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$\prime 1’ 1_{1}c$ syntactic picturc of the generalization of the satishability dcfinition considcrcd
in [3] 2) and recalled on $p36$ gives a generalization of usual proof rulcs in $notio_{11}()f$

scquents accordin $g$ to which it is constructed a generalized diagram, $s$ . ( $2$].

In view of cited papers the proof of adequacy of semantic and syntactic consid-
erations is also given.

Examples to different sequent proof rules are given in [8], [9].

We consider the hrst-order functional calculus $[3]-[6]$ based on $alternative+$ ,

negation’ and general quantiher $//with$ free variables $\lambda^{\prime},$ $ X_{1},\cdots$ , apparent variables $(l,$ $ a_{1},\cdots$ ,
$rclatio\iota lS$ signs $f_{1}^{1},$

$\cdots,$
$f_{q}^{1},$ $\cdots f_{1}^{\ell},$ $\cdots,f_{q}^{f}$ [ $f_{f}^{7\prime l}$ -of $m$ arguments] and exprcssions

$E,$ $F,$ $E_{1},$ $F_{1},$ $\cdots$ .

Other more important notations written shortly : $\{i_{l}\}$ denotes the sequencc
$ j_{1}\ldots$ $j$ , ; $\{i_{H(F})\}-$ sequence of all different indices of free variables occurring in $E$ ;
$w(E)$ -the maximal number of indices of free [ $p(E)$ -apparent] variables occurring in
$E;\{F_{q}^{\iota}\}-$ the sequence $F_{f}^{1},$

$\cdots,$
$ F^{\urcorner},1\ldots$ $F_{1}^{\prime},$

$\cdots,$ $F_{l}^{\prime}( ; n(E)=\max \{p(E)+\iota\{)(E)$ , max
$\{i_{\psi(F)}\}\}$ ; $Q,$ $Q_{1},$ $\cdots$ $-non$ -empty sets of tables of the same rank; $Q(k)$ -elements of $Q$

have the rank $k;A,$ $Al$ , -sets of indecomposable formulas [ $i$ . $e$ . atomic formulas with
their negations] whose indices of free variables are $\leq k$ for $w$hich $Ec$ $A$ . $\equiv$ . $E^{\prime}\overline{\epsilon}A$

[they are called sets of the rank $k$] ; [ $‘,$ $/_{1}^{\urcorner}$ , -arbitrary sets of formulas; $X,$ $Y$,

$X_{1},$ $Y_{1},$ $\cdots$ -models $M$ or sets $A$ ; $M/s_{I},$ $\cdots s_{k}/=<D_{k},$ $\{\psi^{\prime}(l\}>$ . $\equiv$ . $\{(M=<D, \{F_{q}^{\iota}\}>)$

$\wedge$ $(\phi_{f}^{f}(r_{1}, \cdots r_{l})$ . $\equiv$ . $F^{i},(s_{J} , \cdots, s_{I}1’ )$ , $?=1,$ $\cdots$ $f$ and $j=1,$ $\cdots,$ $q$ )} ; $F_{\lrcorner}(A/s_{1},$ $\cdots S_{A}/$ . $\equiv$ .

$E(x_{s_{1}}/\chi_{1})\cdots(x_{s_{k}}/x_{r})t$ A; $A/s_{1},$ $\cdots s_{k}/is$ restricted to indecomposable formulas; $X/\{s_{k}\}$

$=X/s_{1}$ , $s_{k}/$ (in three last dehnitions occur homomorphisms); $ Xc\}^{\prime}[k\rfloor$ . $\equiv$ . $(\exists\{s_{k}\})$

$(X=Y/\{s_{\{}\})$ ; $C\{E\}$ -the set of all parts of $E;\Gamma(\{i, \})-$ the sets of all formulas

1) 1 $[]e$ papeI $1\searrow COIl\cap\in Ltedwit1_{1}$ llly lect $ 11Ie\searrow$ on $|$ . $b1n$ [) $eck_{1}’\searrow senl\ln_{c}\iota l\ln 195()/7$ and on $Ineet_{i}ng_{b}$ ol
Polislri Mathem.atical $boc_{!}ety$ in 1957 ye.ar at Wroclaw ; one is independent on the paper 1.

