A THEOREM OF PIECEWISE LINEAR APPROXIMATIONS

TaTsuo HomMmA

1. In this paper we shall assume that a complex is finite. If K is a complex,
P=5EJK$ is called a polyhedron and denoted by | K|, and K is called a simplical division
of P. Let K, H be complexes and f: | K|—| H| be a continuous mapping such that for
any &eK there is a ocH satisfying i) f(§)=0 and ii) f|§—7 is linear. Then f is called
a simplicial mapping of K into H and also a piecewise linear (p. w.l) mapping of
|K|into |[H|. If K is a complex and f:|K|— E™ is a continuous mapping of |K|
into E* such that for any é&cK f|é—En" is linear, f is called a semi-simplicial
mapping of K into E» and also a p. w. [. mapping of | K| into E™. A p.w.l. mapping
f:IK|—IH|oor E®) is said to be mnon-degenerate, if for any &eK dim &=dim
f(&. I f:P-Q is a p.w.l. mapping, a point peP, such that f=!f(p)%p, is called
a singular point of f and the closure of the set of singular points of f is denoted
by S;. If K is a complex and £ is a simplex of K, we denote by St (§) the polyhedron
which is the union of all simplexes of K having £ as a face. If K is a complex and
for any &K St (£) is p.w.l. homeomorphic to an #u-simplex, the polyhedron |K]|
is called a (combinatorial) n-manifold. If M is an #n-manifold, we denote by jl; and
M the interior of M and the boundary of M respectively. Throughout this paper we
shall assume that any complex K is contained in some euclidean space E* and any
simplex & of K is linearly imbedded in E*. If ['={Py, -, P} is a set of polyhedra
such that P,U---UP, is connected and P;NP; is a point or ¢ for ixj, [ is called a
chain of polyhedra and [ is called a length of I'. 1f

g

PiﬂP,={one point for |i—j|=1

¢ for |i—j[>1,
I is called a simple chair. 1f
S PR
I' is called a cyclic chain. The main thorem of this paper is following;
Theorem 1. Let M be an n-manifold. Then there is a positive number n (M)
such that if f; P—>Q is a p.w.l. mapping of a polyhedron P onto a polyhedron Q,

g: P—r]\/? is a p.w.l. mapping and R is a subpolyhedron of P satisfying
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Z| R is a homeomorphism
n> dim Q+2 ]\{‘%x dim f~1(q)
7(M)> dia f~(q), for any qeQ,
then for any ¢>0 there is a p.w.l. mapping h: P—»]\S[ satisfying

1) dihg)(=sup dh(p,g(p))<e
2) h|R=g|R
3) h is non-degenerate

4) SN f1(q) s finite
5) dim S,<dim Q
@) h|fl(q) is a homeomorphism

a) kb fHq)Nhf(g:)=0ne point or ¢

for any q1xq: €Q .
a) there is no cyclic chain in I'={hf~(q)| qeQ}
B there is no simple chain of lengih =n+2 in I'.

2. In this section we shall prove the following:

Lemma 1 Let K be a complex consisting of two simplexes &,,&; and their
faces. Let f: K—H be a simplicial mapping of K onto a complex H and g: K—E™
a semi-simplicial mapping such that :

n>dim H+2 Max dim f~1(q).

qe | H |

Let 2: D—>f(&:) be a linear homeomorphism of a convex polyhedron D of f(¢,) into
F(&s). Then for any €>0 there is a semi-simplicial mapping h: K—»E™ such that
i) dhg)<e
iy A(fH@NENNA(fTAg)NE)
ch(1Né), for any qu.

If P is a polyhedron, we denote by E (P) the minimal euclidean space containing
P. We shall consider any euclidean space E! as a vector space and use vector notation.
Points ., p1, -+, p: are said to be linearly independent if the vectors p,—py, -+, p.—po
are linearly independent. If vy, v:, -+, v; are vectors, we denote by p (v, vs, -+, v:) the
maximal number of linearly independent vectors in vy, vs, -+, v, Vectors vy, -+, vy,

