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In this paper we will let $L$ denote a simplicial complex, $K$ a $sub\omega lnplex$ of $L,$ $S^{ll}$

a simplicial complex consisting of all $j$-simplexes of an $n+1$ simplex, $i\leqq n$ , and $S^{1l}K$

the simplicial $\omega mplex$ which is the join of $S^{n}$ and $K$. We denote the $r$-th derived
subdivision of $L$ by $L^{(\gamma)}$ and denote a simplicial collapse of $L$ onto $K$ by $L\backslash _{\lrcorner}K[1]$ .

Theorem I. $L^{(r)}\backslash _{\lrcorner}K^{(\gamma)}$ if and only if $(S^{0}L)^{(r)}\searrow(S^{0}K)^{(\gamma)}$ .

Before proceeding with the proof we give the following definision. Let $a$ and $b$

be the vertices of $S^{0}$ . We will define an $n+1$ cell $C_{t}$ in $(S^{0}L)^{(r)}$ containing the
$n$-simplex $\Delta_{t}$ of $L^{(\gamma)}$ and vertices $a,$

$b$ by induction on $n$ and $r$ as follows:

(i) If $r=0$ and $\Delta_{i}$ is an $n$ -simplex of $L^{(\cup)}$ , then $C_{\ell}$ will be the join of $\Delta_{i}$

with $a$ and $b$ .

(ii) If the $C^{\prime}s$ have been dehned for $r-1$ and $\Delta_{l}$ is an o-simplex of $L^{(1)}$ ,

then $\Delta_{t}$ is in the interior of some $\Delta_{f}$ of $L^{(r-1)}$ . Hence define $C_{t}$ to be the

l-cell defined by $a,$
$b$ , and the vertices of the hrst derived subdivision of $C_{j}$

in the interior of $C_{J}$ .

(iii) If the $C$ ‘
$s$ have been dehned for $r-1$ and all $n-1$ -simplexes of $L^{(r)}$ and

$J_{t}$ is an $n$-simplex of $L^{(r)}$ , then dehne $C_{i}$ to be the $n+1$ cell bounded by
$\cup C_{j}$ , where $C_{j}$ is the cell containing $\Delta_{j}$ and $\Delta_{j}$ is on the boundary of $\Delta_{i}$ .

We will first assume that $(S^{0}L)^{(r)}\searrow(S^{0}K)^{(r)}$ by the sequence of elementary
simplicial collapses $(S^{0}L)^{(r)}=K_{0}\backslash K_{1}^{\backslash }K_{J}^{\prime}\lrcorner\lrcorner$ $\searrow K_{n}=(S^{\cup}K)^{(r)}$ . For each elementary

simplicial collapse $K_{1}^{\prime}\searrow K_{\ell\dashv}^{\prime}*$

’ through a simplex $\Delta_{\{}^{\prime}$ from a simplex $\Delta_{f}$ , there exist
$C_{f},$ $C_{j},$ $\Delta_{i}$ , and $\Delta_{/}$ such that (interior of $\Delta_{i}$ ) $\cup$ ( $interior$ of $\Delta_{i}$ ) $\subset$ (interior of $C_{\ell}$), (interior

of $\Delta_{J}$) $\cup$ ($inoerior$ of $\Delta_{J}$ ) $\subset$ (interior of $C_{j}^{\backslash }$ ), and $\lrcorner_{7},$
$\Delta_{f}$ , are simplexes of $L^{(\tau)}$ . Hence

we can show that $L^{(r)}$ simplicially collapses to $K^{(\gamma)}$ by $l_{d}^{(\gamma)}=K_{0}\backslash _{\lrcorner}K_{i}\backslash _{\lrcorner}K_{L}\cdots\searrow K_{m}=K^{(\gamma)}$ ,

where $K_{t}\searrow K_{\ell+1}$ denotes the elementary simplicial collapse of $\Delta_{\ell}$ froni $\Delta_{j}$ or $K_{7}=K_{i+1}$

if $\Delta_{i}$ has been previously collapsed. If we could not collapse $Ll_{i}$ from $J_{f}$ then there

would exist a simplex $\Delta_{A}$ of $L^{(r)}$ such that:

(1) $\Delta_{j}$ is a face of $\Delta_{k}$ and $\Delta_{k}\neq\Delta_{7}$ .

(2) $C_{i}\cap C_{k}=C_{j}$ and no simplex of $C_{k}$ has been collapsed.
Thus $\Delta_{f}^{\prime}$ could not have been collapsed from $\Delta_{j}^{\prime}$ as $\Delta_{f}^{\prime}$ is on the boundary of $C_{k}$ .

However this contradicts the fact that $K_{\iota}\backslash _{A}K_{i+1}$ is an elementary simplicial collapse of $J_{t}^{}$



.14 RICHARD R. $G()()1)1\{1C1\langle$

from $\Delta_{j}^{\prime}$ .

We shall now assume that $L^{(\gamma)}\searrow K^{(r)}$ by the seqnence of elementary simplicial
collapses $L^{(r)}=L_{0}\searrow L_{1}\searrow L_{2}\cdots\searrow L_{m\prime}=K^{(r)}$ . For each elementary simplicial collapse
$L_{t}\searrow L_{t+1}$ of the $n$-simplex $\Delta_{l}$ from $\Delta_{j}$ we will define the following simplicial collapses
of $(S^{0}L)^{(r)}$ :

(i) Let $\Delta_{k}$ be an $n+1$ -simplex of $C_{\iota}$ having $a$ as a vertex.

(ii) Define $L_{l_{0}}\searrow L_{t_{1}}$ (where $L_{t_{0}}^{\prime}=\cup C_{c}$ and $J_{e}$ is a simplex of $L_{f}$ ) by $colla_{1^{\lambda 11l}g}$

$J_{k}$ from its $n$ dimensional face on $C_{j}$ .

(iii) If $A_{p}$ is a face of $\Delta_{k}$ having a as a vertex, then $(C_{l}-\cup\Delta_{p})$ is a COIIC from
the vertex $b$ and having the $n$-face of $\Delta_{k}$ opposite a as base. Let $A_{J}$ be the
subcone of $(C_{\iota}-\cup A_{p})$ having vertex $b$ and base the uuion of all $n-1$

simplexes of $\Delta_{k}$ not in $C_{j}$ and $not$ having a as a vertex.

(iv) Define $L_{\ell_{1}}^{\prime}\searrow L_{t_{2}}^{\prime}\searrow L_{i_{8}}^{\prime}\cdots\searrow L_{\ell_{S}}^{\prime}$ to be the sequence of elementary simplicial
collapsings of $(C_{\ell}-\cup\Delta_{1},)$ to $A_{b}$ .

The sequencc of elementary simplicial $\omega L!p_{b}i_{11}gs$

$(S^{0}L)^{(r)}=L_{()0}^{\prime}\searrow L_{0_{1}}^{\prime}\cdots\searrow L_{t_{0}}^{\prime}\searrow L_{i_{1}}^{\prime}\cdots\searrow L_{t_{S}}^{\prime}$

$=L_{i+l_{0}}^{\prime}\searrow L_{t+l_{1}}^{\prime}\cdots\searrow(S^{0}K)^{(\gamma)}$

defines a simplicial collapse of $(S^{0}L)^{(r)}$ onto $(S^{0}K)^{(r)}$ .

By a similar argument we can prove the following.

Theorem 2. $(S^{n}L)^{(r)}\searrow(S^{n}K)^{(r)}$ if and only if $L^{(r)}\searrow K^{(\gamma)}$ .
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