ON BOOLEAN ALGEBRAS WHICH HAVE THE M_{α}-PROPERTY

By

Tôru Mori

(Received September 5, 1967)

1. Intoroduction

The general theory of α-atomic Boolean algebras has been developed by R.S. Pierce [1]. In this paper, I introduced the concept of the M_{a}-property in a Boolean algebra. That is, let α be an infinite cardinal number and let \boldsymbol{A} be a Boolean algebra, then \boldsymbol{A} is said to have the M_{a}-property provided if $\boldsymbol{P}=\left\{a_{\xi}: \xi<\alpha\right\}$ is any subset of \boldsymbol{A} such that every finite subset of \boldsymbol{P} has non-zero meet, then then there is a non-zero element a in \boldsymbol{A} satisfying $a \subset a_{\xi}$ for $\xi<\alpha$. The existence of such a Boolean algebra will be proved.

It is clear that if \boldsymbol{A} is a Boolean algebra which has the M_{a}-property, then the minimal β-extension. \boldsymbol{A}^{β} of \boldsymbol{A} is α-atomic. Therefore, we can apply the results of R.S. Pierce for a-atomic Boolean algebra to \boldsymbol{A}^{β}. E.C. Smith and A. Tarski has proved the theorem in their paper [2] such that if β is a singular, strong limit cardinal and \boldsymbol{A} is an β-complete Boolean algebra which is (α, β)-distributive for every cardinal $\alpha<\beta$, then \boldsymbol{A} is (β, β)-distributive. Moreover, I modified this theorem and applied it to a Boolean algebra which has the M_{a}-property for every cardinal $\alpha<\beta$, Thus I proved the following theorem.

Suppose that β is an arbitrary infinite cardinal number and that \boldsymbol{A} is a Boolean algebra which has the M_{a}-property for every cardinal $\alpha<\beta$. Then \boldsymbol{A} is β-representable.

2. Preliminaries

The set-theoretical operations are represented by rounded symbols: c, U, \cap and \subseteq respectively denote membership, union, intersection and inclusion. If A and B are sets, $B-A$ is the set of all elements of B which are not in A; the complement (in a fixed set) of A is designated A^{c}. The empty set is denoted by ϕ.

The following definitions and results concerning the ordinal numbers and the cardinal numbers are due to Alexander Abian [3].

A set β is called an ordinal nnmber (or simply an ordinal) if β can be well ordered so that for element α of β the initial segment $I(\alpha)$ of β is equal to α, i. e., $I(\alpha)=\alpha$ for every $\alpha \epsilon \beta$. For every two ordinal numbers α and β, one and only one of the following three cases holds (i) $\alpha=\beta$ (ii) α is equal to an initial segment of β (iii) β is equal to an initial segment of α. We define $\alpha \leqq \beta$ if α is equal to β or α is equal
to an initial segment of β. If $\alpha \leqq \beta$ and $\alpha \neq \beta$, we say that α is less than β and as usual we denote $\alpha<\beta$. Every ordinal number β is equal to the set of all ordinals less than β. We denote this set $W(\beta)$. Let us call an ordinal β immediate successor of ordinal α if $\alpha<\beta$; and if an ordinal γ is such that $\alpha<\gamma$, then $\beta \leqq \gamma$. Every ordinal number α has the immediate successor. The immediate successor of α is denoted by $\alpha+1$. An ordinal number α is said to be immediate predecessor of an ordinal β if $\alpha<\beta$; and if an ordinal γ is such that $\gamma<\beta$, then $\gamma \leqq \alpha$.

Two sets A, B are called equipollent, in symbol $A \cong B$, if there exists a one-toone correspondence between them. An ordinal number α is called a cardinal number (or simply a cardinal), if for every ordinal number $\beta, \alpha \cong \beta$ implies $\alpha \leqq \beta$. We say such a cardinal number an initial number. Every set A is equipollent to an unique cardinal number α. We denote $\bar{A}=\alpha$. Every infinite cardinal number has no immediate predecessor. We say that a cardinal number β is the immediate successor of a cardinal α if $\alpha<\beta$ and, if for no cardinal γ is it the case that $\alpha<\gamma<\beta$. Every cardinal number α has the unique immediate successor. It is denoted by α^{+}.

If A and B are non-empty sets, then A^{B} will denote the set of all functions of B into A. For every two cardinal numbers α and β the β-th power of α, denoted by $\alpha^{(\beta)}$, is defined as $\alpha^{(\beta)}=\overline{\overline{\alpha^{\beta}}}$.

For every X of ordinal (cardinal) numbers, the union $\cup X$ of X is an ordinal (cardinal) number. Moreover, $\cup X$ is the least upper bound of $X . A$ cardinal number β is called singular if it can be represented as the least upper bound of a set S of cardinals, each of S is less than β and $\overline{\bar{S}}<\beta$. All other cardinals are called regular.