Ussr, -+, Uy are said to be linearly independent with respect t0 viyy, -+, vy if
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0 (U1, Vgy =+, iy oo+, Uj)—'p (Ui+1, ey Uj>=l
Proof of Lemma 1. Since 1 is a linear mapping of D into f(£). We may
consider 2 as a linear mapping of E (D) into E (f(5)). Furthermore we denote by f;
and f; the linear mappings of E(f~!(D)né¢,) onto E(D) and E (f~! Z(D)néz) onto
E(2(D)) satisfying
AlHDING = fI 1 (D)N&, and
LI A(DINg=ff1a(DiNné. respectively.
We choose linearly independent points of E (f~!(D) N &)
{ao’ A1y oy Qiy oty gy ooy Qiy oy ac}
and linearly independent points of E (f~12(D)N&,)
{a’c, ay,,aq, , a’j’ e @y e, a'l,}
such that
a) Afilad=fal@'y, Afila)=ra(@)), -+, Afila)=Lu(a'))
B) fi(ao), -, fi(ay) are linearly independent points of E (D) and j=dim E (D)
7) @0, @1, @iy Ayiy o 5 Gk € E (81N &)
ao, a0 50 34, A e E(ENE,)
@inmUd'eyy, -, a;Ud’y;  TE(ENE)
Aicg1s > Aty Ahrgy, -+, @ & E (61 NE,).
Since we have
dim K< dim H+ M% dim f-1(q)<n and
1+j+—))+ V-5 <1+ dim H+2 %f,’f dim flig)<n
We can consturct a semi-simplicial mapping % of K into E® so that
a) dihg)<e
B’) h is non-degenerate
7') vectors  hy(ao)—ha(a'o), -, hilay)—he ('), Bi(as), o5 Bi(@), he(@s4y), -+ s
h;(a'i) are linearly independent with respect to h, (ao)—he (@), -+, hy(a:i)—he (@'s,
hy(@yg), -+, By(@e), he (@ 341), -+ 5 B2 (@'x), where hy and h, are the linear mappings of

E(f/1(D)né&,) into E™ and E(f~'2(D) Né&,) into E* satisfying

h A D)Né&=h|f1(D VN &, and -
helf~*2(D)Né&;=h|f12(D)NE&, respectively.
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We shall prove that % is the required semi-simplicial mapping. If pef~1(q)N&;, pe
frA@)N&,qeD and h(p)=h(p’), we can write

4 1
b= 2;/1.: as, p'=2 Ysa's,
8= $=0

-~

1
’ps=2_’0)u’3=1 and

0

o= toy p1=thy o5 =115
Then & (p)—h (p')=po (hi{@o)—haka@'o) )+ -+ py (h1 (@3)— hy (a'5) )
+ g1 By (@g4) oo+ By (@)
— 41 B2 (@ ga) = — v ha (')
=0
From the linear independentness of vectors, we have
= =y=thpg=-c=m=pep=-=p1,=0
Then p,p'e€;NE; and therefore h(p)=h(p')e h(&,NE,).
Hence we have proved
B(FH@NENR(F A@NENCh E1NE), for any ge D
and completed the proof of [Lemma 1.
3. In this section we shall assume that f: P—»€Q and g:P—E" are p.w.l
mappings and R is a subpoly%ledron of P such that
g: R is a homeomorphism

n>dim Q+2 Mzzx dim f~1(q).
ge

We shall prove the following :

Theorem 2. For any £>0 there is a p. w.l. mapping h: P-E™ satisfying the
conditions 1), 2), 3), 4), 5), a)), az), &, B) of Theorem 1.

At first we shall prove the following:

Lemma (2,1) For any >0 there is a p. w.l. mapping h,: P-E™" satisfying
the conditions 1), 2), 3), 4), 5), and a,).

Proof of Lemmal (2,1) We choose simplicial divisions KD/ and H of PDR
and G such that f: K—H is simplicial and g: K—E™ is semi-simplicial. If we construct
a semi-simplicial mapping #';: K—E" sufficiently close to g and satisfying all

conditions of [Lemmal (2.1) except 2), 4’,|/ is an isomorphissm. Since g|R is a
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homeomorphism and then g|J is an isomorphism, Furthermore we may assume that
iy |] is sufficiently close to g|J so that there is a p. w.l. homeomorphism z: E"—E™
sufficiently close to identity mapping 1 and satisfying = #';|R=g|R. Put =z h';=h.
Then it is clear that 4, is the required p.w.l. mapping. Therefore we shall construct
a semi-simplicial mapping which is sufficiently close to g and satisfies 3), 4), 5), a). The

conditions 3), 4), 5) follow respectively from following formulas:
n>dim Q+Maqx dim f~'(q) = dim P
qe
n>dim Q+2 M%x dim f-1(q) = dim P+ Max dim f~'(q)
qe

qe@

dim Q>2dtm Q+2 Max dim f'(q)—n=2 dim P—n.