2) It is $\iota$ siniple $|\Pi()\subset 1\dot{\iota}f_{lC1}tiol\urcorner()[t1\iota egelle|_{\dot{(}}t1_{17}e(\{\backslash \dot{\iota}t_{1}sh_{1}\})\rceil 1_{1}t_{V}dehnlt_{1}o|\urcorner$ considered in [)) which $\xi^{\underline{J}}1ves$

the same gener ali $/eds\alpha_{1}\iota\iota eI\iota t|$ ) $|()()f1$ ules.
$1’ 1)es\backslash 11t\}ct1(|)lC|ure()\}(\{)$ is $\ltimes er^{1}1_{1}/$ ( $\times 1$ $It $\rceil s|_{11}|$ )) $|_{1}|\backslash $ definition in $111$ } $n$ }

$\vee\iota 1_{1}\iota ed$ Boolean propo-
$Sit_{1}ona1$ calculus with $q_{1111}t_{1}4|e’\backslash e1|_{C}\iota 1$)[ $e\searrow$ a $\backslash |n\urcorner ultelleon\searrow 1$ } proof $Gocle1- S^{\backslash }koleIn- Lovenhe\iota$ m-Herbrand’s
$t_{\perp}^{\iota_{i}}eorems$ $1$ or all $th_{1}s$ calculus $ l\iota$ )$clucl_{1Jl}g$ hrst-order func’ional calculus, $s$ . [12]

i) $E(x/y)-\searrow n1)st_{1}|$ ution $x1_{()1}y4V$ it $[]1<n()wn\ulcorner(-b(11Ct1(11^{\langle}$
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belonging to $\Gamma$ whose free variables have indices occurring in $\{i_{l}\}$ ; $M\{E\}=0,$ $i$ . $e$ . $b^{\backslash ;}$

is true in the model $M;M\{E\{s_{k}\}\}=0,$ $i.e$ . $\{s_{k}\}$ are elements of the domain of $M,$ $x_{f}$

are names of $s_{j}$ and $\{s_{k}\}$ do not satisfy $E$ in the model $M$ ; let $7^{\tau}=<D_{k},$ $\{F_{q}^{t}\}>,$ $T$,

$A$ -have the same rank $k$ and for each $m_{1},$ $\cdots$ $m_{j}\leq k$ and $j\leq t,$ $ i\leq q:F_{i}^{j}(m_{1}, \cdots, m_{f}).\equiv$ .
$f_{t}^{f}(x_{m_{1}}, \cdots,x_{m_{j}})\in A$ and $-F_{t}^{j}(m_{1}, \cdots , m_{f})$ . $\equiv f_{i}^{j^{\prime}}(x_{m_{1}}, \cdots , \chi_{7n_{j}})cA$ -such $T$ is called the

description of $A;R(M)$ . $\equiv$ . $(s_{1})(s_{2})\{M/s_{I}/=M/s’/)\rightarrow(s_{1}=s_{2})\}$ -each model $M$ may be
extended to a model $M_{1}$ such that $R(M_{1})$ , by means of a denumerable sequence of

monadic relations, $s$ . $e$ . $g$ . $[11]$ .

Of course:

L. 1. $X/\{s_{k}\}/\{j_{m}\}=X/\{s_{j_{m}}\},$ $s$ . $[1]$ .

L. 2. If $T_{1}$ is the description of $A_{1}$ and $T_{2}$ is the description of $A_{2}$ and both

tables have the same rank, then $T_{1}/\{j_{m}\}=T_{2}/\{j_{m}\}$ . $\equiv$ . $A_{1}/\{j_{m}\}=\mathcal{A}_{2}/\{j_{m}\}$ .