For every indexed family $\left\{\alpha_{i}: i \in I\right\}$ of cardinal numbers, the sum of all cardinal numbers belonging to this family is denoted by $\sum_{i \in I} * \alpha_{i}$ and is defined as: $\overline{\bar{u}\left(\alpha_{i} \times\{i\}\right)}$. Accordingly, $\sum_{i, I}^{*} \alpha_{i}=\overline{\bar{U}\left(\alpha, \alpha_{1} \times\{i\}\right)}$ where $\alpha_{i} \times\{i\}$ is the Cartesian product of α_{i} and $\{i\}$. For every two families $\left\{\alpha_{i}: i \epsilon I\right\}$ and $\left\{\beta_{i} ; i \epsilon I\right\}$ of cardinal numbers α_{i}, and $\beta_{i}, \alpha_{i} \leqq \beta_{i}$ for every $i \in I$ implies $\sum_{i \in I}^{*} \alpha_{i} \leqq \sum_{i \in I}^{*} \beta_{i}$. For an indexed family $\left\{\alpha_{i}: i \in I\right\}$ of cardinal numbers, if $\overline{\bar{I}}=\beta$, and $\boldsymbol{\alpha}_{i \in I}=\alpha$ for every $i \in I$, then we have $\sum_{i \in I}{ }^{*} \alpha_{i}=\alpha \beta$, where $\alpha \beta=\overline{\overline{u \times v}}$ with $\alpha \cong u$ and $\beta \cong v$. If $\left\{A_{\xi}: \xi<\alpha\right\}$ is any family of sets, pairwise disjoint or not, then $\overline{\bar{\cup} A_{\xi}} \leq \sum_{\xi<\alpha} * \overline{\bar{A}}_{\xi}$. Finally, for every non-zero cardinal α and every infinite cardinal number $\beta, \alpha \leqq \beta$ implies $\alpha \beta=\beta$.

We shall denote the fundamental Boolean operations, join, meet and inclusion by,$+ \cdot$ and \subset. The generalizations of join and meet denoted by Σ and Π, respectively. If a is an element of a Boolean algebra \boldsymbol{A}, \bar{a} denotes the complement of a in \boldsymbol{A}. The null and universal elements of a Boolean algebra will be denoted by 0 and 1 , respectively, as well as the ordinary numbers zero and one. A Boolean algebra \boldsymbol{A} is
called α-complete if and only if whenever $\boldsymbol{B} \subseteq \boldsymbol{A}$ and $\tilde{\boldsymbol{B}} \leqq \alpha, \Sigma \boldsymbol{B}($ or $\Sigma b)$ exists in \boldsymbol{A}.
By a field of sets we shall understand any non-empty class ${ }^{\boldsymbol{b}} \boldsymbol{F} \boldsymbol{B}$ of subsets of a fixed set X such that (i) if sets A, B are in \boldsymbol{F}, then their union is in \boldsymbol{F}. (ii) if a set A is in \boldsymbol{F}, then its complement in the fixed set X is in \boldsymbol{F}. Clearly, every field of sets is a Boolean algebra, the Boolean operations+, \cdot, - being the set-theoretical union, intersection and complementation, respectively.

3. The existence of a Boolean algebra which has the $\mathbf{M a}_{a}$-property

A set \boldsymbol{D} of elements of a Boolean algebra \boldsymbol{A} is said to be dense (in \boldsymbol{A}) if, for cvery non-zero element $a \in \boldsymbol{A}$, there exists an element $b \in \boldsymbol{D}$ such that $0 \neq b \subset a$.

Let α be an infinite cardinal number. A partially ordered set P will be called α-compact if P is closed under finite meets contains a zero element and satisfies the condition that $M \subseteq P, \overline{\bar{M}} \leqq \alpha$ and no finite subset of M has zero meet, then M has a non-zero lower bound in P. A Boolean algebra \boldsymbol{A} will be called α-atomic if \boldsymbol{A} contains a dense subset which is α-compact.

Definition. A Boolean algebra \boldsymbol{A} is said to have the M_{a}-property if \boldsymbol{A} itself is α-compact.

We shall show that the existence of a Boolean algebra which has the M_{u}-property.
Let Y be an infinite set with $\overline{\bar{Y}}=\beta>\omega$ and \boldsymbol{B} be the field (i. e. Boolean algebra) composed of all finite subsets of Y and of all cofinite subsets of Y. Let y be any point which does not belong to Y, and $X=Y \cup\{y\}$. The mapping

$$
\varphi(A)=\left\{\begin{array}{l}
A \text { if } A \in \boldsymbol{B} \text { is finite } \\
A \cup\{y\} \text { if } A \in \boldsymbol{B} \text { is cofinite }
\end{array}\right.
$$

is an isomorphism of \boldsymbol{B} onto a field \boldsymbol{F} of subsets of X.
Suppose that \mathscr{T} is the family which consists of all unions of members of \boldsymbol{F}. Then $\mathscr{S}^{\boldsymbol{F}}$ is a topology in X and \boldsymbol{F} is an open basis for X. Of course, every set $B \in \boldsymbol{F}$ is open. It is also closed in this topology \mathcal{S}^{-}since $X-B$ belongs to $\boldsymbol{F} . \boldsymbol{F}$ being reduced, the space X is totally disconnected.

