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1. Intoroduction

The general $thry$ of $\alpha$-atomic $B\infty lean$ algebras has been developed by R. $S$ .
Pierce [1]. In this paper, I introduced the concept of the M.-property in a Boolean
algebra. That is, let $a$ be an infinite cardinal number and let $A$ be a $B\infty lean$ algebra,
then $A$ is said to have the M.-property provided if $P=\{a_{\xi} ; \xi<\alpha\}$ is any subset of $A$

such that every finite subset of $P$ has non-zero meet, then then there is a non-zero
element $a$ in $A$ satisfying $a\subset a_{\xi}$ for $\xi<\alpha$ . The existence of such a Boolean algebra
will be proved.

It is clear that if $A$ is a Boolean algebra which has the M.-property, then the
minimal $\beta-extension$ . $A^{\beta}$ of $A$ is $\alpha$-atomic. Therefore, we can apply the results of
R. S. Pierce for $a$-atomic Boolean algebra to $A^{\beta}$ . E. C. Smith and A. Tarski has
proved the theorem in their paper [2] such that if $\beta$ is a singular, strong limit cardinal
and $A$ is an $\beta\prec omplete$ Boolean algebra which is $(\alpha, \beta)$-distributive for every cardinal
$ a<\beta$ , then $A$ is $(\beta, \beta)$-distributive. Moreover, I modified this theorem and applied it to
a $B\infty lean$ algebra which has the M.-property for every cardinal $\alpha<\beta$ , Thus I proved
the following theorem.

Suppose that $\beta$ is an arbitrary infinite cardinal number and that $A$ is a $B\infty lean$

algebra which has the M.-property for every cardinal $\alpha<\beta$ . Then $A$ is $\beta$-representable.

2. Preliminaries

The set-theoretical operations are represented by rounded symbols: $r,$ $\cup,$ $\cap$ and
$\subseteqq$ respectively denote membership, union, intersection and inclusion. If $A$ and $B$ are
sets, $B-A$ is the set of all elements of $B$ which are not in $A$ ; the complement (in a
fixed set) of $A$ is designated A. The empty set is denoted by $\phi$ .

The following definitions and results concerning the ordinal numbers and the
cardinal numbers are due to Alexander Abian [3].

A set $\beta$ is called an ordinal nnmber (or simply an ordinal) if $\beta$ can be well
ordered so that for element $a$ of $\beta$ the initial segment $I(\alpha)$ of $\beta$ is equal to $a,$ $i.e.$ ,
$ I(\alpha)=\alpha$ for every $\alpha\epsilon\beta$ . For every two ordinal numbers $a$ and $\beta$ , one and only one of
the following three cases holds (i) $\alpha=\beta\{ii$ ) $\alpha$ is equal to an initial segment of $\beta(iii)$

$\beta$ is equal to an initial segment of $\alpha$ . We define $\alpha\leqq\beta$ if $\alpha$ is equal to $\beta$ or $\alpha$ is equal
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to an initial segment of $\beta$ . If $\alpha\leqq\beta$ and $\alpha\neq\beta$ , we say that $\alpha$ is less than $\beta$ and as

usual we denote $ a<\beta$ . Every ordinal number $\beta$ is equal to the set of all ordinals less
than $\beta$ . We denote this set $W(\beta)$ . Let us call an ordinal $\beta$ immediate successor of
ordinal $\alpha$ if $ a<\beta$ ; and if an ordinal $\gamma$ is such that $\alpha<\gamma$ , then $\beta\leqq\gamma$ . Every ordinal
number $\alpha$ has the immediate successor. The immediate successor of $a$ is denoted by
$\alpha+1$ . An ordinal number $a$ is said to be immediate predecessor of an ordinal $\beta$ if
$\alpha<\beta$ ; and if an ordinal $\gamma$ is such that $\gamma<\beta$ , then $\gamma\leqq\alpha$ .

Two sets $A,$ $B$ are called equipollent, in symbol $A\cong B$ , if there exists a one-to-

one correspondence between them. An ordinal number $\alpha$ is called a cardinal number
(or simply a $cardina1^{1}$ , if for every ordinal number $\beta,$ $\alpha\cong\beta$ implies $\alpha\leqq\beta$ . We say such

a cardinal number an initial number. Every set $A$ is equipollent to an unique cardinal
number $\alpha$ . We denote $ A^{=}=\alpha$ . Every infinite cardinal number has no immediate

predecessor. We say that a cardinal number $\beta$ is the immediate successor of a cardinal
$a$ if $\alpha<\beta$ and, if for no cardinal $\gamma$ is it the case that $\alpha<\gamma<\beta$ . Every cardinal number
$a$ has the unique immediate successor. It is denoted by $a^{+}$ .