For an arbitrary $Q$ such that $Q(k)$ , for an arbitrary $T=<D_{k},$ $\{F_{q}^{\ell}\}>\epsilon Q$ , for an
arbitrary formula $F$ and arbitrary $\{i_{l}\}$ such that $\{i_{m(F)}\}\subset\{i_{l}\},$ $l+p(F)\leq k$ we introduce

the following inductive d\’efinition of the functional $V$ :

(1d) $V\{k, Q, T, \{i_{l}\},f_{f}^{m}(x_{r_{1}}, \cdots, x_{r_{m}})\}=1$ . $\equiv$ . $F_{J}^{n}(r_{1},$ $\cdots,$
$r_{m^{1}}$ ,

(2d) $V\{k, Q, T, \{i\iota\}, F^{\prime}\}=1$ . $\equiv$ . $-V\{k, QT, \{i_{l}\}, F\}=1$ . $\equiv$ . $V\{k, Q, T, \{i_{l}\},F\}=0$ ,

(3d) $V\{k, Q, T, \{i_{l}\}, F+G\}=1$ . $\equiv$ . $V\{k, Q, T, \{i_{l}\}, F\}=1\vee V\{k, Q, T, \{i_{l}\}, G\}=1$ .
(4d) $V\{k, Q, T, \{i_{l}\}, /IaF\}=1$ . $\equiv$ . $(i)(T_{1})\{i\leq k)\Lambda(T_{1}cQ)\wedge(T_{1}/\{i_{l}\}=T_{2}/\{i_{l}\})D$

$V\{k, Q, T_{1}, \{i_{l}\}, i,F(x_{t}/a)\}=1\}$ .

D. 1. $N_{(}k,$ $Q,$ $G$ ) . $\equiv$ . $(\{i_{l}\})(T)\{(l+p(F)<k)\wedge(\{i,\}\subset\{i_{l}\})$

$\Rightarrow(V\{k^{a}Q, 7’, \{i_{l}\},G\}=1$ . $\equiv$ . $V\{k, Q, T, \{i_{l}\}, i, G\}=1|\}$ .

D. 2. $E\epsilon P(k, Q, T, \{i_{l}\})$ . $\equiv$ . $(\exists G)\{(GcC\{E\})\wedge(N(k, Q, G)$

$rV\{k, Q, T, \{\iota, \}, E\}=1)\}$ .

D. 3. $E\in P\{k\}$ . $\equiv$ . $(Q)(T)\{Q(k)\Lambda(T\epsilon Q)D(E\in P(k, Q, T, \{i_{m(E)}\}))\}$ .
D. 4. $E\in P.$ $\equiv$ . $(\exists k)\{(k\geq n(E))\Lambda(E\epsilon P\{k\})\}$ .

The relation $N(k, Q, G)$ is invariant respectively to the sequences $\{i_{l}\}$ and it holds

for all quantifierless formulas $G$ .

Definitions $(ld)-(4d)$ are generalizations of the satisfiability definition in the

domain of natural numbers 1, $\cdots,$
$k$ ; the general case is analogic and remains for readers,

$s$ . $[3],$ $[5]$ , [6].

If we assume that $Q$ is one-elementing, then (4d) is the usuaL satisfiability

1) The reader will omit this extension by means of extending the $f_{dml}$ ] $y$ $Q=M[k]$ in T. 1
$cl\propto ording$ to properties needed in 1‘. 5 $s$ . [12].
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definition in the domain 1, $\cdots,$
$k$ .

If $M$ is a model acd $Q=M\lceil k$], then elements of $Q$ are submodels of $M$, the
number $i$ in (4d) is the name of an arbitrary element of the domain of $M$.

$\subset)f$ course:
$(4(1^{\prime})$ $V\{k, Q, T, \{i_{l}\}, \Pi aF\}=0$ . $\equiv$ . $(\exists i)(\exists T_{1})\{(i\leq k)\wedge(T_{1}cQ)\Lambda(T_{1}/\{i_{l}\}=T/\{i,\})$

$\wedge V\{k, Q, T_{1}, \{i_{l}\}, i, F(x_{\ell}/a)\}=0\}$ .
(5d) $V\{k, Q, T, \{i_{l}\}, \Sigma aF\}=0$ . $\equiv$ . $(i)(T_{J})\{(i\leq k)\Lambda(T_{1}rQ)$ A $(^{\prime}\Gamma_{1}/\{i_{l}\}=T/\{i_{l}\})D$

$V\{k, Q, T_{1}, \{i_{l}\}, i, F(x_{i}/a)\}=0\}$ .

