ON BOOLEAN ALGEBRAS WHICH HAVE THE M_a-PROPERTY

By

Tôru Mori

(Received September 5, 1967)

1. Intoroduction

The general theory of α -atomic Boolean algebras has been developed by R.S. *Pierce* [1]. In this paper, I introduced the concept of the M_{α} -property in a Boolean algebra. That is, let α be an infinite cardinal number and let A be a Boolean algebra, then A is said to have the M_{α} -property provided if $P = \{a_{\xi} : \xi < \alpha\}$ is any subset of Asuch that every finite subset of P has non-zero meet, then then there is a non-zero element a in A satisfying $a \subset a_{\xi}$ for $\xi < \alpha$. The existence of such a Boolean algebra will be proved.

It is clear that if A is a Boolean algebra which has the M_a -property, then the minimal β -extension. A^{β} of A is α -atomic. Therefore, we can apply the results of R.S. Pierce for α -atomic Boolean algebra to A^{β} . E.C. Smith and A. Tarski has proved the theorem in their paper [2] such that if β is a singular, strong limit cardinal and A is an β -complete Boolean algebra which is (α, β) -distributive for every cardinal $\alpha < \beta$, then A is (β, β) -distributive. Moreover, I modified this theorem and applied it to a Boolean algebra which has the M_a -property for every cardinal $\alpha < \beta$, Thus I proved the following theorem.

Suppose that β is an arbitrary infinite cardinal number and that A is a Boolean algebra which has the M_{α} -property for every cardinal $\alpha < \beta$. Then A is β -representable.

2. Preliminaries

The set-theoretical operations are represented by rounded symbols: ϵ, \cup, \cap and \subseteq respectively denote membership, union, intersection and inclusion. If A and B are sets, B-A is the set of all elements of B which are not in A; the complement (in a fixed set) of A is designated A^c . The empty set is denoted by ϕ .

The following definitions and results concerning the ordinal numbers and the cardinal numbers are due to *Alexander Abian* [3].

A set β is called an ordinal number (or simply an ordinal) if β can be well ordered so that for element α of β the initial segment $I(\alpha)$ of β is equal to α , i.e., $I(\alpha) = \alpha$ for every $\alpha \epsilon \beta$. For every two ordinal numbers α and β , one and only one of the following three cases holds (i) $\alpha = \beta$ (ii) α is equal to an initial segment of β (iii) β is equal to an initial segment of α . We define $\alpha \leq \beta$ if α is equal to β or α is equal

to an initial segment of β . If $\alpha \leq \beta$ and $\alpha \neq \beta$, we say that α is less than β and as usual we denote $\alpha < \beta$. Every ordinal number β is equal to the set of all ordinals less than β . We denote this set $W(\beta)$. Let us call an ordinal β immediate successor of ordinal α if $\alpha < \beta$; and if an ordinal γ is such that $\alpha < \gamma$, then $\beta \leq \gamma$. Every ordinal number α has the immediate successor. The immediate successor of α is denoted by $\alpha+1$. An ordinal number α is said to be immediate predecessor of an ordinal β if $\alpha < \beta$; and if an ordinal γ is such that $\gamma < \beta$, then $\gamma \leq \alpha$.

Two sets A, B are called equipollent, in symbol $A \cong B$, if there exists a one-toone correspondence between them. An ordinal number α is called a cardinal number (or simply a cardinal), if for every ordinal number β , $\alpha \cong \beta$ implies $\alpha \leq \beta$. We say such a cardinal number an initial number. Every set A is equipollent to an unique cardinal number α . We denote $\overline{A} = \alpha$. Every infinite cardinal number has no immediate predecessor. We say that a cardinal number β is the immediate successor of a cardinal α if $\alpha < \beta$ and, if for no cardinal γ is it the case that $\alpha < \gamma < \beta$. Every cardinal number α has the unique immediate successor. It is denoted by α^+ .

If A and B are non-empty sets, then A^B will denote the set of all functions of B into A. For every two cardinal numbers α and β the β -th power of α , denoted by $\alpha^{(\beta)}$, is defined as $\alpha^{(\beta)} = \overline{\alpha^{\beta}}$.

