  0q’ 0p; 0ps op: dqt dp;’

But in analogy with we have

_ ¢ b, . 3q° 3q’ s._ 8q* 3p, _ dq° g’
(6.59) 0= 35, b + o e o5= op; oq + og oq’

and when these identities are substituted in the first and second terms on the right-

hand side of [6.58), we find

g _ _ 0" oq* o _ aq’c( e gt 0P \_ _ 33" . oq° -y n
P oq* 0@’ op;  Ops o oq’ ‘37)_ 0px + og’ ¢, q")-

But by hypothesis the Poisson bracket on the right-hand side vanish (cf. the
third equation of (6.57)=(6.54), so that this equation simply reduces to the second relation
of (6.41). Similarly, the first of (6.41), together with both sets of (6.42), may be derived
from (6.57)=(6.54). Thus (6.57)=(6.54) is sufficient.

Cor. In order that the transformation (6.1) be canonical, it is necessary and
sufficient that the following Poisson bracket relations hold :
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(6.60) (P, £n)=0,(g", ps) =0}, (9%, ") =0, (qn, p7) =
(qu qh)’ = O’ ((IJ, qh)' = 0,

where the dashes on the Poisson brackets indicate that these are to be formed with
respect to the (G, pi), i.e. for two functions f(G, p:), & (G¢, p:) we write

(6.61) T =

Proof (for the left-hand side). (6.60) means merely interchanging the roles of the
two sets of variables (g%, p:), (§¢, p:), so that we may infer that a canonical transformation

is also characterized by the equations (6.60).
Theorem 5°. In order that the transformation (6.1) be canonical, it is necessary
and sufficient that it leaves invariant the Poisson bracket of an arbitrary pair of

Junctions of the 2n variables (g, p;).

Proof (for the left-hand side). First of all, let F(g%, p:), G (g%, ps) be two arbitrary
functions of class C2 in ¢, p;.

Necessity. The transforms F(g/,p;), G (¢’, p;) under the inverse [6.39) of (6.1)

F=F (@ 5)=F (@ (@50 5@, 5)),
G=G (qj’p-.f)z: (qj (q :ph)’ D (q :ph) )
The Poisson bracket (F, G) can therefore be expressed as

oF 3G _ oF oG

(6.62) (F, G)= dq° op; ap; gt
=(aF ogr , oF aﬁh)( G g G aﬁ,)
0q" 0dq¢* = 9pn 0g* /\ 0’ Op;  Op; Op:
_(aF 8g" , OF opn )( 9G og oG dpy -
o7~ opc opn 9p Nog g T 9ps oq" )
_OF 3G ., -i_OF aG
—'TQEW(qh’ j) ap a =7 (q ph)
oOF G ., =, _9F oG
+—_‘—T— h,
aqh apj (q p.’) p p (pj Ph)

If (6.1) be canonical, we may apply (6.54) to Hence by (6.54), the
becomes to

_9F oG 81+ oF 4G o= oF oG _oF 3G

e C)= =5 5a7 o a5, O o b, b, 90

i.e.

(6.63) (F, G)=(F, G).
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This invariance under a canonical transformation is thus necessary.

Sufficiency. Conversely, suppose that the transformation (6.1) is such that |(6.63)
is always satisfied, In this equation let us put F=g',G=p,, noting the identitty

= ~v_ 07" Pn _ 04° OPn _ s np_ i
(6'64) (F’ G) aqj ap-l aﬁj aqj _aj oh. Ops

and thus we deduce that
(qi’p—h)z(qi’ﬁh)’=6l‘a
Similarly we find that the other two sets of equations in (6.54) are satisfied. Hence

by Theorem 4°, the condition is sufficient.

N.B. Because of identities such as [6.64) it is now clear that Theorem 4° is a
special case of Theorem 5°. From the latter we can now deduce a result which
represents one of the most significant properties of canonical transformation.

Theorem 6°. Amny canonical transformation (6.1) leaves invariant the canonical
equations

_0H oL

i— A o ) (= 9L
(6-65) qg = apz ’ p’L aq‘ . q:= apt ’ p aQt .

Proof (for the left-hand side). We can write the canonical equations in Poisson
bracket form as follows.

y=p O _0g' 0H _ oq' oH _ .

(6.66) =5 gy~ 9T =\ H)
o _0ps 0H _ dp; oH

(660 b= G =S 5 oy oo

But according to Theorem 5°, or, more specifically to the Poisson brackets on the
right-hand sides of [6.66) and [6.67)] transform as follows under a canonical transformation :

(qi9 ﬁy:(qis H)’ (P_u I_j—[)’z(p“ H)’

while the left-hand side simply becomes to g¢ and pi.

Thus the equations [6.66},[6.67) are invariant, what proves our assertion.

