THE CHORDAL AND HOROCYCLIC PRINCIPAL CLUSTER SETS OF A CERTAIN HOLOMORPHIC FUNCTION*

By
Frederigk Bageminl

(Received July 29, 1968)
Let Γ be the unit circle and D be the open unit disk in the complex plane. If $f(z)$ is a single-valued complex-valued function defined in D, and if $\zeta \in I^{\prime}$, we are interested in the following four cluster sets of f at ζ (for the general theory of cluster sets, see [5]) :
$C_{\mathfrak{B}}(f, \zeta)$, the inner angular cluster set, is defined as

$$
C_{\mathfrak{B}}(f, \zeta)=\bigcap_{\Delta} C_{\Delta}(f, \zeta),
$$

where Δ ranges over the set of Stolz angles at ζ.
$C_{\mathfrak{B}}(f, \zeta)$, the inner horocyclic angular cluster set, is defined as

$$
C_{\mathfrak{B}}(f, \zeta)=\cap_{H} C_{H}(f, \zeta),
$$

where H ranges over the set of horocyclic angles at ζ (see [2]).
$\Pi_{\mathrm{x}}(f, \zeta)$, the chordal principal cluster set, is defined as

$$
\Pi_{x}(f, \zeta)=\bigcap_{x} C_{x}(f, \zeta),
$$

where χ ranges over the set of all chords at ζ.
$\Pi_{\omega}(f, \zeta)$, the horocyclic principal cluster set, is defined as

$$
\Pi_{\omega}(f, \zeta)=\bigcap_{h} C_{h}(f, \zeta),
$$

where h ranges over the set of all right and left horocycles at ζ (see [2]).
when we say that almost every point of Γ has a certain property, we mean that the exceptional set has linear Lebesgue measure zero; and when we say that nearly every point of Γ has a certain property, we mean that the exceptional set is of linear first Baire category.

Dragosh [4, Theorem 4] has shown that if $f(z)$ is an arbitrary function in D, then

[^0]$$
C_{\mathfrak{B}}(f, \zeta) \subseteq C_{\mathfrak{B}}(f, \zeta)
$$
for almost every and nearly every point $\zeta_{\epsilon} \Gamma$. This naturally suggests the question of whether analogously
\[

$$
\begin{equation*}
\Pi_{\chi}(f, \zeta) \subseteq \Pi_{\omega}(f, \zeta) \tag{1}
\end{equation*}
$$

\]

for every ζ belonging to some sort of subset of Γ. Again Dragosh [4, Remark 7] has shown that even if $f(z)$ is holomorphic in D, (1) need not hold for almost every point $\zeta_{\epsilon} \Gamma$; and he asks whether (1) holds for nearly every $\zeta_{\epsilon} \Gamma$ in case $f(z)$ is meromorphic in D. The following result (wherein we use the symbol \subset to denote proper set inclusion) answers this question in the negative.

Theorem. There exists a holomorphic function $f(z)$ in D such that

$$
\begin{equation*}
\Pi_{\omega}(f, \zeta) \subset \Pi_{\chi}(f, \zeta), \tag{2}
\end{equation*}
$$

for nearly every and almost every $\zeta \epsilon \Gamma$.
Proof. For every ternary fraction

$$
t=0 . t_{1} t_{2} t_{3} \ldots
$$

in which each t_{j} is either 0 or 2 , we denote by

$$
b(t)=0 . b_{1} b_{2} b_{3} \ldots
$$

the binary fraction such that, for $j=1,2,3, \cdots$,

$$
b_{j}=\left\{\begin{array}{lll}
0 & \text { if } \quad t_{j}=0 \\
1 & \text { if } & t_{j}=2
\end{array}\right.
$$

The set of all such ternary fractions t is the Cantor middle-thirds set T, and the set of corresponding binary fractions $b(t)$ is the closed unit interval.