For every X of ordinal (cardinal) numbers, the union $\bigcup X$ of X is an ordinal (cardinal) number. Moreover, $\bigcup X$ is the least upper bound of X. A cardinal number β is called singular if it can be represented as the least upper bound of a set S of cardinals, each of S is less than β and $\overline{S} < \beta$. All other cardinals are called regular.

For every indexed family $\{\alpha_i : i \in I\}$ of cardinal numbers, the sum of all cardinal numbers belonging to this family is denoted by $\sum_{i \in I} * \alpha_i$ and is defined as: $\bigcup_{i \in I} (\alpha_i \times \{i\})$. Accordingly, $\sum_{i \in I} * \alpha_i = \bigcup_{i \in I} (\alpha_i \times \{i\})$ where $\alpha_i \times \{i\}$ is the Cartesian product of α_i and $\{i\}$. For every two families $\{\alpha_i : i \in I\}$ and $\{\beta_i : i \in I\}$ of cardinal numbers α_i , and $\beta_i, \alpha_i \leq \beta_i$ for every $i \in I$ implies $\sum_{i \in I} * \alpha_i \leq \sum_{i \in I} * \beta_i$. For an indexed family $\{\alpha_i : i \in I\}$ of cardinal numbers, if $\overline{I} = \beta$, and $\alpha_i = \alpha$ for every $i \in I$, then we have $\sum_{i \in I} * \alpha_i = \alpha\beta$, where $\alpha\beta = \overline{u \times v}$ with $\alpha \cong u$ and $\beta \cong v$. If $\{A_{\xi} : \xi < \alpha\}$ is any family of sets, pairwise disjoint or not, then $\bigcup_{\xi < \alpha} \overline{A_\xi} \leq \sum_{\xi < \alpha} \overline{A_\xi}$. Finally, for every non-zero cardinal α and every infinite cardinal number $\beta, \alpha \leq \beta$ implies $\alpha\beta = \beta$.

We shall denote the fundamental Boolean operations, join, meet and inclusion by+, \cdot and \subset . The generalizations of join and meet denoted by Σ and Π , respectively. If a is an element of a Boolean algebra A, \bar{a} denotes the complement of a in A. The null and universal elements of a Boolean algebra will be denoted by 0 and 1, respectively, as well as the ordinary numbers zero and one. A Boolean algebra A is

 $\mathbf{2}$

called α -complete if and only if whenever $B \subseteq A$ and $\overline{B} \leq \alpha$, ΣB (or Σb) exists in A.

By a field of sets we shall understand any non-empty class \tilde{F} of subsets of a fixed set X such that (i) if sets A, B are in F, then their union is in F. (ii) if a set A is in F, then its complement in the fixed set X is in F. Clearly, every field of sets is a Boolean algebra, the Boolean operations $+, \cdot, -$ being the set-theoretical union, intersection and complementation, respectively.

3. The existence of a Boolean algebra which has the M_{α} -property

A set **D** of elements of a Boolean algebra **A** is said to be dense (in **A**) if, for every non-zero element $a \in A$, there exists an element $b \in D$ such that $0 \neq b \subset a$.

Let α be an infinite cardinal number. A partially ordered set P will be called α -compact if P is closed under finite meets contains a zero element and satisfies the condition that $M \subseteq P, \overline{M} \leq \alpha$ and no finite subset of M has zero meet, then M has a non-zero lower bound in P. A Boolean algebra A will be called α -atomic if A contains a dense subset which is α -compact.

Definition. A Boolean algebra A is said to have the M_{α} -property if A itself is α -compact.

We shall show that the existence of a Boolean algebra which has the M_a -property.

Let Y be an infinite set with $\overline{Y} = \beta > \omega$ and **B** be the field (i. e. Boolean algebra) composed of all finite subsets of Y and of all cofinite subsets of Y. Let y be any point which does not belong to Y, and $X = Y \cup \{y\}$. The mapping

$$\varphi(A) = \begin{cases} A & \text{if } A \in \boldsymbol{B} \text{ is finite} \\ A \cup \{y\} & \text{if } A \in \boldsymbol{B} \text{ is cofinite} \end{cases}$$

is an isomorphism of \boldsymbol{B} onto a field \boldsymbol{F} of subsets of X.