aeQ ,
We denote A={(&;, &) | F(€1)=F(£2), €1, & K}. Let (€, &) eA. Then put f(§)=D, =1
and let K’ be the subcomplex of K consisting of &;,£, and their faces. We apply
to f|K',g|k, D=f(¢) and 1=1. Then we get a semi-simplical mapping
K :K'-E" satisfying ii) of and sufficiently close to g. It is clear that any
semi-simplicial mapping #'’: K'—E™ sufficiently close to 4’ satisfies ii). 'By induction
with respect to elements of A we get a semi-simplicial mapping #,: K—E™" satisfying
the condition ii) for all elements of A. We shall prove that A, satisfies a;). Let
Pr3pae f~1(q). Then there is a (&), &) € A such that & 3p, and &5 p.. If py, pre&1N&y,
from 3) hy (p))hy(pe). If py & &,N&, from 3) Ay (py) & ki (61 N &). By ii) we have
hi(py)xhy(ps). Therefore h|f~'(q) is a homeomorphism and then (2,1) has
been proved.

Lemma (2,2) There is a p. w.l. mapping h,: P-E™ satisfying 1), 2), 3), 4), 5),

ay), ap).

Proof of Lemmal (2,2) Let %, be the p. w.l. mapping of P into E™ sufficiently
close to g and satisfymg 2, 3), 4), 5), a;). Let Ko J and H be the simplicial division
of POR and @ respectively such that f: K—H is simplicial and 4,: K—»E™ is semi-
simplicial. If A;: K—~E” is sufficiently close to %, and satisfies all conditions of [Lemmal
(2,2) except 2), similarly as the proof of [Lemmal (2,1) we can modify the p.w.lL
mapping A,: P—En" so that it satisfies the condition 2) too. Furthermore if the semi-
simplicial mapping h,: K—E™ is sufficiently close to A, it is clear that k. satisfies the
conditions 3), 4), 5), a,;). Therefore we shall construct a semi-simplicial mapping 4, : K—E™"

which is sufficiently close to A, and satisfies a;). Assume that (£, &12), (€21, S22) € A\
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and Ay (§129N Ay (€2))=C=x¢. Then C is a convex polyhedron and A;7*((C)Néy, A (C)NEs
are also convex polyhedra. The condition 3) implies that A=k, |k (C) N&, ;”—TC and
ho=h, [ A7 (C) ﬂ&g,i?C are linear homeomorphisms. Furthermore the condition 4)
implies that f(h1(C) N &, 2)=D, and f(h*(C) N &3)=D, are convex polyhedra and
fi=fh? (D)n&lg?—‘)‘bl, fa=f1 71 (C) N Emi:tz are linear homeomorphisms. Therefore
A=fo bt 711f1‘1:Doln—z—o>D2 is a linear homeomorphism. We apply to f] &1 Ués,
hy|&11Ué&e, 4, D=D,. Then by induction we get a semi-simplicial mapping %, | K—E™
satisfies the condition ii) of for all such pairs {(£y, £22)}. We shall prove that 4,
satisfies a). If gi%q2€Q and hyf~'(q)Nhe f71{(g2)2 p, from ey) h7'(p) N f~1(q)=ps
i=1,2, is a point. If p/=xp;cf~1(q\) and p,’>xp.e f~1(q:), there are four simplexes &34
3D, Erz €, Ea1 2 Pz, Eea 2 P’ such that (&1, &1), (Eurs Ea) e A IE P, po' € £11 N e, from
3) we have Ay (p/)xho (p2)). If p)' & E11NEy, from 3 we have hy(p)) & ha(§11 N 22)
and from ii) %, (p,)xhs (pe). Therefore h, f~'(q;)N ke f~ (g2)=p and we have proved
2.2)

By induction with respect to { we shall prove the following:

Lemma (2,i), i = 2. There is a p.w.l. mapping h.: P>E™ satisfying 1), 2,
3), 4), 5), ay), a;) and

aq) There is no cyclic chain of length < i in I's={h,f"'(q) | qeQ},

B) dim X; < dim Q+1—1,
where X;=closure of {q|qeQ, h: f~1(q) is an element of a simple chain of length=i
in I';).