If $A$ and $B$ are non-empty sets, then $A^{B}$ will denote the set of all functions of
$B$ into $A$ . For every two cardinal numbers $\alpha$ and $\beta$ the $\beta$-th power of $\alpha$ , denoted by
$a^{(\beta)}$ , is defined as $\alpha^{(\beta)}=\overline{\alpha^{\beta}}-$ .

For every $X$ of ordinal (cardinal) numbers, the union $\cup X$ of $X$ is an ordinal
(cardinal) number. Moreover, $\cup X$ is the least upper bound of X. $A$ cardinal number $\beta$

is called singular if it can be represented as the least upper bound of a set $S$ of
cardinals, each of $S$ is less than $\beta$ and $\overline{\overline{S}}<\beta$ . All other cardinals are called regular.

For every indexed family $\{\alpha_{i} : i\epsilon I\}$ of cardinal numbers, the sum of all cardinal

numbers belonging to this family is denoted by $\sum_{i\epsilon I}*\alpha_{\ell}$ and is defined as: $\overline{\overline{\bigcup_{\ell\epsilon I}(a_{\ell}\times\{i\})}}$.
Accordingly, $\sum_{\ell el}*\alpha_{i}=\overline{\bigcup_{i\mathfrak{c}I}(\alpha,\times\{i}\overline{\}}$) where $\alpha_{i}\times\{i\}$ is the Cartesian product of $\alpha_{\ell}$ and $\{i\}$ .
For every two families $\{\alpha_{i} : i\epsilon I\}$ and $\{\beta_{\ell} ; i\epsilon I\}$ of cardinal numbers $a_{i}$ , and $\beta_{\ell},$ $\alpha_{\ell}\leqq\beta$

$foreveryi\epsilon Iimp_{C}1iesnuakrs,$$ifI^{=}=\beta,’\iota nd\alpha_{\ell}=\alpha\sum_{i\epsilon I}*a_{i}\leqq\sum_{i\epsilon I}*\beta,foreveryFori\epsilon I,$ $thenwehave\sum_{\ell\epsilon I}*\alpha_{i}=\alpha\beta,wherea\beta=^{\frac{\frac{dina1}{}}{u\times v}}anindexedfamily\{\alpha_{\ell}:i\epsilon I\}ofcar$

with $\alpha\cong u$ and $\beta\cong\iota$ . If $\{A_{\xi} : \xi<a\}$ is any family of sets, pairwise disjoint or not,

then $\overline{\overline{\bigcup_{\xi<a}A_{\xi}}}\leqq\sum_{\xi<a}*A_{\xi}^{=}$ . Finally, for every non-zero cardinal $a$ and every infinite cardinal

number $\beta,$ $\alpha\leqq\beta$ implies $\alpha\beta=\beta$ .
We shall denote the fundamental Boolean operations, join, meet and inclusion

$by+,$ $\cdot$ and $\subset$ . The generalizations of join and meet denoted by $\Sigma$ and $\Pi$ , respectively.

If $a$ is an element of a $B\infty lean$ algebra $A,\overline{a}$ denotes the complement of $a$ in $A$ .
The null and universal elements of a Boolean algebra will be denoted by $0$ and 1,

respectively, as well as the ordinary numbers zero and one. $A$ Boolean algebra $A$ is
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called $\alpha$-complete if and only if whenever $B\subset A=$ and $B\leqq\alpha,$$\Sigma B(or\sum_{b\epsilon P}b)=$ exists in $\Lambda$ .
By a field of sets we shall understand any non-empty class $F$ of subsets of a

fixed set $X$ such that (i) if sets $A,$ $B$ are in $F$, then their union is in F. (ii) if a set
$A$ is in $F$, then its complement in the fixed set $X$ is in $F$. Clearly, every field of
sets is a Boolean algebra, the Boolean $0_{I}aerations+,$ $\cdot$ , –being the set-theoretical union,
intersection and $mplementation$ , respectively.

3, The existence of a Boolean algebra which has the $M_{\alpha}$-property

$A$ set $D$ of elements of a Boolean algebra $A$ is said to be dense (in $AI$ if, for
cvery non-zero element $a\epsilon A$ , there exists an element $b\epsilon D$ such that $0\neq b\subset a$ .

Let $\alpha$ be an infinite cardinal number. $A$ partially ordered set $P$ will be called
$\alpha$-compact if $P$ is closed under finite meets contains a zero element and satisfies the
condition that $M\subset P,$$M^{=}=\leqq a$ and no finite subset of $M$ has zero meet, then $M$ has
a non-zero lower bound in P. $A$ Boolean algebra $A$ will be called a-atomic if $A$

contains a dense subset which is $\alpha$-compact.