Suppose that \mathcal{T} is the family which consists of all unions of members of F. Then \mathcal{T} is a topology in X and F is an open basis for X. Of course, every set $B \in F$ is open. It is also closed in this topology \mathcal{T} since X-B belongs to F. F being reduced, the space X is totally disconnected.

To prove that X is compact, we suppose that C is an open covering of X. We can assume that each set B in C belongs to F, because each set B in C is the union of members of F. Then there is at least one $B \in C$ such that $y \in B$. Hence there exists a cofinite set $A \in B$ such that $B = A \cup \{y\}$. Moreover B^c is finite. Therefore we can find a finite sequence $B_1, \dots, B_n \in C$ such that $X = B_1 \cup \dots \cup B_n$.

Now we shall prove that a set $B \subseteq X$ is open-closed, then $B \in F$. Indeed, B is the union of a family K of sets in F since B is open. Since B is a closed subset of the compact space X, there exists a finite sequence $B_1, \dots, B_n \in K \subseteq F$ such that

 $B=B_1\cup\dots\cup B_n$. Hence $B\in F$. Consequently, the field F consists of all open-closed subsets of X.

Since the Boolean algebra B is isomorphic to the field F of all open-closed subsets of the compact totally disconnected space X, X is the Stone space of B.

Theorem 1. The Boolean algebra **B** has the M_{α} -property for every cardinal $\alpha < \beta$ where $\omega \leq \alpha$.

Proof. To prove that **B** has the M_{α} -property, it suffices to show that for every subset $\mathbf{M} = \{A_{\xi} : \xi < \alpha\}$ of **B** which has the finite intersection property, there is non-zero element $A \in \mathbf{B}$ such that $A = A_{\xi}$ for every $\xi < \alpha$. Since $\{A_{\xi} : \xi < \alpha\}$ has the finite intersection property, the subset $\{\varphi(A_{\xi}) : \xi < \alpha\}$ of **F** has the same property. Moreover, X being compact, we obtain $\bigcap_{\xi < \alpha} \varphi(A_{\xi}) \neq \phi$.

Case I. If there is at least one finite set A_{ξ} in M, then there is a point $x \in X$ distinct from y such that $x \in \bigcap_{\xi < \alpha} \varphi(A_{\xi})$. This means that the singleton $\{x\} \subseteq \varphi(A_{\xi})$ for every $\xi < \alpha$. On the other hand, by the property of φ that $\varphi(\{x\}) = \{x\}, \varphi(\{x\}) \subseteq \varphi(A_{\xi})$ for every $\xi < \alpha$. Consequently, $\phi \neq \{x\} \subseteq A_{\xi}$ for every $\xi < \alpha$ and $\{x\} \in B$.

Case II. Let us assume that there is no finite set A_{ξ} in M. Suppose now that $\bigcap_{\xi < \alpha} \varphi(A_{\xi}) = \{y\}$. Then, by the de Morgan law, $\bigcup_{\xi < \alpha} \varphi(A_{\xi}) = Y$ where $A_{\xi}^{c} = Y - A_{\xi}$. Each A_{ξ}^{c} being finite set, $\bigcup_{\xi < \alpha} A_{\xi}^{c} = Y$. Hence we have $\beta = \overline{Y} \leq \sum_{\xi < \alpha} \overline{A}_{\xi}^{c} \leq \omega \cdot \alpha = \alpha < \beta$. This leads to a contradiction. Therefore $\bigcap_{\xi < \alpha} \varphi(A_{\xi})$ contains a point x of X distinct from y. By means of a similar argument, one can obtain the element $\{x\} \in B$ such that $\phi \neq \{x\} \subseteq A_{\xi}$ for every $\xi < \alpha$.