L. 3. If $T/\{i_{l}\}=T^{0}/\{i_{l}\}$ , then:

$V\{k, Q, T, \{i,\}, E\}=1$ . $\equiv$ . $V\{k, Q, T^{0}, \{i_{\ell}\}, E\}=1$ .

The proof of L. 3. is easy and inductivel on the length of the formula $E,$ $s$ . L. 3.
in [3] and L. 14. in [6].

T. 1. If $E$ is an alternative of iormulas of the form $\Sigma a_{1}\cdots\Sigma a_{j}1IIa_{f}G$ , for
some quantifierless and variable-free $G,$ $F\epsilon C\{E\},$ $M\{E\}=0,$ $k\geq n(E),$ $Q=M[k]$ ,
$TcQ,$ $\{i_{\mathfrak{B}(F)}\}\subset\{i_{f}\}$ , then:

(1) If $l+p(F)\leq k,$ $M\{F\{i_{l}\}\}=0$ and $M/\{s_{i_{l}}\}=T/\{i_{l}\}$ , then $V\{k,$ $Q,$ $T,$ $\{i_{l}\}$ ,

$F\}=0$ and for each $HcC\{E\}$ we have $N(k, Q, H)$ and $E\overline{\epsilon}P$ .
(2) If $R(M),$ $M/\{s_{/_{l}}\}=T/\{j_{/}\}$ , then for an arbitrary formula $F$ :

$M\{F\{s_{t_{l}}\}\}=0$ . $\equiv$ . $V\{k, Q, T, \{i_{l}\}, F\}=0$ .

The inductive proof of T. 1. is almost identical with the proof of T. 2. in [3],
[5] and [10] and analogic to the proof of T. 2. in [4] ; we give it in [10]. We point
out here that in the proof of (1) we use $(4d^{\prime})$ for $i\overline{\epsilon}\{j_{/}\}$

T. 2. If $E_{1},$ $\cdots$ , E. is a formalized proof of the formula $E$ and $k\geq\max\{n(E_{1})$ ,
.. $n(E_{r})$ }, then $E_{j}cP\{k\},$ $j=1,$ $\cdots,$ $r$ .

From T. 1. and T. 2. tollows [ $s$ . also the construction of Skolem’s $n$ormal forms] :

T. 3. A formula $E$ is a thesis iff $EcP$ .

We recall that for normal formulas $E$ we received more strong theorem given in
[3] namely that for ones we can replace D. 2. by:

D. 2’. $E_{f}P(n, Q, T, \{i_{f}\})$ . $\equiv$ . $N(Q, n, E)\Rightarrow V\{n, Q, T, \{i_{l}\}, E\}=1$ and the second
equivalence in D. 1. we can replace by the implication D.

$\ln$ order to give sequint proof rules we introduce certain additional definitions,
$s$ . [2] :

A sequence of formulas is called fundamental iff $E$ and $E^{\prime}$ occur in the sequence.
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For $eac1_{1}k,$ $l^{7},$ $F$ and $\{i_{l}\}$ :

1. $x_{i}$ means the first variable $x_{t}$ such that $i\leq k$ and $F(x_{i}/a)\overline{\epsilon}1’$ .

2. $x_{i^{\prime}}$ means the first variable $x_{i}$ such that $i\leq k$ and $i$ does not belong fo $\{i_{(}\}$ .

We explain the meaning of the following equivalence schemas written shorfly,

$s$ . hgure p. 5:
$T_{\iota_{-}}$ -from $I_{1}^{\gamma}$ follows $1_{2}^{\gamma}$ and from 1 $\circ.$ follows $\cdots$ etc. ; such schema $i^{S}calle(1$ a diagram

$-.\Gamma_{2}.$

. [we assume $\Gamma_{1},$ $/\urcorner-\cap$ -non-empty].

$\Gamma$

-from $/^{1}$ follows 11 or /2; the rule determines two diagrams; the prolongation
$J_{1}^{1}|[_{0}0$

of $\Gamma$ is $\Gamma_{1}$ in the first diagram and $\Gamma_{2}^{s}$ in the $se\omega nd$ one.