Deflnition. A Boolean algebm $A$ is said to have the M.-property if $A$ itself
is a-compact.

We shall show that the existence of a Boolean algebra which has the M.-property.
Let $Y$ be an infinite set with $\overline{\overline{Y}}=\beta>\omega$ and $B$ be the field ( $i.e$ . $B\infty lean$ algebra)

composed of all finite subsets of $Y$ and of all cofinite subsets of Y. Let $y$ be any point
which does not belong to $Y$, and $X=Y\cup\{y\}$ . The mapping

$\varphi(A)=\left\{\begin{array}{l}AifA\epsilon Bisfi nite\\A\cup\{y\}ifA\epsilon Biscofi nite\end{array}\right.$

is an isomorphism of $B$ onto a field $F$ of subsets of $X$.
Suppose that $\overline{\swarrow}is$ the family which consists of all unions of members of $F$.

Then $\prime^{r\approx}$ is a topology in $X$ and $F$ is an open basis for $X$. Of course, every set $B\epsilon F$

is open. It is also closed in this topology $\swarrow c-$ since $X-B$ belongs to F. $F$ being reduced,
the space $X$ is totally disconnected.

To prove that $X$ is compact, we suppose that $C$ is an open covering of $X$. We
can assume that each set $B$ in $C$ belongs to $F$, because each set $B$ in $C$ is the union
of members of $F$. Then there is at least one $B\epsilon C$ such that $y\epsilon B$. Hence there exists
a cofinite set $A$ $\epsilon B$ such that $B=A\cup\{y\}$ . Moreover $B^{c}$ is finite. Therefore we can
find a finite sequence $B_{1},$

$\cdots\cdots,$
$B_{n}\epsilon C$ such that $X=B_{1}\cup\cdots\cdots\cup B_{n}$ .

Now we shall prove that a set $B\subseteqq X$ is open-closed, then $B\epsilon F$. Indeed, $B$ is
the union of a family $K$ of sets in $F$ since $B$ is open. Since $B$ is a closed subset of
the compact space $X$, there exists a finite sequence $B_{1},$ $\cdots\cdots$ , $B_{n}\epsilon K\subset F=$ such that
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$B=B_{1}\cup\cdots\cdots\cup B_{n}$ . Hence $B\epsilon F$. Consequently, the field $F$ consists of all open-closed

subsets of $X$.
Since the $B\infty lean$ algebra $B$ is isomorphic to the field $F$ of all open-closed

subsets of the compact totally disconnected space $X,$ $X$ is the Stone space of $B$.
Theorem 1. The Boolean algebra $B$ has the M.-property for every cardinal

$\alpha<\beta$ where $\omega\leqq\alpha$ .
$Prmf$. To prove that $B$ has the M.-property, it suffices to show that for every

subset $M=\{A_{\xi} ; \xi<\alpha\}$ of $B$ which has the finite intersection property, there is non-
zero element $A$ $\epsilon B$ such that $A_{=}A_{\xi}$ for every $\xi<\alpha$ . Since $\{A_{\xi} ; \xi<\alpha\}$ has the finite
intersection property, the subset $\{\varphi(A_{\xi});\xi<\alpha\}$ of $F$ has the same property. Moreover,

$X$ being compact, we obtain $\bigcap_{\xi<a}\varphi(A_{t})\neq\phi$ .
Case I. It there is at least one finite set $A_{\xi}$ in $M$, then there is a point $x\epsilon X$

distinct from $y$ such that $x\epsilon\cap\varphi(A_{\xi})$ . This means that the singleton $\{x\}^{\Gamma}=\varphi(A_{i})$ for
$\xi<a$

every $\xi<\alpha$ . On the other hand, by the property of $\varphi$ that $\varphi(\{x\})=\{x\},$ $\varphi(\{x\})\subseteqq\varphi(A_{\xi})$

for every $\xi<\alpha$ . Consequently, $\phi\neq\{x\}\subseteqq A_{\xi}$ for every $\xi<\alpha$ and $\{x\}\epsilon B$.

Case II. Let us assume that there is no finite set $A_{\xi}$ in $M$. Suppose now that
$\cap\varphi(A_{\xi})=\{y\}$ . Then, by the de Morgan law, $\bigcup_{\xi<\alpha}\varphi(A\xi)=Y$ where $ A_{\xi}^{c}=Y-A\epsilon$ . Each

$A_{\xi}^{c}\xi<a$ being finite set, $\bigcup_{\xi<\alpha}A_{\xi}^{r}=Y$. Hence we have $\beta=Y\leqq\sum_{\xi<a}*A_{\xi}^{t}\leqq\omega\cdot\alpha=\alpha<==\vdash D$ This leads

to a contradiction. Therefore $\bigcap_{\xi<a}\varphi(A_{\xi})$ contains a point $x$ of $X$ distinct from $y$ . By

means of a similar argument, one can obtain the element $\{x\}\epsilon B$ such that $\phi\neq\{x\}\subseteqq A_{\xi}$

for every $\xi<\alpha$ .