To prove that X is compact, we suppose that C is an open covering of X. We can assume that each set B in \boldsymbol{C} belongs to \boldsymbol{F}, because each set B in \boldsymbol{C} is the union of members of \boldsymbol{F}. Then there is at least one $B \in \boldsymbol{C}$ such that $y \in B$. Hence there exists a cofinite set $A \in \boldsymbol{B}$ such that $B=A \cup\{y\}$. Moreover B^{c} is finite. Therefore we can find a finite sequence $B_{1}, \cdots \cdots, B_{n} \epsilon \boldsymbol{C}$ such that $X=B_{1} \cup \cdots \cdots \cup B_{n}$.

Now we shall prove that a set $B \subseteq X$ is open-closed, then $B \epsilon \boldsymbol{F}$. Indeed, B is the union of a family \boldsymbol{K} of sets in \boldsymbol{F} since B is open. Since B is a closed subset of the compact space X, there exists a finite sequence $B_{1}, \cdots \cdots, B_{n} \in \boldsymbol{K} \subseteq \boldsymbol{F}$ such that
$B=B_{1} \cup \cdots \cdots \cup B_{n}$. Hence $B \in \boldsymbol{F}$. Consequently, the field \boldsymbol{F} consists of all open-closed subsets of X.

Since the Boolean algebra \boldsymbol{B} is isomorphic to the field \boldsymbol{F} of all open-closed subsets of the compact totally disconnected space X, X is the Stone space of \boldsymbol{B}.

Theorem 1. The Boolean algebra \boldsymbol{B} has the M_{a}-property for every cardinal $\alpha<\beta$ where $\omega \leqq \alpha$.

Proof. To prove that \boldsymbol{B} has the M_{α}-property, it suffices to show that for every subset $\boldsymbol{M}=\left\{A_{\xi}: \xi<\alpha\right\}$ of \boldsymbol{B} which has the finite intersection property, there is nonzero element $A \in \boldsymbol{B}$ such that $A=A_{\xi}$ for every $\xi<\alpha$. Since $\left\{A_{\xi: \xi} ; \alpha\right\}$ has the finite intersection property, the subset $\left\{\varphi\left(A_{\xi}\right): \xi<\alpha\right\}$ of \boldsymbol{F} has the same property. Moreover, X being compact, we obtain $\bigcap_{\xi<\alpha} \varphi\left(A_{\xi}\right) \neq \phi$.

Case I. It there is at least one finite set A_{ξ} in \boldsymbol{M}, then there is a point $x \in X$ distinct from y such that $x \in \bigcap_{\xi<\alpha} \varphi\left(A_{\xi}\right)$. This means that the singleton $\{x\} \subseteq \varphi\left(A_{\xi}\right)$ for every $\xi<\alpha$. On the other hand, by the property of φ that $\varphi(\{x\})=\{x\}, \varphi(\{x\}) \subseteq \varphi\left(A_{\xi}\right)$ for every $\xi<\alpha$. Consequently, $\phi \neq\{x\} \subseteq A \xi$ for every $\xi<\alpha$ and $\{x\} \in \boldsymbol{B}$.

Case II. Let us assume that there is no finite set A_{ξ} in M. Suppose now that $\bigcap_{\xi<\alpha} \varphi\left(A_{\xi}\right)=\{y\}$. Then, by the de Morgan law, $\bigcup_{\xi<\alpha} \varphi\left(A_{\xi}\right)=Y$ where $A_{\xi}^{q}=Y-A_{\xi}$. Each
 to a contradiction. Therefore $\prod_{\xi<\alpha} \varphi\left(A_{\xi}\right)$ contains a point x of X distinct from y. By means of a similar argument, one can obtain the element $\{x\} \in \boldsymbol{B}$ such that $\phi \neq\{x\} \subseteq A_{\text {\% }}$ for every $\xi<\alpha$.