All above schemas determine one last line and the following
$I^{Y}$

-determines many last lines $acrding$ to the $n$ umber of A $\subset\prime 1$ nd it means:
$\Gamma_{1}^{-}$ A/ 2 $A\ldots$

from $\Gamma$ follows $\Gamma_{1}c\prime tndf_{2}$ and $\cdots$ ; the prolongation of / is $l_{1}(’\iota n(1$

the prolongation of $\Gamma_{t}$ is $\Gamma_{i+1}$ .

The given schemas are called proof rules. Composition of such proof rules according

to a diagram is called a generalized diagram or a generalized tree; all proof rules we

apply in a generalized diagram which describes the work of ones, $s$ . figure p. 39.

In order to give proof rules for a given natural number $k$ we $a\nwarrow$sumc here that

we ordered all sequences $\{i_{l}\}$ such that $\{i, \}\leq k$ and then:

According to the interpretation $E$ as $0$ and according to the generalized satishability

definition we apply to an arbitrary formula $E$-called a topformula-the following proof

rules:

$(A)$ $\Gamma,F+G\Gamma,F,$

$G$
; (AN) $\Gamma,F’|\Gamma,G^{\prime}l’,(F+G)^{\prime}$ ; $(N)_{1^{1}}^{I’}-\frac{F^{\prime\prime}}{F}$ ; $(1T_{1})\Gamma,$

$(\Pi aF)^{\prime},$

$F’(x_{i}/a)/\urcorner’(lIaF)^{\prime}$

-if $i=k$ , then we do not apply further the rule to the formula $(JJ_{a}F)^{\prime}$

with explanation given below.
$\Gamma,$ $\Pi_{r\iota}F$

$(\Pi_{2})\Gamma\delta\Gamma(\{i_{l}\}),$ $ F(x_{i}^{\prime}/a)_{0}^{1}\cdots$
-we begin to apply the right hand side for $l=w(F)$ and

afterwards we apply only the right hand side to the next

sequence $\{j_{l}\}$ of numbers $\leq k$ in the given order such that $\{l_{/}\}\supset\{i_{w(t)}\}$ and $l+p(F)<\prime e$

which determines a new last line till the last such sequence; columns determined here

by $\Gamma(\{i_{l}\}),$ $Fx^{f}\downarrow/a$) must be equal with $1^{\urcorner}$ on indecomposable formulas with free variables

of indices $\{i, \}\lfloor it$ suffices to assume the property for last lines of these columns].

A generalized diagram is correct iff for its two columns $ I_{1},1_{2}\urcorner$ :

1. If $\Gamma_{1}/\{i_{l}\}=1_{2}^{\urcorner}/\{i_{l}\},$
$1$ ) $\{i_{f}\}\supset\{i_{m(F})\},$ $l+p(F)\leq k$ , then :

1) I. $\epsilon^{1}$ . $co1\backslash \iota mn^{q}\Gamma_{1}$ and $\Gamma_{2}$ are $c(|t^{\prime}I1$ on in( $1_{HX)m_{1)}o\backslash \gamma}b]_{(}\backslash $ formulas with $\iota$ ndices $()f$ free variables
belonging to $\{i_{l}\}$ .
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$a/$ If $/IaF$ occurs in the column $1_{1}$ , then $llaF$ occurs in the colum $\Gamma_{2}$ (it means
that the property $(I1_{2})$ must hold for $I_{1}$ and $I_{2}$);

$b/$ If $(\Pi aF)^{\prime}$ occurs in the column $l_{I}^{\gamma}$ , then $(\Gamma laF)^{\prime}$ occurs in the column $\Gamma_{2}$ ;

2. If $\Gamma$ is a column and $F\epsilon C\{E\}$ , then elther $F$ belongs to 1’ or $F^{\prime}$ belongs to 1.
The above points 1 and 2 mean that if for a generalized diagram points 1 and

2 are not fulfilled, then we add to suitable columns respective formulas, $i$ . $e$ . in point
la) we add the formula $/faF^{\urcorner}$, in point 2 formulas $F$ or $F^{\prime}$ and afterwards we act

according to the introduced sequent rules.

In the following we consider only correct diagrams.

In the case of a classical diagram we assume that all columns are equal, $i$ . $e$ . we
have only one column 1) ; therefere all assumptions about columns are here less and we
receive an usual sequent proof, $s$ . $[2]$ ; thus our proof rules are generalizations of classi-
cal ones.