4. The distributivity

A Boolean algebra A is (α, β) -distributive if the following is satisfied: given any subset $\{a_{\xi,\eta}: \xi < \alpha, \eta < \beta\}$ of A such that all the joins $\sum_{\eta < \beta} a_{\xi,\eta}$ for $\xi < \alpha$, their meet $\prod_{\xi < \alpha} \sum_{\eta < \beta} a_{\xi,\eta}$ and all the meets $\prod_{\xi < \alpha} a_{\xi, f(\xi)}$ for $f \in \beta^{\alpha}$ exist, then the join $\sum_{f \in \beta^{\alpha}, \xi > \alpha} a_{\xi, f(\xi)}$ also exists and we have

$$\prod_{\xi < \alpha \eta < \beta} \sum_{a \eta < \beta} a_{\xi, \eta} = \sum_{f \in \beta \alpha} \prod_{\xi < \alpha} a_{\xi, f(\xi)}.$$

If a Boolean algebra A is (α, β) -distributive for every cardinal number β , we say that A is (α, ∞) -distributive.

Actually, in order to demonstrate that a Boolean algebra A is (α, β) -distributive, it is sufficient to show that if $\{a_{\xi,\eta}: \xi < \alpha, \eta < \beta\}$ is any subset of A such that all the joins $\sum_{\eta < \beta} a_{\xi,\eta}$ for $\xi < \alpha$ exist and their meet $\prod_{\xi < \alpha} \sum_{\eta < \beta} a_{\xi,\eta}$ exists and is not zero, then there is an $f \epsilon \beta^{\alpha}$ such that $\prod_{\xi < \alpha} a_{\xi,f(\xi)}$ is false; i. e. either $\prod_{\xi < \alpha} a_{\xi,f(\xi)}$ does not exist or is not zero.

4

Theorem 2. Suppose that β is a singular cardinal number and that **A** is an β -complete Boolean algebra which is (α, ∞) -distributive for every cardinal $\alpha < \beta$. Then **A** is (β, ∞) -distributive.

Proof. Let γ be an arbitrary cardinal number and $\{a_{\xi,\eta}: \xi < \beta, \eta < \gamma\}$ be any subset of A such that

(1)
$$\prod_{\xi \in \mathcal{S}} \sum_{\eta \in \mathcal{I}} a_{\xi, \eta} \neq 0$$

 β being singular, we can find a set $S = \{\beta_{\xi} : \xi < \alpha\}$ of cardinal numbers β_{ξ} such that $\beta_{\xi} < \beta$ for every $\xi < \alpha < \beta$ and $\beta = \bigcup_{\xi < \alpha} \beta_{\xi}$. Since β is the least upper bound of S and has no immediate predecessor,

(2) for any $\eta < \beta$ there is a ξ satisfying $\eta < \beta_{\xi} < \beta$.

Let

(

3)
$$D_{\xi} = \{x : x = \prod_{\tau \in \theta_{1}} a_{\tau, f(\tau)} \text{ and } f \in \gamma^{\beta_{\xi}} \} \text{ for } \xi < \alpha.$$

Moreover for each $\xi < \alpha$, let $\rho_{\xi} = \gamma^{(\beta_{\xi})}$, and find a bijective function F_{ξ} (or one-to-one onto map) on $\gamma^{\beta_{\xi}}$ onto ρ_{ξ} . For every $\xi < \alpha$ let b_{ξ} be a function ρ_{ξ} such that

$$b_{\xi}(F_{\xi})(f) = \prod_{\eta < \beta_{\xi}} a_{\eta}, f(\eta)$$

for each $f \in \gamma^{\beta_{\xi}}$. Let $b_{\xi}(\eta) = b_{\xi,\eta}$ for $\xi < \alpha$ and $\eta < \rho_{\xi}$.

Let $\rho = \bigcup_{\xi \leq \alpha} \rho_{\xi}$ and if $\rho_{\xi} < \rho$ for some $\xi < \alpha$, we define $b_{\xi, \eta} = 0$ for each $\rho_{\xi} \leq \eta < \rho$. Then, by the (α, ∞) -distributivity of A

$$(4) \qquad \prod_{\xi < \alpha} \Sigma \mathbf{D}_{\xi} = \prod_{\xi < \alpha} \sum_{f \in \gamma^{\beta} \xi} \{b_{\xi}(F_{\xi}(f))\} = \prod_{\xi < \alpha} \sum_{\eta < \rho_{\xi}} b_{\xi, \gamma}$$
$$= \prod_{\xi < \alpha} \sum_{\eta < \rho} b_{\xi, \eta} = \sum_{g \in \rho^{\alpha}} \prod_{\xi < \alpha} b_{\xi, g(\xi)}$$