4. The distributivity

A Boolean algebra \boldsymbol{A} is (α, β)-distributive if the following is satisfied: given any subset $\left\{a_{\xi}, \eta: \xi<\alpha, \eta<\beta\right\}$ of \boldsymbol{A} such that all the joins $\sum_{\eta<\beta} a_{\xi, \eta}$ for $\xi<\alpha$, their meet $\prod_{\xi<\alpha} \sum_{\eta<\beta} a_{\xi, \eta}$ and all the meets $\prod_{\xi<\alpha} a_{\xi}, f(\xi)$ for $f \in \beta^{\alpha}$ exist, then the join $\sum_{f \in \beta^{\beta} \gg \alpha} \prod_{\xi} a_{f(\xi)}$ also exists and we have

$$
\prod_{\xi<a v<\beta} \sum_{\xi, \eta} a_{n}=\sum_{f \in \beta \alpha} \prod_{\xi<\alpha} a_{\xi, f(\xi)} .
$$

If a Boolean algebra \boldsymbol{A} is (α, β)-distributive for every cardinal number β, we say that \boldsymbol{A} is (α, ∞)-distributive.

Actually, in order to demonstrate that a Boolean algebra \boldsymbol{A} is (α, β)-distributive, it is sufficient to show that if $\left\{a_{\xi, \eta}: \xi<\alpha, \eta<\beta\right\}$ is any subset of \boldsymbol{A} such that all the joins $\sum_{n<\beta} a_{\xi, \eta}$ for $\xi<\alpha$ exist and their meet $\underset{\xi<\alpha}{I I} \sum_{\eta<\beta} a_{\xi, \eta}$ exists and is not zero, then there is an $f \in \beta^{\alpha}$ such that $\prod_{\xi<\alpha} a_{\xi}, f(\xi)$ is false ; i. e. either $\prod_{\xi<\alpha} a_{\hat{\xi}}, f(\xi)$ does not exist or is not zero.

Theorem 2. Suppose that β is a singular cardinal number and that \boldsymbol{A} is an β-complete Boolean algebra which is (α, ∞)-distributive for every cardinal $\alpha<\beta$. Then \boldsymbol{A} is (β, ∞)-distributive.

Proof. Let γ be an arbitrary cardinal number and $\left\{a_{\xi}, \eta: \xi<\beta, \eta<\gamma\right\}$ be any subset of \boldsymbol{A} such that

$$
\begin{equation*}
\prod_{\xi<\beta} \sum_{\eta<r} a_{\xi, \eta} \neq 0 \tag{1}
\end{equation*}
$$

β being singular, we can find a set $S=\left\{\beta_{\xi}: \xi<\alpha\right\}$ of cardinal numbers β_{ξ} such that $\beta_{\xi}<\beta$ for every $\xi<\alpha<\beta$ and $\beta=\cup \beta_{\xi}$. Since β is the least upper bound of S and has no immediate predecessor,

$$
\begin{equation*}
\text { for any } \eta<\beta \text { there is a } \xi \text { satisfying } \eta<\beta_{\xi}<\beta \text {. } \tag{2}
\end{equation*}
$$

Let

$$
\begin{equation*}
\boldsymbol{D}_{\xi}=\left\{x: x=\prod_{\eta<\beta_{\xi}} a_{r}, f(\eta) \text { and } f \epsilon \gamma^{\beta \xi}\right\} \text { for } \xi<\alpha . \tag{3}
\end{equation*}
$$

Moreover for each $\xi<\alpha$, let $\rho_{\xi}=\gamma^{\left(\rho_{\xi}\right)}$, and find a bijective function F_{ξ} (or one-to-one onto map) on $\gamma^{\beta \xi}$ onto ρ_{ξ}. For every $\xi<\alpha$ let b_{ξ} be a function ρ_{ξ} such that

$$
b_{\xi}\left(F_{\xi}\right)(f)=\prod_{n<\beta_{\xi}} a_{\eta}, f(n)
$$

for each $f \in \gamma^{\beta \xi}$. Let $b_{\xi}(\gamma)=b_{\xi, \eta}$ for $\xi<\alpha$ and $\eta<\rho_{\xi}$.
Let $\rho=\bigcup_{\xi<\alpha} \rho_{\xi}$ and if $\rho_{\xi}<\rho$ for some $\xi<\alpha$, we define $b_{\xi},{ }_{\eta}=0$ for each $\rho_{\xi} \leqq \eta<\rho$. Then, by the (α, ∞)-distributivity of \boldsymbol{A}

$$
\begin{align*}
& \prod_{\xi<\alpha} \sum \boldsymbol{D}_{\xi}=\prod_{\xi<\alpha} \sum_{f f \gamma_{\xi}{ }_{\xi}}\left(b_{\xi}\left(F_{\xi}(f)\right)\right\}=\prod_{\xi<\alpha} \sum_{\eta<\rho_{\xi}} b_{\xi} \eta_{\eta} \tag{4}\\
& =\prod_{\xi<\alpha} \sum_{\eta<\rho} b_{\xi},{ }_{\eta}=\sum_{\eta \in \rho^{\prime}} \prod_{\xi<\alpha} b_{\xi}, g(\xi)
\end{align*}
$$