$A\propto ording$ to the considered proof rules each formula $E$ determines a generalized
diagram composed of columns with the main top $E$ .

Work scheme of a generalized diagram

Each column determines a new last line; lines are denoted by Circles; $(l\Gamma_{1})$ and $(ff_{\sim}Q)$

denote applications of the rules $(\Pi_{1})$ and $(\Gamma/2)$ respectively; dots denote prolongation of the
diagram aecording to the proof rules described abeve and properties 1-2 of a correct

diagram.

T. 4. If for each $k\geq n(E)$ all lines of each column of a certain generalized
diagram of $E$ are not fundamental, then $E$ is not a thesis.

1) $\prime 1^{\tau}h\epsilon$ precisat ion of the $r\iota\iota 1e(\Pi_{0,\llcorner})$ in this $c\mathfrak{n}\backslash c$ remains for readers.
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Proof: In order to prove T. 4. for a given formula $E$ we consider a natural

number $k\geq n(E)$ and the generalized diagram of $E$ with properties described in the

theorem. Each last line we consider as a set $A$ of formulas of the rank $k$ (completion

of the last line to a set of formulas of the rank $k$ is here arbitrary) and to each set $A$

we attribute the description $T$ of negated indecomposable formulas belenging to $A$

(therefore $A$ and $T$ have the rank k) and the family of all such $T^{\prime}s$ creates the set $Q$

of tables of the rank $k^{1)}$ .

We point out, each last line $A$ determines the described table $T$ and $c\prime 1$ column
$\mathfrak{T}$ with the ba.sis $A$ and the top $E$ .

We prove by induction on the length of a $formu1_{\mathfrak{c}}’\iota H$ :

(1) If $H_{(}\underline{\tau}$ , then $V\{k, Q, T, \{i_{\ell}\}, H\}=0$ , for each $\{i, \}\supset\{i_{w(H})\}$ such that

$l+p(H)\leq k$ .

For atomic formulas and their negation (1) holds by the assumption.

Let (1) hold for formulas of the length $<m$ ; we $s\}_{1_{(\gamma}}11$ prove it for formulas $H$

of the length $m$ .

We consider here three $c_{<}\gamma<$(. :

1. $H=F+G$ , for some $F,$ $G$ ,

2. $H=F^{\prime}$ , for some $F$,

3. $H=\Pi aF$, for some $F$.

In the case $H=F+G\mathfrak{c}\mathfrak{T}$ by virtue of $(A)$ we receive $F,$ $G\in \mathfrak{T}$ ; therefore by the

inductive assumption $V\{k, Q, T, \{i_{l^{\prime}}\}, F\}=0$ , for each $\{i_{l}\}\supset\{i_{w(F})\},$ $l+p(F)\leq k$ and

$V\{k, Q, 7^{\tau}, \{i_{\iota}\}, G\}=0$ , for each $\{i_{l^{\mathcal{O}2}}\}\supset\{i_{v((^{t}})\},$ $l^{\prime\prime}+p(G)\leq k$ ; therefore by $(3d^{\prime})V\{k$ ,

$Q,$ $T,$ $\{i_{l}\},$ $F+G$ } $=0$ , for each $\{i_{l}\}\supset\{i_{w}(F+G)\},$ $l+p(F+C)\leq k$ , which proves (1) in

$t$ he firrst case.

In thi case $H=F^{\prime}$ we consider $\uparrow hreeca^{q}es$ ;

(1) $F=F_{1}^{\prime}$ , for some $F_{1}$ ,

(2) $F=F_{1}+G_{1}$ , for some $F_{1},$ $G_{1}$ ,

(3) $F=\Pi aF_{1}$ , for some $F_{1}$ .