Since fot each $\xi < \alpha$ we have

$$\prod_{<\beta_{\xi}}\sum_{\lambda<\tau}a_{\tau}, \lambda\supset \prod_{\eta<\beta}\sum_{\lambda<\tau}a_{\tau}, \lambda,$$

by (1), (4) and the (β_{ξ}, ∞) -distributivity of A,

$$0 \neq \prod_{\eta < \beta} \sum_{\lambda < \gamma} a_{\eta, \lambda} \subset \prod_{\xi < \alpha} \prod_{\eta < \beta_{\xi}} \sum_{\lambda < \gamma} a_{\eta, \lambda} = \prod_{\xi < \alpha} \sum_{f \in \gamma^{\beta_{\xi}}} \prod_{\eta < \beta_{\xi}} a_{\eta, f(\eta)}$$
$$= \prod_{\xi < \alpha} \sum_{f \in \gamma^{\beta_{\xi}}} b_{\xi} \left(F_{\xi}(f) \right) = \prod_{\xi < \alpha} \sum_{D_{\xi}, \xi < \eta} D_{\xi},$$

so that by (4) there is a $g \epsilon \rho^{\alpha}$ such that

 $(5) \qquad \qquad \prod_{\xi \leq \alpha} b_{\xi, g(\xi)} \neq 0$

If for some $\rho_{\xi} \leq g(\xi)$ then $b_{\xi, g(\xi)} = 0$. Thus $g(\xi) < \rho_{\xi}$ for every $\xi < \alpha$. By the definition of F_{ξ} we have for each $\xi < \alpha$, $g(\xi) = F_{\xi}(f)$ for some $f \in \gamma^{\beta_{\xi}}$. Since g is at this time fixed, this f depend only upon ξ . Accordingly, we denote it f_{ξ} , that is, $g(\xi) = F_{\xi}(f_{\xi})$.

Now by (2), we can define an $h \in \gamma^{\beta}$ by the condition that for each $\eta < \beta$, $h(\eta) = f_{\xi}(\eta)$ where ξ is so chosen that β_{ξ} is the least member of $\{\beta_{\xi}: \eta < \beta_{\xi} < \beta, \xi < \alpha\}$. By the definition of b_{ξ} for each $\eta < \beta$, it follows that

$$a_{\eta, h(\eta)} = a_{\eta, f_{\xi}(\eta)} \supset \prod_{\lambda < \beta_{\xi}} a_{\lambda, f_{\xi}(\lambda)} = b_{\xi} (F_{\xi}(f_{\xi})) = b_{\xi, F_{\xi}, f(\xi)}$$
$$= b_{\xi, g(\xi)} \subset \prod_{\beta < \eta} b_{\xi, g(\xi)}$$

thus by (5) we obtain

$$\prod_{\eta < \beta} a_{\eta}, \, {}_{h(\eta)} \supset \prod_{\xi < \alpha} b_{\xi}, \, {}_{g(\xi)} \neq 0,$$

which means that A is (β, γ) -distributive. γ being an arbitrary cardinal number, A is (β, ∞) -distributive. The proof is complete.

The following two theorems and corollary are due to R.S. Pierce [1].

Theorem 3. Let A be an α -complete, α -atmoic Boolean algebra. Then A has the following property:

(P) if $\{A_{\xi}: \xi < \nu\}$ is a family of coverings of A such that $\nu \leq \alpha^+$ and ν is cardinal and if $b \neq 0$ in A, then there is a choice function φ on ν such that $\varphi(\xi) \in A_{\xi}$ with property that if $T \subseteq W(\nu)$ and $\overline{T} < \alpha^+$, Then

$$b \cdot \prod_{\xi \in T} \varphi(\xi) \neq 0$$

Theorem 4. Suppose that A is an α -complete Boolean algebra which satisfies the property (P) of Theorem 3. Then A is (α, ∞) -distributive.