Since fot each $\xi<\alpha$ we have

$$
\prod_{n<\beta_{\varepsilon}} \sum_{\lambda<r} a_{r}, \lambda>\operatorname{In}_{n<\beta} \underset{\lambda<r}{ } a_{r}, r, r
$$

by (1), (4) and the ($\left.\beta_{\xi}, \infty\right)$-distributivity of \boldsymbol{A},

$$
\begin{aligned}
& 0 \neq \prod_{\eta<\beta} \sum_{\lambda<r} a_{r},{ }_{2} \subset \prod_{\xi<\alpha} \prod_{\eta<\beta_{\xi}} \sum_{\lambda<r} a_{r, \lambda}=\prod_{\xi<\alpha} \sum_{f r r \beta_{\xi}} \prod_{\eta<\beta_{\xi}} a_{r,} f(r) \\
& =\prod_{\xi<\alpha} \sum_{f_{f} f_{\xi}} b_{\xi}\left(F_{\xi}(f)\right)=\prod_{\xi<\alpha} \Sigma D_{\xi},
\end{aligned}
$$

so that by (4) there is a $g \epsilon \rho^{\alpha}$ such that

$$
\begin{equation*}
\prod_{\xi<\alpha} b_{\xi, g(\xi)} \neq 0 \tag{5}
\end{equation*}
$$

If for some $\rho_{\xi} \leqq g(\xi)$ theu $b_{\xi}, g(\xi)=0$. Thus $g(\xi)<\rho_{\xi}$ for every $\xi<\alpha$. By the definition of F_{ξ} we have for each $\xi<\alpha, g(\xi)=F_{\xi}(f)$ for some $f \epsilon \gamma^{\beta} \xi$. Since g is at this time fixed, this f depend only upon ξ. Accordingly, we denote it f_{ξ}, that is, $g(\xi)=F_{\xi}\left(f_{\xi}\right)$.

Now by (2), we can define an $h \epsilon \gamma^{\beta}$ by the condition that for each $\eta<\beta, h(\eta)=f_{\xi}(\eta)$ where ξ is so chosen that β_{ξ} is the least member of $\left\{\beta_{\xi}: \eta<\beta_{\xi}<\beta, \xi<\alpha\right\}$. By the definition of b_{ξ} for each $\eta<\beta$, it follows that

$$
\begin{aligned}
& a_{r \cdot h(\eta)}=a_{r}, f_{\xi}(\eta) \supset \prod_{\lambda<\beta_{\xi}} a_{\lambda, f_{\xi}(\lambda)}=b_{\xi}\left(F_{\xi}\left(f_{\xi}\right)\right)=b_{\xi}, F_{\xi} f(\xi) \\
& =b_{\xi}, g(\xi) \subset \prod_{\xi<\alpha} b_{\xi}, g(\xi)
\end{aligned}
$$

thus by (5) we obtain

$$
\prod_{\eta<\beta} a_{r}, h(\eta) \supset \prod_{\xi<\alpha} b_{\xi}, g(\xi) \neq 0,
$$

which means that \boldsymbol{A} is (β, γ)-distributive. γ being an arbitrary cardinal number, \boldsymbol{A} is (ρ, ∞)-distributive. The proof is complete.

The following two theorems and corollary are due to R.S. Pierce [1].
Theorem 3. Let \boldsymbol{A} be an a-complete, α-atmoic Boolean algebra. Then \boldsymbol{A} has the following property:
(P) if $\left\{\boldsymbol{A}_{\xi}: \xi<\nu\right\}$ is a family of coverings of \boldsymbol{A} such that $\nu \leqq \alpha^{+}$and ν is cardinal and if $\boldsymbol{b} \neq 0$ in \boldsymbol{A}, then there is a choice function φ on ν such that $\varphi(\xi) \in \boldsymbol{A}_{\xi}$ with property that if $T \simeq W(\nu)$ and $\bar{T}<\alpha^{+}$, Then

$$
b \cdot \Pi_{\xi \subset T} \varphi(\xi) \neq 0
$$

Theorem 4. Suppose that \boldsymbol{A} is an a-complete Boolean algebra which satisfies the property (P) of Theorem 3. Then \boldsymbol{A} is (α, ∞)-distributive.

Proof. Let γ be an arbitrary cardinal number and let $\left\{a_{\xi, \eta}: \xi<\alpha, \eta<\gamma\right\}$ be a subset of \boldsymbol{A} such that $\sum_{n<r} a_{\xi, \eta}=1$ for every $\xi<\alpha$. Let $\boldsymbol{A}_{\xi}=\left\{a_{\xi, \eta}: \eta<\gamma\right\}$. Then \boldsymbol{A}_{ξ} becomes a covering of $\boldsymbol{A}_{\boldsymbol{n}}$. Since \boldsymbol{A} satisfies the property (P), for any non-zero element a, there is a function $f \in \gamma^{\alpha}$ such that $a \cdot \prod_{\xi<\alpha} a_{\xi}, f(\xi) \neq 0$. This means that \boldsymbol{A} is $(\alpha, \gamma)-$ distributive [See [4] $\left.19.2\left(d_{2}\right)\right] . \gamma$ being arbitrary, it follows that \boldsymbol{A} is (α, ∞)-distributive.