4. The distributivity

A Boolean algebra $A$ is $(\alpha, \beta)$-distributive if the following is satisfied: given any

subset $\{a_{\xi,\eta} : \xi<\alpha, \eta<\beta\}$ of $A$ such that all the joins $\Sigma a_{\xi,\eta}$ for $\xi<a$ , their meet

$\prod_{<\alpha}\sum_{\eta<\beta}a_{\xi\eta}$ and all the meets $\prod_{\xi<\alpha}a_{\xi,f(\xi)}$ for $f\epsilon\beta^{a}$ exist, $th^{\eta<\beta}en$ the join $\sum_{f\epsilon\beta^{\alpha}}\prod_{\xi>\alpha}a_{i,f()}$ also

exists and we have

$\prod_{\xi<}\sum_{a\eta<\beta}a_{\text{\’{e}}’ f(\xi)}\eta=\sum_{f\epsilon\beta\alpha}\prod_{\xi<\alpha}a,$ .

If a Boolean algebra $A$ is $(\alpha, \beta)$-distributive for every cardinal number $\beta$ , we say that
$A$ is $(\alpha, \infty)$-distributive.

Actually, in order to demonstrate that a Boolean algebra $A$ is $(\alpha, \beta)$-distributive,

it is sufficient to show that if $\{a_{\xi\eta} ; \xi<\alpha, \eta<\beta\}$ is any subset of $A$ such that all the

joins $\Sigma a_{\xi,\eta}$ for $\xi<\alpha$ exist and their meet II $\Sigma a_{\xi,n}$ exists and is not zero, then there

is $anf\epsilon\beta^{a}\eta<\beta$ such that $\prod_{\xi<a}$
$a$ $f(\xi)is$ false; $i$ . $e$ . $either\prod_{\xi<a}\xi<\alpha\eta<\beta a_{\xi,f(\xi)}$ does not exist or is not zero.
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Theorem 2. Suppose that $\beta$ is a singular cardinal number and that $A$ is an
$\beta$-complete Boolean algebra which is $(\alpha, \infty)$-distributive for every cardinal $\alpha<\beta$ . Then
$A$ is $(\beta, \infty)$-distributive.

Proof. Let $\gamma$ be an arbitrary cardinal number and $\{a_{\mathcal{E},\eta} ; \xi<\beta, \eta<\gamma\}$ be any
subset of $A$ such that

(1)
$\prod_{\xi<\beta}\sum_{\eta<\gamma}a_{\xi,\eta}\neq 0$

$\beta$ being singular, we can find a set $S=\{\beta_{\xi} ; \xi<\alpha\}$ of cardinal numbers $\beta_{\xi}$ such that
$\beta_{\xi}<\beta$ for every $\xi<\alpha<\beta$ and $\beta=\bigcup_{\xi<\alpha}\beta_{\xi}$ . Since $\beta$ is the least upper bound of $S$ and has
no immediate predecessor,

(2) for any $\eta<\beta$ there is a $\xi$ satisfying $\eta<\beta_{\xi}<\beta$ .
Let

(3) $D\epsilon=$ { $x:x=\prod_{\eta<\beta_{\xi}}a_{r_{l}’ f(\eta)}$ and $f\epsilon\gamma^{\beta_{\xi}}$ } for $\xi<\alpha$ .
Moreover for each $\xi<\alpha$ , let $\rho_{\xi}=\gamma^{(\beta_{\xi})}$ , and find a bijective function $F_{\xi}$ (or $one-to$-one
onto map) on $\gamma^{\beta_{\xi}}$ onto $\rho_{\xi}$ . For every $\xi<\alpha$ let $b_{\xi}$ be a function $\rho_{\xi}$ such that

$b_{\xi}(F_{\xi})(f)=\prod_{\eta<\beta_{\xi}}a_{r,,f(\eta)}$

for each $f\epsilon\gamma^{\beta\xi}$ . Let $b_{\xi}(\eta)=b_{\xi,\eta}$ for $\xi<\alpha$ and $\eta<\rho_{\xi}$ .
Let

$\rho=\bigcup_{\xi<\alpha}\rho_{\xi}$ and if $\rho_{\xi}<\rho$ for some $\xi<\alpha$ , we define $b_{\xi\eta}=0$ for each $\rho\epsilon\leqq\eta<\rho$ .
Then, by the $(\alpha, \infty)$-distributivity of $A$