Proof. Let γ be an arbitrary cardinal number and let $\{a_{\xi,\eta}: \xi < \alpha, \eta < \gamma\}$ be a subset of A such that $\sum_{\eta < \gamma} a_{\xi,\eta} = 1$ for every $\xi < \alpha$. Let $A_{\xi} = \{a_{\xi,\eta}: \eta < \gamma\}$. Then A_{ξ} becomes a covering of A. Since A satisfies the property (P), for any non-zero element a, there is a function $f \in \gamma^{\alpha}$ such that $a \cdot \prod_{\xi < \alpha} a_{\xi, \tau}(\xi) \neq 0$. This means that A is (α, γ) -distributive [See [4] 19.2 (d_2)]. γ being arbitrary, it follows that A is (α, ∞) -distributive.

Corollary. Every α -complete, α -atomic Boolean algebra is (α, ∞) -distributive.

If A is a Boolean algebra, then A^{β} will denote the minimal β -extension of A, i.e. A^{β} is an β -complete Boolean algebra, A is dense in A^{β} and β -generates A^{β} .

Theorem 5. Suppose that β is a cardinal number and that A is a Boolean algebra which has the M_{α} -property for every cardinal $\alpha < \beta$. Let A^{β} be a minimal β -extension of A, then A^{β} is (α, ∞) -distributive for every cardinal $\alpha < \beta$.

Proof. Since A is dense subalgebra of A^{β} , A^{β} is α -complete, α -atomic for every cardinal $\alpha < \beta$. By corollary, A^{β} is (α, ∞) -distributive for every cardinal $\alpha < \beta$.

Theorem 6. Suppose that β is a singular cardinal number and that A is

a Boolean algebra which has the M_{α} -property for every cardinal $\alpha < \beta$. Then A is (β, ∞) -distributive.

Proof. Let A^{β} be a minimal β -extension of A. Then, by Theorem 5, A^{β} is (α, ∞) -distributive for each cardinal $\alpha < \beta$. Since β is a singular cardinal, by Theorem 2, A^{β} is (β, ∞) -distributive. Moreover, A is a regular subalgebra of A^{β} . Consequently, A is (β, ∞) -distributive.

5. Representability

Notice that if β is an infinite regular cardinal number and if $T \subseteq W(\beta)$ and $\overline{T} < \beta$, then there exists an ordinal number $\lambda < \beta$ such that $\tau < \lambda$ for every $\tau \in T$.

In fact, let us assume that there is no such an λ . Then there is at least one $\tau \epsilon T$ for arbitrary $\lambda < \beta$ such that $\lambda \leq \tau$. Since $\tau < \beta$ and every infinite cardinal number has no immediate predecessor, there exists an ordinal μ with $\tau < \mu < \beta$. By assumption, there is an ordinal $\nu \epsilon T$ with $\mu \leq \nu < \beta$. Thus we can find an ordinal number $\nu \epsilon T$ for arbitrary $\lambda < \beta$ such $\lambda < \nu$. This means that $W(\beta) = \bigcup_{\xi \in T} W(\xi)$, what is the same, $\beta = \bigcup_{\xi \in T} \xi$. It is clear that $\beta > \xi$ for each $\xi \epsilon T$. Therefore, it follows that $\beta > \overline{\xi}$ for each $\xi \epsilon T$. If a cardinal number λ has the property that $\lambda \geq \overline{\xi}$ for each $\xi \epsilon T$, then $\lambda \geq \xi$ for each $\xi \epsilon T$. Since β is the least upper bound of $\{\xi : \xi \epsilon T\}$, we have $\lambda \geq \beta$, that is, $\beta = \bigcup_{\xi \in T} \overline{\xi}$. This means that β is singular. This leads to contradiction.

Theorem 7. Suppose that β is an infinite regular cardinal number and that **A** is a Boolean algebra which has the M_{α} -property for every cardinal $\alpha < \beta$. Let A^{β} be a minimal β -extension of **A**, then A^{β} has the following property:

(P') if $\{A_{\xi}: \xi < \nu\}$ is a family of coverings of A^{β} such that a cardinal $\nu \leq \beta$ and if $b \neq 0$ in A^{β} , then there is a choice function φ on ν such that $\varphi(\xi) \in A_{\xi}$ with the property that if $T \subseteq W(\nu)$ and $\overline{T} < \beta$, Then $b \cdot \prod_{\xi \in T} \varphi(\xi) \neq 0$.