Corollary. Every α-complete, α-atomic Boolean algebra is (α, ∞)-distributive.
If \boldsymbol{A} is a Boolean algebra, then \boldsymbol{A}^{β} will denote the minimal β-extension of \boldsymbol{A}, i. e. \boldsymbol{A}^{β} is an β-complete Boolean algebra, \boldsymbol{A} is dense in \boldsymbol{A}^{β} and β-generates \boldsymbol{A}^{β}.

Theorem 5. Suppose that β is a cardinal number and that \boldsymbol{A} is a Boolean algebra which has the M_{a}-property for every cardinal $\alpha<\beta$. Let \boldsymbol{A}^{β} be a minimal $\dot{\beta}$-extension of \boldsymbol{A}, then \boldsymbol{A}^{β} is (α, ∞)-distributive for every cardinal $\alpha<\beta$.

Proof. Since \boldsymbol{A} is dense subalgebra of $\boldsymbol{A}^{\beta}, \boldsymbol{A}^{\beta}$ is α-complete, α-atomic for every cardinal $\alpha<\beta$. By corollary, \boldsymbol{A}^{β} is (α, ∞)-distributive for every cardinal $\alpha<\beta$.

Theorem 6. Suppose that β is a singular cardinal number and that \boldsymbol{A} is
a Boolean algebra which has the M_{α}-property for every cardinal $\alpha<\beta$. Then \boldsymbol{A} is (β, ∞)-distributive.

Proof. Let \boldsymbol{A}^{β} be a minimal β-extension of \boldsymbol{A}. Then, by Theorem 5, \boldsymbol{A}^{β} is (α, ∞)-distributive for each cardinal $\alpha<\beta$. Since β is a singular cardinal, by Theoren 2, \boldsymbol{A}^{β} is (β, ∞)-distributive. Moreover, \boldsymbol{A} is a regular subalgebra of \boldsymbol{A}^{β}. Consequently, \boldsymbol{A} is (β, ∞)-distributive.

5. Representability

Notice that if β is an infinite regular cardinal number and if $T \subseteq W(\beta)$ and $\overline{\bar{T}}<\beta$, then there exists an ordinal number $\lambda<\beta$ such that $\tau<\lambda$ for every $\tau \epsilon T$.

In fact, let us assume that there is no such an λ. Then there is at least one $\tau \epsilon T$ for arbitrary $\lambda<\beta$ such that $\lambda \leqq \tau$. Since $\tau<\beta$ and every infinite cardinal number has no immediate predecessor, there exists an ordinal μ with $\tau<\mu<\beta$. By assumption, there is an ordinal $\nu \in T$ with $\mu \leqq \nu<\beta$. Thus we can find an ordinal number $\nu \in T$ for arbitrary $\lambda<\beta$ such $\lambda<\nu$. This means that $W(\beta)=\bigcup \bigcup\}(\xi)$, what is the same, $\beta=\bigcup\} \xi$. It is clear that $\beta>\xi$ for each $\xi \in T$. Therefore, it follows that $\beta>\overline{\bar{\xi}}$ for each $\xi \in T$. If a cardinal number λ has the property that $\lambda \geqq \bar{\xi}$ for each $\xi \in T$, then $\lambda \geqq \xi$ for each $\xi \epsilon T$. Since β is the least upper bound of $\{\xi: \xi \in T\}$, we have $\lambda \geqq \beta$, that is, $\beta=\underset{\xi c T}{\cup} \bar{\xi}$. This means that β is singular. This leads to contradiction.

Theorem 7. Suppose that β is an infinte regular cardinal number and that \boldsymbol{A} is a Boolean algebra which has the M_{α}-property for every cardinal $\alpha<\beta$. Let \boldsymbol{A}^{β} be a minimal β-extension of \boldsymbol{A}, then \boldsymbol{A}^{β} has the following property:
$\left(P^{\prime}\right)$ if $\left\{\boldsymbol{A}_{\xi}: \xi<\nu\right\}$ is a family of coverings of \boldsymbol{A}^{β} such that a cardinal $\nu \leqq \beta$ and if $b \neq 0$ in \boldsymbol{A}^{β}, then there is a choice function φ on ν such that $\varphi(\xi) \in \boldsymbol{A}_{\boldsymbol{\xi}}$ with the property that if $T \subseteq W(\nu)$ and $\overline{\bar{T}}<\beta$, Then $b \cdot \Pi_{\xi \in T} \varphi(\xi) \neq 0$.