(4)
$\prod_{\xi<\alpha}\Sigma D_{\xi}=\prod_{\xi<\alpha}\sum_{fe\gamma^{\beta_{\xi}}}\{b_{\xi}(F_{\xi}(f))\}=\prod_{\xi<a}\sum_{\eta<\rho_{\xi}}b_{\xi,\eta}$

$=\prod_{\xi<a}\sum_{\eta<\rho}b_{\xi\eta}=\sum_{q\epsilon\rho^{\Phi}}\prod_{\xi<\alpha}b_{\xi,q(\xi)}$

Since fot each $\xi<\alpha$ we have

$\prod_{\eta<\beta_{\xi}}\sum_{\lambda<\gamma}a_{r\lambda}\supset\prod_{\eta<\beta}\sum_{\lambda<\gamma}a_{r\lambda}$
,

by (1), (4) and the $(\beta_{\xi}, \infty)$-distributivity of $A$ ,

$0\neq\prod_{\eta<8}\sum_{\lambda<\gamma}a_{r\lambda}\subset\prod_{\xi<\alpha}\prod_{\eta<\beta_{\xi}}\sum_{\lambda<\gamma}a_{r\lambda}=\prod_{\xi<\alpha}\sum_{fr\gamma^{\beta_{\xi}}}\prod_{\eta<\beta_{\xi}}a_{r_{l}f(\eta)}$

$=\prod_{\xi<\alpha}\sum_{f\epsilon\gamma^{\beta_{\xi}}}b_{\xi}(F_{\xi}(f))=\prod_{\xi<\alpha}\Sigma D_{\xi}$ ,

so that by (4) there is a $g\epsilon\rho^{a}$ such that

(5) $\prod_{\xi<a}b_{\xi,g(\xi)}\neq 0$

If for some $\rho_{\xi}\leqq g\langle\xi$ ) theu $b_{\xi,g(\xi)}=0$ . Thus $g(\xi)<\rho_{\xi}$ for every $\xi<\alpha$ . By the definition
of $F_{\xi}$ we have for each $\xi<\alpha,$ $g(\xi)=F_{\xi}(f)$ for some $f\epsilon\gamma^{\beta_{\xi}}$ . Since $g$ is at this time
fixed, this $f$ depend only upon $\xi$ . Accordingly, we denote it $f_{\xi}$ , that is, $g(\xi)=F_{\xi}(f_{\xi})$ .
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Now by (2), we can define an $h\epsilon\gamma^{\beta}$ by the condition that for each $\eta<\beta,$ $h(\eta)=f_{\xi}(\eta)$

where $\xi$ is so chosen that $\beta_{\xi}$ is the least member of $\{\beta_{\xi} : \eta<\beta_{\xi}<\beta, \xi<\alpha\}$ . By the

definition of $b_{\xi}$ for each $\eta<\beta$ , it follows that

$a_{\tau,,.h(\eta)}=a_{r_{r}f_{\xi^{(}}\eta)}\supset\prod_{\lambda<\beta_{\xi}}a_{\lambda,f_{\xi}(\lambda)}=b_{\xi}(F_{\xi}(f_{\xi}))=b_{\xi,F_{\xi}f(\xi)}$

$=b_{\xi,g(\xi)}\subset\prod_{\xi<\alpha}b_{\xi,g(\xi)}$

thus by (5) we obtain

$\prod_{\eta<\beta}a_{rh(\eta)}\supset\prod_{\xi<\alpha}b_{\xi,g(\xi)}\neq 0$
,

which means that $A$ is $(\beta, \gamma)$-distributive. $\gamma$ being an arbitrary cardinal number, $A$ is
$(\beta, \infty)$-distributive. The proof is complete.

The following two theorems and corollary are due to R. S. Pierce [1].

Theorem 3. Let $A$ be an a-complete, a-atmoic Boolean algebra. Then $A$ has

the following prOperty:

(P) if $\{A_{\text{\’{e}}} : \xi<\nu\}$ is a family of coverings of $A$ such that $\nu\leqq\alpha+and\nu$ is cardinal and

if $b\neq 0$ in $A$ , then there is a choice function $\varphi$ on $\nu$ such that $\varphi(\xi)\epsilon A_{\xi}$ with property

that if $\tau_{-,-}^{-W}(\nu)$ and $\overline{\overline{\prime I^{\backslash }}}<\alpha+$ , Then

$b\cdot\prod_{\xi_{\epsilon}T}\varphi(\xi)\neq 0$

Theorem 4. $SuPPose$ that $A$ is an $a-comPlete$ Boolean algebra which satisfies
the Property $(P)$ of Theorem 3. Then $A$ is $(\alpha, \infty)$-distributive.