Proof. We can assume that $\nu = \hat{\rho}$. By transfinite inductive definition we can define functions $f: \beta \rightarrow A$ and φ on β with $\varphi(\xi) \in A_{\xi}$ having the following properties

(i) $\xi < \eta < \beta$ implies $0 \neq f(\eta) \subset f(\xi) \subset b$.

(ii) $f(\xi) \subset \varphi(\hat{\varsigma})$

These are constructed in the following way. Assume that $f(\hat{z})$ has been defined for every $\xi < \tau$, where $\tau < \beta$. By the M_a -property, $c = \prod_{\xi < \tau} f(\xi) \neq 0$. We assume that c=1, when $\tau=0$. Then we can find a $\varphi(0) \epsilon A_0$ such that $\varphi(0) \cdot b \neq 0$. Such an element $\varphi(0)$ exists, because $b=b \cdot 1=b \cdot \Sigma A_0=\Sigma \{b \cdot a : a \epsilon A_0\}$. Since A is a dense subalgebra of A^{β} , we can choose arbitrarily a $f(0) \epsilon A$ satisfying $0 \neq f(0) \subset \varphi(0) \cdot b$. Suppose that $\varphi(\hat{z}), f(\hat{z})$ have been defined for every $\xi < \tau$, where $0 < \tau < \beta$. Then we

have $c \subset b$. Choose $\varphi(\tau) \in \mathbf{A}_{\tau}$ so that $\varphi(\tau) \cdot c \neq 0$. As before, some element of \mathbf{A}_{τ} will satisfy this requirement. Using the fact that \mathbf{A} is dense, it is possible to find $f(\tau) \in \mathbf{A}_{\tau}$ such that $0 \neq f(\tau) \subset \varphi(\tau) \cdot c$. From this construction, it is evident that $f(\tau) \subset \varphi(\tau)$. If $\xi < \tau$, then we obtain $c = \prod_{\substack{\rho < \tau \\ \rho < \tau}} f(\rho) \subset f(\xi)$. Accordingly, it follows that $f(\xi) \supset c \supset c \cdot \varphi(\tau) \supset f(\tau)$, that is, $f(\tau) \subset f(\xi)$. Thus, the conditions (i) and (ii) are fulfilled.

Now if $T \subseteq W(\beta)$ and $\overline{T} < \beta$, then since β is infinite regular cardinal number, there exists $\lambda < \beta$ such that $\xi < \lambda$ for every $\xi \in T$.

$$b \cdot \prod_{\xi \in T} \varphi(\xi) \supset b \cdot \prod_{\xi < \lambda} \varphi(\xi) \supset b \cdot \prod_{\xi < \lambda} f(\xi)$$
$$\supset \prod_{\xi < \lambda} f(\xi) \supset f(\lambda) \neq 0,$$

what is the same, $b \cdot \prod_{\xi \in T} \varphi(\xi) \neq 0$.

A Boolean algebra A is said to have the property (P_{β}) where β is an infinite cardinal, if the following is satisfied: if $\{a_{\xi,\eta}:\xi,\eta<\beta\}$ is a subset of A such that all the joins $\sum_{\eta<\beta} a_{\xi,\eta}$ for $\xi<\beta$ exist and their meet $\prod_{\xi<\beta} \sum_{\eta<\beta} a_{\xi,\eta}$ exists and is not 0, then there is a function $f \in \beta^{\beta}$ such that $\prod_{\xi<\eta} a_{\xi,\gamma}(\xi)$ is false for every $\nu<\beta$; i. e. either $\prod_{\xi<\eta} a_{\xi,\gamma}(\xi)$ does not exist or else is not zero.

Theorem 8. If an β -complete Boolean algebra A satisfies the following property:

if $\{A_{\xi}: \xi < \beta\}$ is a family of coverings of A such that if $b \neq 0$ in A, then there is a choice function φ on β such $\varphi(\xi) \in A_{\xi}$ with the property that if $T \subseteq W(\beta)$ and $\overline{T} < \beta$, then $b \cdot \Pi \varphi(\xi) \neq 0$, then A has the property (P_{β}) .