Proof. We can assume that $\nu=?$. By transfinite inductive definition we can define functions $f: \beta \rightarrow \boldsymbol{A}$ and φ on β with $\varphi(\xi) \in \boldsymbol{A} \boldsymbol{\xi}$ having the following properties
(i) $\xi<\eta<\beta$ implies $0 \neq f(\dot{\eta}) \subset f(\hat{\xi}) \subset b$.
(ii) $f(\xi) \subset \varphi(\xi)$

These are constructed in the following way. Assume that $f\left(\xi_{\xi}\right)$ has been defined for every $\xi<\tau$, where $\tau<\beta$. By the M_{a}-property, $c=\prod_{\xi<\tau} f(\xi) \neq 0$. We assume that $c=1$, when $\tau=0$. Then we can find a $\varphi(0) \in \boldsymbol{A}_{0}$ such that $\varphi(0) \cdot b \neq 0$. Such an element $\varphi(0)$ exists, because $b=b \cdot 1=b \cdot \Sigma \boldsymbol{A}_{0}=\Sigma\left\{b \cdot a: a \in \boldsymbol{A}_{0}\right\}$. Since \boldsymbol{A} is a dense subalgebra of \boldsymbol{A}^{β}, we can choose arbitrarily a $f(0) \in \boldsymbol{A}$ satisfying $0 \neq f(0, \subset \varphi(0) \cdot b$. Suppose that $\varphi(\hat{\xi}), f(\xi)$ have been defined for every $\xi<\tau$, where $0<\tau<\beta$. Then we
have $c \subset b$. Choose $\varphi(\tau) \in \boldsymbol{A}_{\tau}$ so that $\varphi(\tau) \cdot c \neq 0$. As before, some element of \boldsymbol{A}_{τ} will satisfy this requirement. Using the fact that \boldsymbol{A} is dense, it is possible to find $f(\tau) \in \boldsymbol{A}$; such that $0 \neq f(\tau) \subset \varphi(\tau) \cdot c$. From this construction, it is evident that $f(\tau) \subset \varphi(\tau)$. If $\xi<\tau$, then we obtain $c=\prod_{\rho<\tau} f(\rho) \subset f(\xi)$. Accoridingly, it follows that $f(\xi) \supset c \supset c \cdot \varphi(\tau) \supset$ $f(\tau)$, that is, $f(\tau) \subset f(\xi)$. Thus, the conditions (i) and (ii) are fulfilled.

Now if $T \subseteq W(\beta)$ and $\overline{\bar{T}}<\beta$, then since β is infinite regular cardinal number, there exists $\lambda<\beta$ such that $\xi<\lambda$ for every $\xi \in T$.

$$
\begin{aligned}
& b \cdot \prod_{\xi T T} \varphi(\xi) \supset b \cdot \prod_{\xi<\lambda} \varphi(\xi) \supset b \cdot \prod_{\varepsilon<\lambda} f(\xi) \\
& \supset \prod_{\xi<\lambda} f(\xi) \supset f(\lambda) \neq 0,
\end{aligned}
$$

what is the same, $b \cdot \prod_{\xi \in T} \varphi(\xi) \neq 0$.
A Boolean algebra \boldsymbol{A} is said to have the property $\left(P_{\beta}\right)$ where β is an infinite cardinal, if the following is satisfied: if $\left\{a_{\xi, \eta}: \xi, \eta<\beta\right\}$ is a subset of \boldsymbol{A} such that all the joins $\sum_{\eta<\beta} a_{\xi, \eta}$ for $\xi<\beta$ exist and their meet $\prod_{\xi<\beta} \sum_{\eta<\beta} a_{\xi, \eta}$ exists and is not 0 , then there is a function $f \in \beta^{\beta}$ such that $\prod_{\xi<v} a_{\xi, f(\xi)}$ is false for every $\nu<\beta$; i. e. either $\prod_{\xi<v} a_{\xi}, f(\xi)$ does not exist or else is not zero.

Theorem 8. If an β-complete Boolean algebra A satisfies the following property:
if $\left\{\boldsymbol{A}_{\xi}: \xi<\beta\right\}$ is a family of coverings of \boldsymbol{A} such that if $\boldsymbol{b} \neq 0$ in \boldsymbol{A}, then there is a choice function φ on β such $\varphi(\xi) \in \boldsymbol{A}_{\xi}$ with the property that if $T \subseteq W(\beta)$ and $\bar{T}<\beta$, then $b \cdot \Pi \varphi(\xi) \neq 0$, then \boldsymbol{A} has the property $\left(P_{\dot{\beta}}\right)$.

