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Let $\Gamma$ be the unit circle and $D$ be the open unit disk in the complex plane.

If $f(z)$ is a single-valued complex-valued function defined in $D$ , and if $\zeta\epsilon l^{7}$ , we are

interested in the following four cluster sets of $f$ at $\zeta$ (for the general theory of cluster

sets, see [5]);

$C_{\mathfrak{B}}(f, \zeta)$ , the inner angular cluster set, is defined as

$C_{\rangle 8}(f, \zeta)=\bigcap_{\Delta}C_{\Lambda}(f, \zeta)$ ,

where $\Delta$ ranges over the set of Stolz angles at $\zeta$ .

$C_{\mathfrak{B}}(f, \zeta)$ , the inner horocyclic angular cluster set, is defined as

$C_{\mathfrak{B}}(f, \zeta)=\bigcap_{H}C_{H}(f, \zeta)$ ,

where $H$ ranges over the set of horocyclic angles at $\zeta$ (see [2]).

$\Pi_{\chi}(f, \zeta)$ , the chordal principal cluster set, is defined as

$\Pi_{\chi}(f, \zeta)=\bigcap_{\chi}C_{\chi}(f, \zeta)$ ,

where $\chi$ ranges over the set of $aU$ chords at $\zeta$ .
$\Pi_{\omega}(f, \zeta)$ , the horocyclic principal cluster set, is defined as

$\Pi_{\omega}(f, \zeta)=\bigcap_{h}C_{h}(f, \zeta)$ ,

where $h$ ranges over the set of all right and left horocycles at $\zeta$ (see [2]).

when we say that almost every point of $\Gamma$ has a certain property, we mean that

the exceptional set has linear Lebesgue measure zero; and when we say that nearly

every point of $\Gamma$ has a certain property, we mean that the exceptional set is of linear

first Baire category.

Dragosh [4, Theorem 4] has shown that if $f(z)$ is an arbitrary function in $D$ ,

then
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$C_{\mathfrak{B}}(f, \zeta)\subseteqq C_{\mathfrak{B}}(f, \zeta)$

for almost every and nearly every point $\zeta\epsilon\Gamma$ . This naturally suggests the question of
whether analogously

(1) $\Pi_{\chi}(f, \zeta)\subseteqq\Pi_{\omega}(f, \zeta)$

for every $\zeta$ belonging to some sort of subset of $\Gamma$ . Again Dragosh [4, Remark 7] has
shown that even if $f(z)$ is holomorphic in $D,$ (1) need not hold for almost every point
$\zeta\epsilon\Gamma$ ; and he asks whether (1) holds for nearly every $\zeta\epsilon\Gamma$ in case $f(z)$ is meromorphic
in $D$. The following result (wherein we use the symbol $\subset$ to denote proper set inclusion)
answers this question in the negative.

Theorem. There exists a holomorphic function $f(z)$ in $D$ such that
(2) $\Pi_{\omega}(f, \zeta)\subset\Pi_{\chi}(f, \zeta)$ ,

for nearly every and almost every $\zeta\epsilon\Gamma$ .
Proof. For every ternary fraction

$t=0$ . $ t_{1}t_{2}t_{3}\cdots$

in which each $t_{j}$ is either $0$ or 2, we denote by

$ b(t)=0.b_{1}b_{2}b_{3}\cdots$

the binary fraction such that, for $j=1,2,3,$ $\cdots$ ,

$b_{j}=\left\{\begin{array}{l}0 if t_{j}=0,\\1 if t_{j}=2.\end{array}\right.$

The set of all such ternary fractions $t$ is the Cantor middle-thirds set $T$, and the set
of corresponding binary fractions $b(t)$ is the closed unit interval.

Let $T^{*}=T-\{1\}$ , and for $t\epsilon T^{*}$ let $h_{r}^{+}(\zeta)$ be the right horocycle at the point
$\zeta=\zeta(t)=e^{2\pi b(t)i}\epsilon\Gamma$

with radius

$r=\frac{1}{2}(1-\sin\frac{\pi t}{2})$ .

If $t\geqq\frac{7}{9}$ , then $t\geqq b(t);h_{r}^{+}(\zeta)$ has a diameter of length 2 $r$, and since

$1-2r=\sin\frac{\pi t}{2}>\cos 2\pi t\geqq\cos 2\pi b(t)$ ,

$h_{r}^{+}(\zeta)$ does not intersect $h_{4}^{+}(1)$ . It follows that the set

$P=\{h_{r}^{+}(\zeta(t)) : t\epsilon T^{*}\}$
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is a set of disjoint right horocycles with the property that at every point of $\Gamma$ there is
a single right horocycle belonging to $P$, except at the points of an enumerable everywhere
dense subset $E$ of $\Gamma$ , at each point of which there are two right horocycles belonging

to $P$.
For every $\zeta\epsilon E$ , if $h_{r_{1}}^{+}(\zeta)$ and $h_{r_{2}}^{+}(\zeta)$ are the two right horocycles at $\zeta$ belonging

to $P$, define

$\tilde{h}(\zeta)=h_{\frac{r_{1}+r_{2}+}{2}}(\zeta)$ ,

and let
$Q=\{\tilde{h}(\zeta) ; \zeta\epsilon E\}$ .

According to [3], there exists a holomorphic function $f(z)$ in $D$ such that, for
every $h\epsilon P$,

$1zz\frac{m}{\epsilon h}11if(z)=0$
,

and, for every $h\epsilon Q$ ,

$\lim_{z\epsilon h}f(z)=\infty I\iota I\rightarrow 1$

Consequently, for every $\zeta\epsilon\Gamma,$ $\{0, \infty\}\subset C(f, \zeta)$ and $\Pi_{\omega}^{+}(f, \zeta)\subseteqq\{0\}$ . This implies that no
point of $\Gamma$ is a right horocyclic Meier point of $f$ [$2$ , p. 6], and hence [2, Theorem 6]
nearly every point of $\Gamma$ is a right horocyclic Plessner point of $f$

Let $\zeta\epsilon\Gamma$ be a right horocyclic Plessner point of $f$ that is not an ambiguous point
of $f$, and suppose that $\chi$ is a chord at $\zeta$ such that $\infty\not\in C_{\chi}(f, \zeta)$ . If $h$ is the right
horocycle at $\zeta$ that belongs to $P$, then $\infty fC_{h}(f, \zeta)$ . By the Gross-Iversen theorem, $\infty$

is an asymptotic value of $f$ at $\zeta$ , which contradicts our assumption that $\zeta$ is not an
ambiguous point of $f$ Therefore $\infty\in\Pi_{\chi}(f, \zeta)$ , and since $f$ has at most enumerably many
ambiguous points [1], (2) is satisfied at nearly every point of $\Gamma$ . Dragosh’s argument
[4, Theorem 8 and Remark 7] shows that (2) is also satisfied at almost every point of

$\Gamma$ .
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