Proof. Suppose that $\{a_{\xi,\eta}:\xi,\eta<\beta\}$ is any subset of A such that $\prod_{\xi<\beta} \sum_{\eta<\beta} a_{\xi,\eta}=a \neq 0$. Let $a_{\xi,\beta}=\bar{a}$ for every $\xi<\beta$ and let $A_{\xi}=\{a_{\xi,\eta}:\eta<\beta+1\}$. In this way every A_{ξ} becomes a covering of A. Hence, by the property of A, for this $a\neq 0$ in A, there is a function $f\epsilon \ (\beta+1)^{\beta}$ such that $a \cdot \prod_{\xi<\nu} a_{\xi,f(\xi)} \neq 0$ for every $\nu<\beta$. It is clear that $f(\xi) \neq \beta$ for every $\xi<\beta$. Consequently, there exists a function $f\epsilon \ \beta^{\beta}$ such that $\prod_{\xi<\nu} a_{\xi,f(\xi)} \neq 0$ for every $\nu<\beta$. Hence it follows that A has the property (P_{ξ}) .

A Boolean algebra is said to be β -representable provided it is isomorphic to an β -regular subalgebra of quotient algebra F/I where F is an β -field of sets and I is an β -ideal of F. Thus an β -complete Boolean algebra is β -representable if and only if it is is isomorphic to a quotient algebra F/I where F is an β -field of sets, and I is an β -ideal of F.

Actually, in order to demonstrate that a Boolean algebra A is β -representable, it is sufficient to show that whenever $\{a_{\xi,\eta}: \xi, \eta < \beta\}$ is any subset of A such that all the joins $\sum_{\eta < \beta} a_{\xi, \eta}$ exist for $\xi < \beta$ and their meet $\prod_{\substack{\xi < \beta \\ \xi < \beta}} \sum_{\eta < \beta} a_{\xi, \eta}$ exists and is not 0, then there is an $f \epsilon \beta^{\beta}$ such that $\prod_{\substack{\xi \in T}} a_{\xi, f(\xi)} \neq 0$ for every finite subset T of $W(\beta)$.

The following theorem was proved by E.C. Smith [5].

Theorem 9. Every β -complete Boolean algebra which has the property (P_{β}) is β -representable.

Theorem 10. Suppose that β is an infinite regular cardinal number and that **A** is a Boolean algebra which has the M_{α} -property for every cardinal $\alpha < \beta$. Then **A** is β -representable.

Proof. Let A^{β} be a minimal β -extension of A, then by Theorem 7, A^{β} has the property (P'). Therefore, by Theorem 8, A^{β} has property (P_{β}) . Accordingly, by Theorem 9, A^{β} is β representable. A is the regular subalgebra of A^{β} , because A is the dense subalgebra of A^{β} . Thus A is β -representable.

Theorem 11. Suppose that β is an arbitrary infinite cardinal number and that A is a Boolean algebra which has the M_{α} -property for every cardinal $\alpha < \beta$. Then A is β -representable.

Proof. If β is a regular cardinal number, then, by Theorem 10, it follows immediately that A is β -representable.

Next, if β is a singular cardinal number, then, by Theorem 6, it follows that A is (β, ∞) -distributive. Hence, A is (β, β) -distributive. Since every (β, β) -distributive Boolean algebra is β -representable, A is β -representable. The proof is complete.

Bibliography

المراجع المراجع والمراجع والمراجع والمراجع والمحار والمحاص والمحاص والمراجع والمحاص وال

- [1] R. S. Pierce, *A generalization of atomic Boolean algebras*, Pacific. Jour. Math. vol. 9 (1959) pp. 175–182.
- [2] E. C. Smith, Jr. and A. Tarski, Higher degrees of distributivity and completeness in Boolean algebras, Trans. Amer. Math. Soc. vol. 84 (1957) pp. 230-257.
- [3] A. Abian, Theory of Sets and Transfinite Arithmetic. W. B. Saunders Company. 1965.
- [4] R. Sikorski, Boolean algebras. Beriin-Göttingen-Heidelberg, 1964.
- [5] E. C. Smith, Jr., *A distributivity condition for Boolean algebras*, Ann. of Math. vol. 64 (1956) pp. 551–561.

GENERAL EDUCATION DEPARTMENT, SAGA UNIVERSITY, SAGA.