Proof of [Lemmal (2,i). We have already proved [Lemmal (2,2). In fact it is
clear that X;=fS,;) and then the condition 5) is equivalent to the condition B,).
Therefore we assume that 2, i-1) is true. Let k4, be the p.w.l. mapping
satisfying all conditions of (2, 7-1) and sufficiently close to g. Let KOJ and H
be simplicial subdivision of PO R and @ respectively such that f: K—H is simplicial and
hi | K—E™" is semi-simplicial. If (&1, &12), =+ (Eir, Ei2) € A\ and Aiy Es2) N By (E5411)=
Cix¢. We put hyp=hi (C)N EsmaCy and Apu=hi 1| B (Cy) O Es4>Cy, from 3)
Ry and hyy,; are linear homeomorphisms. Put fy =f| hi (C)NEsp and Fran=f| ki
(Cs) N €4n. Then from 4) f;, and fj4., are linear homeomorphisms. Djy =/ Al

(C)) is a convex polyhedron in ojp=f(Es4n)=f(Es41s) and 4= fion Bjin kyaf7) is a
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linear homeomorphism of the convex polyhedron fj, h;} (Cy) onto Dyy,. It D=i'(D,
NA7H (D3NN AL (Dis N4 (D) )-+)x¢. We apply to fl€nU&w, bimy | En
Ués, D,A=2;_y--23 4, | D. Then by induction we get a semi-simplicial mapping 4|
K—E", which is sufficiently close to %4;; and satisfying ii) of for all such
pairs {1, &)} I 41, 4., o5 4i €Q, @y qx, and by f71 (@) N B f7H (@o)=73, j=1, -+, i—1,
there are pjef~'(g;) and p's41€f71(gs41) such that A (ps)=he(p'ju1)=rs. If pref!
(@1), b €f~'(qq) - and pyxp), pi’>pi. We can choose (&1, &), =+, (o1, Si2) € A and 2
which are similar as the above ones and satisfies that pje&y, py €&y and A(q))=gqs.
From ii) and 3) we have h;(p:)3he(py). Therefore we have h;f~1(g)\Nh:f~' (q)=¢
and then we have proved that a;) there is no cyclic chain of length =i in I'y=
{hsf~11q)| g€ Q}. Since

dim f~1(Xi,)+dimP—n

<dim Xi_1+q%?1x dim f~'(q)+dim Q+Zl£gx dim f~'(q)—n

=dim Q+1—(i—1)+dim Q+2 Iqlgax dim f~1{q)—n

Sdim Q+(1—i).
We can modify h; so that 8;) dim X;<dim Q+1—i. Then we have proved [Lemmal
(2, 7).

Proof of Since dim Xpy: < dim Q+1—(n+2)< 0. Xp3=¢ and
then there is no simple chain of length = #+2 in I'pye. It is clear that a,,.;) and

Br42) implies that there is no cyclic chain in I'ny. Therefore h=h,,, is the required

p- w. . mapping.

4. Proof of Theorem 1. Let {C,,---,C/'}, {C/,---,C/'}, {Cy, -, Ci} Dbe
families of (combinatorial) #-cell of M such that
C'uG"uU---uC'=M
c Céi', Ct'CC?, i=1,..., 1L
Let 7 be a positive number such that
n<d(C{, CY)/ n+2, d(C/,Cy.
Then 7 is the requied number. In fact if £, g, P,Q, R satisfy the assumption of
Theorem 1, put Pi=U {f"'(9)lge@, &/ ()N Cixg}, Ri=PiNR, f(P)=Q:.
Then &Dg(P,), and éi is p. w.1. homeomorphic to E”. From and by

o
induction with respect to { we have a p. w.l. mapping h: P—»M such that h;=h|P;
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satisfies the conditions 1), 2), 3}, 4, 5, ay), a3), a), B) for\ P, R, Q: and gi=g|P;, fi=f| P
I {hft(q), - ,hf'(gns2)} is a chain, from U C/'=M there is an ¢ such that
C'Nngfa)x¢. Smce dia U gf ) < m+2)n <d(C C/) We have U gft
(g5)c C¢ and then U f‘l (g5 CP From the condition p) for h; {h¢f ' (q1), hzf“
(gns2)} is not a 51mp1e chain. Hence we have proved that §) I” has no simple chain
of length = n+42. From p) it is clear that I has no cyclic chain of length = n+3.
Furthermore the condition @) for h; implies that I' has no chain of length < n+2.
Therefore we have proved [Theorem 1l
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