In the case $F=F_{1}$ ‘ we have by assumption $H=F_{1}^{\prime/}c\mathfrak{T}$ ; therefore by $(N)$ we

have $F_{1}\epsilon_{A}^{\pi}$ . Hence by means of the inductive assumption $V\{k, Q, T, \{i_{f}\}, F_{1}\}=0$ , for

each $\{i_{l}\}\supset\{i_{n(F_{1})}\},$ $l+p(F_{1})\leq k$ and because $w(F_{1})=w(H)$ we have also $V\{k,$ $Q,$ $T$,

$\{i_{f}\},$ $H$ } $=0$ , for each $\{i_{l}\}\supset\{i_{w(JI)}\},$ $l+p(H)\leq k$ , which proves (1) in the case $(1^{o})$ .

1) In the classical case we $m$ ust also $n\searrow lder$ $k=\aleph_{0}$ and then the diagram has only one colrumn

and $T$ is the de cription of negations of indecompot able form $\iota\iota 1_{\text{E}1\backslash }$ belonging to the column.



S$()$ME $M1^{_{d}}\backslash 1^{\backslash }f[()I)b^{\backslash } OF F()1\backslash )MATdI^{)}]_{\backslash }^{2}()()\Gamma\leftrightarrow$ II 11

In the case $F=F_{1}+G_{1}$ we have by assumption $H=(F_{1}+G_{I})^{\prime}r\mathfrak{T}$ ; therefore by
(A $N$ ) $F_{1}^{\prime}\epsilon \mathfrak{T}$ or $G_{1}$

‘ $cX$ .

We consider here the case $F_{1}^{f}c\mathfrak{T}$ ; the case $G_{1}^{\prime}c_{A}^{T}$ is analogic.

From the above by means of the inductive assumption $V\{k, Q, T, \{i_{1^{\prime}}\}, F_{1}^{\prime}\}=0$ ,

for each $\{i_{l^{\prime}}\}\supset\{i,,(F_{1}^{\prime})\},$ $l^{\prime}+p(F_{1}^{\prime})\leq k$ ; therefore by $|2d$ ) $V\{k, Q, T, \{i_{i^{\prime}}\}, F_{1}\}=1$ for

each $\{i_{l^{\prime}}\}\supset\{j_{l}(F_{1})\},$ $l^{\prime}+p(F_{1})\leq k$ , and by (3d) and (2d) we obtain respectively $V\{k$ ,

$Q,$ $T,$ $\{i_{l}\},$ $(F_{1}+G_{1})^{\prime}$ } $=0$ , for each $\{i_{l}$ ) $\supset\{i_{7r(F_{1}+0_{1})}\},$ $l+p((F_{1}+G_{1})^{\prime})\leq k,$ $i$ . $e$ . $V\{k,$ $Q$ ,

$T,$ $\{i\cdot\},$ $H$ } $=0$ , for each $\{i, \}\supset\{j_{v(II)}\},$ [ $+p(H)\leq k$ , what proves (1) in the case $(2^{o})$ .

In the cas\’e $F=/IaF_{1}$ we have by assumption $(l/aF_{1})^{\prime}\subset\tau_{\perp};$ therefore by the
property lb) of the correct diagram and $(\Pi)$ for each $\{i_{(}\}\supset\{i_{\omega(l_{1})}\},$ [ $+p(F_{1})\leq k$ , for
every $i\leq k$ , and for each $\leftarrow A_{1}$ if $\overline{A}_{1}/\{i$ ] $=^{c}\underline{V}/\{\iota\}$ , then $($I[a $F_{1})_{bA}^{\prime\tau_{1}}$ and $\Gamma_{1}^{\prime}(x_{\ell}/a)$

$r\mathfrak{T}_{1}$ ; hence by the construction of $Q$ , L. 2. and the inductive hypothesis for each
$\{i_{l}\}\supset\{i_{m(F_{1})}\},$ $l+p(F_{1})<f^{\wedge}$ , for every $i\leq k$ and for each $T_{1}\in Q$ , if $T_{1}/\{i_{l}\}=T/$

$\{i\}$ , then $V\{k, Q, T_{1}, \{i, \}, i, F_{I}^{\prime}(x_{t}/a)\}=0$ and $V\{k. Q, T_{1}, \{i_{l}\}, i, F_{1}(x_{\iota}/a)\}=1$ .