Remark 1°. The canonical equations (6.65) constitute an infinitesimal canonical
transformation.

Proof. (6.4) tells
d¥ =p. dg* —p. dg' =( Pt+.i5¢ dr)d(q'+¢' dr)—pi dq’

=(g* dp.—p. dg* )dr_ Wb dp o H dg'=dH
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by (6.8).
Remark 2°. One would obtain families of canonical equations of the form:
(6.68) d'=q'(s,q%, ps),  Pi=hi(s,q’, ps)

All our previous results hold still for such families, in particular Theorem 5° in
which the functions F and G may also depend explicitly on s. Thus Theorem 6° is
valid even if the Hamiltonian H is explicitly dependent on this parameter,

Remark 3°. It is not difficult to prove the inverse of Theorem 6°, namely that
any transformation, which leaves invariant the canonical equations (6.1) for any
arbitrary Hamiltonian function must be canonical.

Theorem 7°. If a canonical transformation

Ge=g* (g™, G4, Dn, , g*=qg"(q", ﬂ’ s s

a q_(q,q,p p), g " (q" ¢ P s) (@=1,2, -, n—1),
Da=Du(q", @, Pn; Ds)s  Pn=Dr(q", %, Pn, P’

with generating function ¥ is a t—independent transformation, in the sense that it
satisfies the conditions

(6.69)

0pa _ 0Ppn _ ogs _ n— gt
(6.70) =0 =0, Lm0, r=q

it is equivalent to a canonical transformation of the type
(6.71) §*=q*(a", p%), Da=D«(a*, Ps);

between the 2(n—1) variables (g=, p.), (" D), the generating function of the latter
transformation being given by

(6.72) ¢=¢ (g% pa)=¥ +kq",
where k is an arbitrary constant.

Proof. Adopting our original (£, g%)=(q", ¢°) - notation, let us write (6.1) in the
form
q=q- (@™, ¢%, pn, p:S)’ a=q° (g™, @°; Dns Da)s
P_a =ﬁa (q", g%, pn, pﬁ), ﬁn =5n (q", @, bn, P,s)
This #-independent transformation satisfies the conditions

(6.73)

Since (6.73) is supposed to represent a canonical transformation, we may apply
(6.41) and (6.42). From the first two equations of [6.70], we obtain

0P _ _ pn _ —1.2 ...
(6.74) = e =0 (k=12 , 7).

The third equation of yields similarly




58 TSURUSABURO TAKASU

which, taken together with [6.74), shows that p, is at most a function of p,. However,
from the last equation of (6.70) and (6.41) we deduce that

0q" _ 0pn _
(6.76) ” aq" 5 Pn 1,
so that
(6.77) p'n =p_n + k,

in which % is some constant. Furthermore putting 2=# in (6.23) we find

- - 3G o
aqn p"+ aqn 4

where we recall that ¥ =¥ (q", g%, pn, po) is the generating function of the canonical
transformation. We therefore deduce from [6.70) and [6.77) that

W _
(6.78) Yo k.
We obtain similarly from (6.24)
ogr _ o¥
(6.79) ph 5 pn =
But from (6.41) we have
oq oq™
(6.80) ag,, = —_é%:,

while, by hypothesis, g® occurs only in the equation of (6.73), so that the inverse of the

last of [6.70]) is simply ¢"=g”, which in turn implies that dg"/dp,=0. Hence gives

oq" _ _
(6-81) ?—E_ > (h‘—]-a 2: > n)’
and becomes
v _
(6.82) b, =0.

Combining [6.78] with [6.82), we see that ¥ must possess the form

(6.83) V(g ps)=¢ (g% D) — kg™,
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where ¢ is some function of class C? in the 2(z—1) variables. Finally, we deduce as
above_from¥(6.42) that

(6.84) gﬁ: = 32: =0

It follows from [6.81) and [6.84) that the functions §*, p. do not contain P explicitly.
Thus, by virtue of (5.70), the transformation (6.69) can now be written as

(6.85) 3*=q(a*, ), D«=Da(a" Ps);
to which [6.77] may be adjoint. Furthermore, in the relation (6.4) written in the form

P 4G+ dG —pa dq*—pn dq"=a¥,
let us substitute from [[6.70), [6.77) and [6.83), which gives
P dg=—k dg"—p. dq*=d¢y—k dg",

or
(6.86) | Podge—pa dgr=d¢.

This result shows that the relations constitute a canonical transformation betwéen
the variables (g2, pa), (G% Pa). Thus Theorem 7° is proved.

N.B. This [Theorem enables us to apply our general formalism to #-independent
canonical transformation [6.85), which is thus charaeterized by the Poisson brackeet

relations
(687) (qa’ qﬁ)_—:o’ (qu’ 5ﬁ)=5§’ (p—a’ ﬁﬁ)=0.

These relations hold for all values of t.
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