Let $T^{*}=T-\{1\}$, and for $t \in T^{*}$ let $h_{r}^{+}(\zeta)$ be the right horocycle at the point

$$
\zeta=\zeta(t)=e^{2 \pi b(c) i} \epsilon \Gamma
$$

with radius

$$
r=\frac{1}{2}\left(1-\sin \frac{\pi t}{2}\right) .
$$

If $t \geqq \frac{7}{9}$, then $t \geqq b(t) ; h_{r}^{+}(\zeta)$ has a diameter of length $2 r$, and since

$$
1-2 r=\sin \frac{\pi t}{2}>\cos 2 \pi t \geqq \cos 2 \pi b(t)
$$

$h_{r}^{+}(\zeta)$ does not intersect $h_{\frac{1}{2}}^{+}(1)$. It follows that the set

$$
P=\left\{h_{r}^{+}(\zeta(t)): t \in T^{*}\right\}
$$

is a set of disjoint right horocycles with the property that at every point of Γ there is a single right horocycle belonging to P ，except at the points of an enumerable everywhere dense subset E of Γ ，at each point of which there are two right horocycles belonging to P ．

For every $\zeta \epsilon E$ ，if $h_{r_{1}}^{+}(\zeta)$ and $h_{r_{2}}^{+}(\zeta)$ are the two right horocycles at ζ belonging to P ，define

$$
\tilde{h}(\zeta)=\frac{h_{r_{1}+r_{2}}^{+}}{2}(\zeta),
$$

and let

$$
Q=\{\tilde{h}(\zeta): \zeta \epsilon E\} .
$$

According to［3］，there exists a holomorphic function $f(z)$ in D such that，for every $h \in P$ ，

$$
\lim _{\substack{x z \rightarrow b^{1} \\ z z h^{1}}} f(z)=0,
$$

and，for every $h \in Q$ ，

$$
\lim _{\substack{1 z z-1 \\ z \in n^{1}}} f(z)=\infty .
$$

Consequently，for every $\zeta \epsilon \Gamma,\{0, \infty\} \subset C(f, \zeta)$ and $\Pi_{\omega}^{+}(f, \zeta) \subseteq\{0\}$ ．This implies that no point of Γ is a right horocyclic Meier point of $f[2, \mathrm{p} .6]$ ，and hence［2，Theorem 6］ nearly every point of Γ is a right horocyclic Plessner point of f ．

Let $\zeta_{\epsilon} \Gamma$ be a right horocyclic Plessner point of f that is not an ambiguous point of f ，and suppose that χ is a chord at ζ such that $\infty \notin C_{x}(f, \zeta)$ ．If h is the right horocycle at ζ that belongs to P ，then $\infty \notin C_{n}(f, \zeta)$ ．By the Gross－Iversen theorem，∞ is an asymptotic value of f at ζ ，which contradicts our assumption that ζ is not an ambiguous point of f ．Therefore $\infty \in \Pi_{\chi}(f, \zeta)$ ，and since f has at most enumerably many ambiguous points［1］，（2）is satisfied at nearly every point of Γ ．Dragosh＇s argument ［4，Theorem 8 and Remark 7］shows that（2）is also satisfied at almost every point of Γ ．

Bibliography

〔1〕 Bagemihl，F．，Curvilinear cluster sets of arbitrary functions，Proc．Nat．Acad．Sci． 41 （1955）， 379－382．
〔2〕 Bagemihl，F．，Horocyclic boundary properties of meromorphic functions，Ann．Acad．Sci． Fennicae A I 385 （1966），1－18．
[3] Bagemihl, F. and Seidel, W., Some boundary properties of analytic functions, Math. Zeitschr. 61 (1954), 186-199.
〔4〕 Dragosh, S., Horocyclic cluster sets of functions defined in the unit disc, Nagoya Math. J. (to appear).
[5] Noshiro, K., Cluster sets, Berlin, 1960.

University of Wisconsin-Milwaukee
Department of Mathematics
Milwaukee, Wisconsin 53211
U. S. A.

[^0]: * Supported by the U. S. Army Research Office-Durham.