Proof. Suppose that $\left\{a_{\xi, \eta}: \xi, \eta<\beta\right\}$ is any subset of \boldsymbol{A} such that $\prod_{\xi<\beta} \sum_{\eta<\beta} a_{\xi, \eta}=a \neq 0$. Let $a_{\xi, \beta}=\bar{a}$ for every $\xi<\beta$ and let $\boldsymbol{A}_{\xi}=\left\{a_{\xi, \eta}: \eta<\beta+1\right\}$. In this way every $\boldsymbol{A}_{\boldsymbol{\xi}}$ becomes a covering of \boldsymbol{A}. Hence, by the property of \boldsymbol{A}, for this $a \neq 0$ in \boldsymbol{A}, there is a function $f \epsilon(\beta+1)^{\beta}$ such that $a \cdot \prod_{\xi<\nu} a_{\xi}, f(\xi) \neq 0$ for every $\nu<\beta$. It is clear that $f(\xi) \neq \beta$ for every $\xi<\beta$. Consequently, there exists a function $f \in \beta^{\beta}$ such that $\prod_{\xi<\nu} a_{\xi} ; f(\xi) \neq 0$ for every $\nu<\beta$. Hence it follows that A has the property (P_{ξ}.)

A Boolean algebra is said to be β-representable provided it is isomorphic to an β-regular subalgebra of quotient algebra $\boldsymbol{F} / \boldsymbol{I}$ where \boldsymbol{F} is an ξ-field of sets and \boldsymbol{I} is an β-ideal of \boldsymbol{F}. Thus an β-complete Boolean algebra is β-representable if and only if it is is isomorphic to a quotient algebra $\boldsymbol{F} / \boldsymbol{I}$ where \boldsymbol{F} is an β-field of sets, and I is an β-ideal of \boldsymbol{F}.

Actually, in order to demonstrate that a Boolean algebra \boldsymbol{A} is β-representable, it is sufficient to show that whenever $\left\{a_{\xi, \eta}: \xi, \eta<\beta\right\}$ is any subset of \boldsymbol{A} such that all
the joins $\sum_{\eta<\beta} a_{\xi, \eta}$ exist for $\xi<\beta$ and their meet $\prod_{\xi<\beta} \sum_{n<\beta} a_{\xi, \eta}$ exists and is not 0 ，then there is an $f \in \beta^{\beta}$ such that $\prod_{\xi \in T} a_{\xi}, f(\xi) \neq 0$ for every finite subset T of $W(\beta)$ ．

The following theorem was proved by E．C．Smith［5］．
Theorem 9．Every β－complete Boolean algebra which has the property $\left(P_{\beta}\right)$ is β－representable．

Theorem 10．Suppose that β is an infinite regular cardinal number and that \boldsymbol{A} is a Boolean algebra which has the M_{α}－property for every cardinal $\alpha<\beta$ ．Then A is β－representable．

Proof．Let \boldsymbol{A}^{β} be a minimal β－extension of \boldsymbol{A} ，then by Theorem 7， \boldsymbol{A}^{β} has the property $\left(P^{\prime}\right)$ ．Therefore，by Theorem $8,: \boldsymbol{A}^{\beta}$ has property $\left(P_{\beta}\right)$ ．Accordingly，by Theorem 9， \boldsymbol{A}^{β} is β representable． \boldsymbol{A} is the regular subalgebra of \boldsymbol{A}^{β} ，because \boldsymbol{A} is the dense subalgebra of \boldsymbol{A}^{β} ．Thus \boldsymbol{A} is β－representable．

Theorem 11．Suppose that β is an arbitrary infinite cardinal number and that \boldsymbol{A} is a Boolean algebra which has the M_{α}－property for every cardinal $\alpha<\beta$ ． Then \boldsymbol{A} is β－representable．

Proof．If β is a regular cardinal number，then，by Theorem 10 ，it follows immediately that \boldsymbol{A} is β－representable．

Next，if β is a singular cardinal number，then，by Theorem 6，it follows that \boldsymbol{A} is (β, ∞)－distributive．Hence， \boldsymbol{A} is (β, β)－distributive．Since every (β, β)－distributive Boolean algebra is β－representable， \boldsymbol{A} is β－representable．The proof is complete．

Bibliography

〔1〕 R．S．Pierce，A generalization of atomic Boolean algebras，Pacific．Jour．Math．vol． 9 （1959） pp．175－182．
［2］E．C．Smith，Jr．and A．Tarski，Higher degrees of distributivity and completeness in Boolean algebras，Trans．Amer．Math．Soc．vol． 84 （1957）pp．230－257．
［3］A．Abian，Theory of Sets and Transfinite Arithmetic．W．B．Saunders Company． 1965.
［4］R．Sikorski，Boolean algebras．Beriin－Göttingen－Heidelberg， 1964.
〔5〕 E．C．Smith，Jr．，A distributivity condition for Boolean algebras，Ann．of Math．vol． 64 （1956）pp．551－561．

