A NOTE ON SIMPLICIAL COLLAPSING

By

RICHARD E. GOORDICK

(Received October 4, 1967)

In this paper we will let L denote a simplicial complex, K a subcomplex of L, S^n a simplicial complex consisting of all *i*-simplexes of an n+1 simplex, $i \leq n$, and $S^n K$ the simplicial complex which is the join of S^n and K. We denote the *r*-th derived subdivision of L by $L^{(r)}$ and denote a simplicial collapse of L onto K by $L \setminus K$ [1].

Theorem I. $L^{(r)} \searrow K^{(r)}$ if and only if $(S^0L)^{(r)} \searrow (S^0K)^{(r)}$.

Before proceeding with the proof we give the following definision. Let a and b be the vertices of S^0 . We will define an n+1 cell C_i in $(S^0 L)^{(r)}$ containing the n-simplex Δ_i of $L^{(r)}$ and vertices a, b by induction on n and r as follows:

- (i) If r=0 and \varDelta_i is an *n*-simplex of $L^{(0)}$, then C_i will be the join of \varDelta_i with *a* and *b*.
- (ii) If the C's have been defined for r-1 and \varDelta_i is an o-simplex of $L^{(r)}$, then \varDelta_i is in the interior of some \varDelta_j of $L^{(r-1)}$. Hence define C_i to be the 1-cell defined by a, b, and the vertices of the first derived subdivision of C_j in the interior of C_j .
- (iii) If the C's have been defined for r-1 and all n-1-simplexes of $L^{(r)}$ and \varDelta_i is an *n*-simplex of $L^{(r)}$, then define C_i to be the n+1 cell bounded by $\bigcup C_j$, where C_j is the cell containing \varDelta_j and \varDelta_j is on the boundary of \varDelta_i .

We will first assume that $(S^0 L)^{(r)} \searrow (S^0 K)^{(r)}$ by the sequence of elementary simplicial collapses $(S^0 L)^{(r)} = K'_0 \searrow K'_1 \searrow K'_2 \cdots \searrow K'_m = (S^0 K)^{(r)}$. For each elementary simplicial collapse $K'_i \searrow K'_{i+i}$, through a simplex \varDelta'_i from a simplex \varDelta'_j , there exist C_i, C_j, \varDelta_i , and \varDelta_j such that (interior of \varDelta_i) \cup (interior of \varDelta'_i) \subset (interior of C_i), (interior of \varDelta_j) \cup (interior of \beth'_j) \subset (interior of C_j), and \beth_i, \varDelta_j , are simplexes of $L^{(r)}$. Hence we can show that $L^{(r)}$ simplicially collapses to $K^{(r)}$ by $L^{(r)} = K_0 \searrow K_1 \searrow K_2 \cdots \searrow K_m = K^{(r)}$, where $K_i \searrow K_{i+1}$ denotes the elementary simplicial collapse of \beth_i from \varDelta_j or $K_i = K_{i+1}$ if \varDelta_i has been previously collapsed. If we could not collapse \varDelta_i from \varDelta_j then there would exist a simplex \varDelta_k of $L^{(r)}$ such that:

- (1) \varDelta_j is a face of \varDelta_k and $\varDelta_k \neq \varDelta_i$.
- (2) $C_i \cap C_k = C_j$ and no simplex of C_k has been collapsed.

Thus \varDelta'_i could not have been collapsed from \varDelta'_j as \varDelta'_j is on the boundary of C_k . However this contradicts the fact that $K'_i \searrow K'_{i+1}$ is an elementary simplicial collapse of \varDelta'_i

RICHARD R. GOODRICK

from Δ'_{j} .

We shall now assume that $L^{(r)} \searrow K^{(r)}$ by the sequence of elementary simplicial collapses $L^{(r)} = L_0 \searrow L_1 \searrow L_2 \cdots \searrow L_{m'} = K^{(r)}$. For each elementary simplicial collapse $L_i \searrow L_{i+1}$ of the *n*-simplex \mathcal{J}_i from \mathcal{J}_j we will define the following simplicial collapses of $(S^0 L)^{(r)}$:

- (i) Let \mathcal{A}_k be an n+1-simplex of C_i having a as a vertex.
- (ii) Define $L'_{i_0} \searrow L'_{i_1}$ (where $L'_{i_0} = \bigcup C_e$ and \mathcal{I}_e is a simplex of L_i) by collapsing \mathcal{I}_k from its *n* dimensional face on C_j .
- (iii) If A_p is a face of \mathcal{A}_k having a as a vertex, then $(C_i \cup \mathcal{A}_p)$ is a cone from the vertex b and having the *n*-face of \mathcal{A}_k opposite a as base. Let A_b be the subcone of $(C_i - \cup A_p)$ having vertex b and base the union of all n-1simplexes of \mathcal{A}_k not in C_j and not having a as a vertex.
- (iv) Define $L'_{i_1} \searrow L'_{i_2} \searrow L'_{i_3} \cdots \searrow L'_{i_s}$ to be the sequence of elementary simplicial collapsings of $(C_i \bigcup \mathcal{A}_p)$ to \mathcal{A}_b .

The sequence of elementary simplicial collapsings

$$(S^{0} L)^{(r)} = L_{0_{0}}^{'} \searrow L_{0_{1}}^{'} \cdots \searrow L_{i_{0}}^{'} \searrow L_{i_{1}}^{'} \cdots \searrow L_{i_{s}}^{'}$$
$$= L_{i+l_{0}}^{'} \searrow L_{i+l_{1}}^{'} \cdots \searrow (S^{0} K)^{(r)}$$

defines a simplicial collapse of $(S^0 L)^{(r)}$ onto $(S^0 K)^{(r)}$.

By a similar argument we can prove the following.

Theorem 2. $(S^n L)^{(r)} \searrow (S^n K)^{(r)}$ if and only if $L^{(r)} \searrow K^{(r)}$.

REFERENCES

1. E. C. Zeeman, *Seminar on Combinatorial Topology*, Mimeographed Notes, Inst. Hautes Etude Sci., 1963.

University of Utah Salt Lake City, Utah

34