Therefere by virtue of $/4d$ ) $V$ {lc, $Q,$ $T,$ $\{i_{\ell}\},$ $l/aF_{J}$ } $=1$ , for cach $\{i_{l}\}\supset\{i_{t(F_{1})}\}$ ,

[ $+p(F_{1}1\leq k$ , and therefore by (2d) $V\{k,$ $Q,$ $7\urcorner\{i_{/}$ ], $H$ } $=0$ , for each $\{i\}\supset\{i_{u’(\Pi)}\}$ ,

$l+p(H)\leq k$ , what proves (1) in the case $(3^{O\backslash }$ .

In the last case $ H=\Pi a\Gamma$ ( ’. Hence in view of the construction of the generalized
diagram and $(\Pi_{2})$ for each $\{i_{f}\}\supset\{i(F)),$ $l+\ell^{f}(\Gamma\not\simeq)\leq k$ , there exists $\mathfrak{T}_{1}$ such that $\mathfrak{T}/\{i, \}$

and $Fx_{i}^{\prime}/a$ ) $c^{\underline{\gamma^{-}}_{t}}$ . Hence in view of the dehnition of $Q$ , L. 2., and the indudtive
hypothesis for each $\{i\}\supset\{i_{\pi(\Gamma)}\},$ $t+p(F)\leq le,$ there exists $i\leq k$ and $7_{1}^{\urcorner}rQ$ such that
$T_{1}/\{i_{l}\}=T/\{i_{l}\}$ and $V\{k, Q, T_{1}, \{i_{f}\}, \iota, F(x_{i}/a)\}=0$ .

Thus by virtue of $(4d)V\{k, Q, T, \{i, \}, \Pi aF\}=0$ , for each $\{i_{l}\}\supset\{i(\Pi\prime F)\},$ $l+p$

$(\Pi aF)<k$ , and also $V\{k, Q, T, \{;\}, H\}=0$ , for each $\{i_{l}\}\supset\{\prime u_{1}(’ J)\},$ [ $+p(H)\leq k$ , what
proves (1) in tbe last case (3.

Thus we closed the inductive proof of (1).

Therefore for formulas $H$ belonging to the generalized diagra $m$ we proved $N(k$ ,

$Q,$ $H^{1}$ .

If now $HrC\{E\}$ , then in view of the construction of a correct generalized
diagram, property 2, either $H$ belongs to each column of the generalized diagram or $H^{\prime}$

belongs to the same column.

Therefore in view of the above we have $N(k, Q, H)$ for each $HcC\{E\}$ .

Beeause $E$ belongs to the diagram, therefore even for each $TcQ$ we have
$V\{k, Q, T, \{i_{l}\}, E\}=0$ , for each $\{i_{l}\}\supset\{i_{w(F)},$ $l+p(E)\leq k$ , and therefore $E\overline{\epsilon}P\{k\}$ .

From the above and the assumption we obtain $E\overline{\epsilon}P$ and therefore in view of
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T. 2. $E$ is not a thesis.

According to our explanation, $s$ . footnotes on p. 37, the proof also holds in the
classicA case (then we have only one column).

T. 5. If a line of a certain column of each generalized diagram of $E$ for certain
$k\geq n(E)$ is fundamental, then $E$ is a thesis.

Proof. In contrary, if $E$ is not a thesis, then according to T. 1. $E\overline{\epsilon}P$ ; therefere
for each $k\geq n(E)$ there exists such set $Q$ of tables of the rank $k$ and there exists a
table $T\epsilon Q$ such that for each $\{i\}\supset\{i_{\varphi(K)}\}$ we have $V\{k, Q, T, \{i\}, E\}=0^{1)}$ and for
each $G\in C\{E\}$ : $N(k, Q, G)$ . Then the generalized satisfiability definition determines
here a generalized diagram analogic to sequent proof rules which correspond to the
above the diagram has no fundamental line in contrary to the assumption of T. 5.

From T. 4. and T. 5. follows:

T. 6. A formula $E$ is a thesis iff its each generalized diagram has a fundamental
line for certain $k\geq n(E)$ .

Other sequent proof rules based on my papers are considered in $[7]-[9]$ ; they
different kind corresponds to different characterizations (satisfiability definitions) of theses
of the first order functional calculus presented in my papers.

Examples are given in [8] and [9].

1) with the remark given in the proof of T. 1. $(4d^{\prime})$ .
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