Proof. Let $\gamma$ be an arbitrary cardinal number and let $\{a_{\xi,\eta} ; \xi<\alpha, \eta<\gamma\}$ be a

subset of $A$ such that $\Sigma a_{\xi,\eta}=1$ for every $\xi<\alpha$ . Let $A_{\xi}=\{a_{\xi,\eta} : \eta<\gamma\}$ . Then $A_{\xi}$

becomes a covering of $ A<\gamma$ Since $A$ satisfies the property (P), for any non-zero element
$a$ , there is a function $f\epsilon\gamma^{a}$ such that $a\cdot\prod_{\xi<\alpha}a_{\xi,f(\xi)}\neq 0$ . This means that $A$ is $(\alpha, \gamma)-$

distributive [See [4] 19.2 $(d_{2})$] . $\gamma$ being arbitrary, it follows that $A$ is $(\alpha, \infty)-distributive$ .
Corollary. Every $\alpha-complete$ , a-atomic Boolean algebm is $(\alpha, \infty)$-distributive.

If $A$ is a Boolean algebra, then $A^{\beta}$ will denote the minimal $\beta$-extension of $A$ ,

$i.e$ . $A^{\beta}$ is an $\beta$-complete Boolean algebra, $A$ is dense in $A^{\beta}$ and $\beta$-generates $A^{\beta}$ .
Theorem 5. Suppose that $\beta$ is a cardinal number and that $A$ is a Boolean

algebra which has the M.-Property for every cardinal $ a<\beta$ . Let $A^{\beta}$ be a minimal

$\vdash$’-extension of $A$ , then $A^{\beta}$ is $(\alpha, \infty)$-distributive for every cardinal $\alpha<\beta$ .
Proof. Since $A$ is dense subalgebra of $A^{\beta},$ $A^{\beta}$ is a-complete, a-atomic for every

cardinal $ a<\beta$ . By $co$rollary, $A^{\beta}$ is (cr, $\infty$ )-distributive for every cardinal $\alpha<\beta$ .

Theorem 6. SuPpose that $\beta$ is a singular cardinal number and that $A$ is
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a Boolean algebm which has the M.-property for every cardinal $ a<\beta$ . Then $A$ is
$(\beta, \infty)$-distrib $u$tive.

Proof. Let $A^{\beta}$ be a minimal $\beta$-extension of $A$ . Then, by $Th\infty rem5,$ $A^{\beta}$ is
$(\alpha, \infty)$-distributive for each cardinal $\alpha<\beta$ . Since $\beta$ is a singular cardinal, by Theoren 2,
$A^{\beta}$ is $(\beta, \infty)$-distributive. Moreover, $A$ is a regular subalgebra of $A^{\beta}$ . Consequently, $A$

is $(\beta, \infty)$-distributive.

5. Representability

Notice that if $\beta$ is an infinite regular cardinal number and if $T\subseteqq W(\beta)$ and
$T<\beta=$ , then there exists an ordinal number $\lambda<\beta$ such that $\tau<\lambda$ for every $\tau\epsilon T$.

In fact, let us assume that there is no such an $\lambda$ . Then there is at least one
$\tau\epsilon T$ for arbitrary $\lambda<\beta$ such that $\lambda\leqq\tau$ . Since $\tau<\beta$ and every infinite cardinal number
has no immediate predecessor, there exists an ordinal $\mu$ with $\tau<\mu<\beta$ . By assumption,
there is an ordinal $\nu\epsilon T$ with $\mu\leqq\nu<\beta$ . Thus we can find an ordinal number $\nu\epsilon T$ for
arbitrary $\lambda<\beta$ such $\lambda<\nu$ . This means that $W(\beta)=\bigcup_{\xi\epsilon T}W(\xi)$ , what is the same, $\beta=\bigcup_{\xi_{\epsilon}T}\xi$ .
It is clear that $\beta>\xi$ for each $\xi\epsilon T$. Therefore, it follows that $\beta>\xi=$ for each $\xi\epsilon T$. If
a cardinal number $\lambda$ has the property that $\lambda\geqq\overline{\xi}-$ for each $\xi\epsilon T$, then $\lambda\geqq\xi$ for each $\xi\epsilon T$.
Since $\beta$ is the least upper bound of $\{\xi;\xi\epsilon T\}$ , we have $\lambda\geqq\beta$ , that is, $\beta=\bigcup_{\xi_{f}T}\overline{\overline{\xi}}$. This

means that $\beta$ is singular. This leads to contradiction.

