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In this paper we will let L denote a simplicial complex, K a subcomplex of L, S+
a simplicial complex consisting of all i—simplexes of an n+1 simplex, ¢ = n, and S"K
the simplicial complex which is the join of S* and K. We denote the r-th derived

subdivision of L by L ¢ and denote a simplicial collapse of L onto K by L™ K [1].

Theorem [. L 7 K™ if and only if (SOL) <~ (S°K) .

Before proceeding with the proof we give the following definision. Let a and b
be the vertices of S° We will define an #+1 cell C; in (S°L) @ containing the

n-simplex J; of L ¥ and vertices «, b by induction on 7 and r as follows:

(i) If =0 and J; is an n-simplex of L @, then C; will be the join of 4,

with a and b.

(ii) If the C’s have been defined for »—1 and J; isan o-simplex of L,
then 4; is in the interior of some 4; of L ¢=. Hence define C; to be the
1-cell defined by «, b, and the vertices of the first derived subdivision of C;
in the interior of C,.

(iiijy If the C's have been defined for »—1 and all 7—1-simplexes of L and
Jd; is an s-simplex of L, then define C; to be the n41 cell bounded by

U C;, where C; is the cell containing J; and J; is on the boundary of J;.

We will first assume that (S° L) ™\, (SYK)™ by the sequence of elementary
simplicial collapses (SO Ly =K, K;~, K, K, =(S'K) ™. For each elementary
simplicial collapse K>, K,,,, through a simplex 4; from a simplex 4, there exist
Ci, Cy, d;, and 4; such that (interior of J;) U (interior of J}) C (interior of C;), (interior
of 4, U (interior of 4} C (interior of Cj), and J,, 4;, are simplexes of [ . Hence
we can show that L ¢ simplicially collapses to K by L7 =K K> Ko Ky =K,
where K, Kii1 denotes the elementary simplicial collapse of J; from J; or Ki=HK;y,y
if 4; has been previously collapsed. If we could not collapse Jy from J; then there
would exist a simplex 4, of L™ such that:

(1)} d; is a face of dy and di=-4,.

(2) CinCy=C; and no simplex of C; has been collapsed.

Thus 4, could not have been collapsed from J; as 4; is on the boundary of Ci.

However this contradicts the fact that K, >, K., is an elementary simplicial collapse ot J;
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from 4;.
We shall now assume that L@ N\, K@ by the seqnence of elementary simplicial
collapses L =Ly, L, Lo+, Ln=K". For each elementary simplicial collapse
Li\, Liy; of the n-simplex J; from J; we will define the following simplicial collapses
of (SOL)™:
(1) Let d¢ be an n+1-simplex of C; having ¢ as a vertex.
(ii) Define L; N, L; (where L; = U C. and J, is a simplex of L;) by collapsing
di from its n dimensional face on C;.

(i) If A, is a face of 4; having a as a vertex, then (C;— UJ,) is a cone from
the vertex b and having the n-face of 4, opposite a as base. Let A, be the
subcone of (C;— UA,) having vertex b and base the uuion of all n—1
simplexes of 4; not in C; and not having a as a vertex.

(iv) Define L; ™ L, ™\, iy - Li, to be the sequence of elementary simplicial

collapsings of (C;— U4,) to A,.
The sequence of elementary simplicial collapsings
(SO LY 0 = Ly oLy oo Ly S Lo L
=Ll iy, o (SO O
defines a simplicial collapse of (S® L) onto (S° K) ™.
By a similar argument we can prove the following.

Theorem 2. (S* L)Y N, (S* K) T if and only if L\, K.
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