Theorem 7. Suppose that $\beta$ is an infinte regular cardinal number and that
$A$ is a Boolean algebra which has the M.-property for every cardinal $ a<\beta$ . Let $A^{\beta}$

be a minimal $\beta$-extension of $A$ , then $A^{\beta}$ has the following property:
$(P^{\prime})$ if $\{A_{\xi} ; \xi<\nu\}$ is a family of coverings of $A^{\beta}$ such that a cardinal $\nu\leqq\beta$ and if
$b\neq 0$ in $A^{\beta}$ , then there is a choice function $\varphi$ on $\nu$ such that $\varphi(\xi)\epsilon A_{\xi}$ with the
property that if $T\subseteqq W(\nu)$ and $T<\beta=$ , Then $b\cdot\prod_{\xi\epsilon T}\varphi(\xi)\neq 0$ .

Proof. We can assume that $\nu=_{r}\rho$ . By transfinite inductive definition we can
define functions $f:\beta\rightarrow A$ and $\varphi$ on $\beta$ with $\varphi(\xi)\epsilon A_{\xi}$ having the following properties

(i) $\xi<\eta<\beta$ implies $0\neq f(\dot{\eta})\subset f(\xi)\subset b$ .
(ii) $f(\xi)\subset\varphi(\xi)$

These are constructed in the following way. Assume that $f(\xi)$ has been
defined for every $\xi<\tau$ , where $\tau<\beta$ . By the M.-property, $c=\prod_{\xi<r}f(\xi)\neq 0$ . We
assume that $c=1$ , when $\tau=0$ . Then we can find a $\varphi(0)\epsilon A_{0}$ such that $\varphi(0)\cdot b\neq 0$ .
Such an element $\varphi(0)$ exists, because $b=b\cdot 1=b\cdot\Sigma A_{0}=\Sigma\{b\cdot a:a\epsilon A_{0}\}$ . Since $A$ is
a dense subalgebra of $A^{\beta}$ , we can choose arbitrarily a $f(O)\epsilon A$ satisfying $0\neq f(0)\subset\varphi(0)\cdot b$ .
Suppose that $\varphi(\xi),f(\xi)$ have been defined for every $\xi<\tau$ , where $ 0<\tau<\beta$ . Then we
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have $c\subset b$ . $Ch\infty se\varphi(\tau)\epsilon A_{\tau}$ so that $\varphi(\tau)\cdot c\neq 0$ . As before, some element of A. will
satisfy this requirement. Using the fact that $A$ is dense, it is possible to find $f(\tau)’\epsilon A_{\tau}$

such that $0\neq f(\tau)\subset\varphi(\tau)\cdot c$. From this construction, it is evident that $f(\tau)\subset\varphi(\tau)$ . If
$\xi<\tau$ , then we obtain $c=\Pi f(\rho)\subset f(\xi)$ . Accoridingly, it follows that $ f(\xi)\supset c\supset c\cdot\varphi(\tau)\supset$

$f(\tau)$ , that is, $f(\tau)\subset f(\xi)$ . $Thus<$ , the $nditions(i)$ and (ii) are fulfilled.

Now if $T\subseteqq W(\beta)$ and $\overline{\overline{T}}<\beta$ , then since $\beta$ is infinite regular cardinal number,

there exists $\lambda<\beta$ such that $\xi<\lambda$ for every $\xi\epsilon T$.
$b\cdot\prod_{\xi\epsilon T}\varphi(\xi)\supset b\cdot\prod_{\xi<\lambda}\varphi(\xi)\supset b\cdot\prod_{\xi<\lambda}f(\xi)$

\supset \Gamma l $f(\xi)\supset f(\lambda)\neq 0$

\’e<\lambda

what is the same, $b\cdot\prod_{\xi\epsilon T}\varphi(\xi)\neq 0$ .

A $B\infty lean$ algebra $A$ is said to have the property $(P_{\beta})$ where $\beta$ is an infinite
cardinal, if the following is satisfied: if $\{a_{\xi\eta} ; \xi, \eta<\beta\}$ is a subset of $A$ such that ail

the joins $\Sigma a_{6,\eta}$ for $\xi<\beta$ exist and their meet $\Pi\Sigma a_{\xi,\eta}$ exists and is not $0$ , then

there is $afu\eta<\beta$nction $f\epsilon\beta^{\beta}$ such that $\prod_{\xi<U}a_{\xi f(\xi)}$ is $f_{a}\iota_{sefor}^{\xi<\beta\eta<\beta}$ every $\nu<\beta;i.e$ . either $\prod_{\xi<,J}a_{\xi,f(\xi)}$

does not exist or else is not zero.

Theorem 8. If an $\beta$-complete Boolean algebm $A$ satisfies the following
property:

if $\{A_{\xi} ; \xi<\beta\}$ is a family of coverings of $A$ such that if $b\neq 0$ in $A$ , then

there is a choice function $\varphi$ on $\beta$ such $\varphi(\xi)\epsilon A_{\xi}$ with the property that if $T\subseteqq W(\beta)$

and $\overline{T^{-}}<\beta$ , then $b\cdot\Pi\varphi(\xi)\neq 0$ , then $A$ has the property $(P_{\beta})$ .

Proof. Suppose that $\{a_{\xi,\eta} : \xi, \eta<\beta\}$ is any subset of $A$ such that $\prod_{\xi<\beta}\sum_{\eta<\beta}a_{\xi\eta}=a\neq 0$ .
Let $a_{\xi,\beta}=\overline{a}$ for every $\xi<\beta$ and let $A_{\xi}=\{a_{\xi\eta}$ : $\eta<\beta+1_{J}^{1}$ . In this way every $A_{\xi}$ becomes

a covering of $A$ . Hence, by the property of $A$ , for this $a\neq 0$ in $A$ , there is a function
$f\epsilon(\beta+1)^{\beta}$ such that $a\cdot\prod_{\xi<\nu}a_{\xi f(\xi)}\neq 0$ for every $\nu<\beta$ . It is clear that $ f(\xi)\neq\beta$ for every
$\xi<\beta$ . Consequently, there exists a function $f\epsilon\beta^{\beta}$ such that $\prod_{\xi<\nu}a_{\xi,f(\xi)}\neq 0$ for every
$\nu<\beta$ . Hence it follows that $A$ has the property $(P_{f}.)$

A $B\infty lean$ algebra is said to be $\beta$-representable provided it is isomorphic to an
$\beta$-regular subalgebra of quotient algebra $F/I$ where $F$ is an $\beta$-field of sets and $I$ is
an $\beta$-ideal of $F$. Thus an $\beta$-complete Boolean algebra is $\beta$-representable if and only if
it is is isomorphic to a quotient algebra $F/I$ where $F$ is an $\beta$-field of sets, and $I$ is an
$\beta$-ideal of $F$.

Actually, in order to demonstrate that a Boolean algebra $A$ is $\beta$-representable,
it is sufficient to show that whenever $\{a_{\xi\eta} ; \xi, \eta<\beta\}$ is any subset of $A$ such that all
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the joins $\Sigma a_{\xi,\eta}$ exist for $\xi<\beta$ and their meet $\Pi\Sigma a_{\xi,\eta}$ exists and is not $0$ , then
there is $an^{\eta<\beta}f\epsilon\beta^{\beta}$ such that $\prod_{\xi\epsilon T}a_{\xi,f(\xi)}\neq 0$ for $everyfinite\xi<\eta<\beta$ subset $T$ of $W(\beta)$ .

The following $threm$ was proved by E. C. Smith [5].

Theorem 9. Every $\beta$-comPlete Boolean algebm which has the Property $(P_{\beta})$

is $\beta-representable$.
Theorem 10. Suppose that $\beta$ is an infinite regular cardinal number and that

$A$ is a Boolean algebm which has the $M_{a}$-property for every cardinal $\alpha<\beta$ . Then
$A$ is $\beta-representable$.

Proof. Let $A^{\beta}$ be a minimal $\beta$-extension of $A$ , then by $Threm7,$ $A^{\beta}$ has
the property $(P^{\prime})$ . Therefore, by Theorem 8, : has property $(P_{\beta})$ . Accordingly, by
Theorem 9, $A^{\beta}$ is $\beta$ representable. $A$ is the regular subalgebra of $A^{\beta}$ , because $A$ is the
dense subalgebra of $A^{\beta}$ . Thus $A$ is $\beta$-representable.

Theorem 11. Suppose that $\beta$ is an arbitmry infinite cardinal number and
that $A$ is a Boolean algebm which has the $M_{\alpha}$-Property for every cardinal $\alpha<\beta$ .
Then $A$ is $\beta$-representable.

Proof. If $\beta$ is a regular cardinal number, then, by $Threm10$ , it follows
immediately that $A$ is $\beta$-representable.

Next, if $\beta$ is a singular cardinal number, then, by Theorem 6, it follows that
$A$ is $(\beta, \infty)-distributive$ . Hence, $A$ is $(\beta, \beta)$-distributive. Since every $(\beta, \beta)$-distributive
Boolean algebra is $\beta$-representable, $A$ is $\beta$-representable. The proof is complete.

$\sim\ldots,-\cdot\cdot\sqrt{}’’\cdot\sim\cdots,1,\iota,\ell,\iota^{\prime}-’\prime\prime\cdot$
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