ON THE HAUPTVERMUTUNG FOR SMOOTHABLE MANIFOLDS

WiLriam A. LaBacu

In [3], Homma gave a /conditition which was sufficient for proving that every
closed #-manifold has a combinatorial triangulation and for proving the Hauptvermutung
for closed combinatorial manifolds. This condition was shown by Mazur [5] not to be
necessary in dimensions greater than or equal to 23. We give here a condition which
is both necessary and sufficient for the Hauptvermutung to hold for an unbounded
smoothable triangulated manifold K. We do not assume that K is either closed or
combinatorial and the smoothing is not assumed to be a compatible one. We do assume
that the reader is familiar with the notation and terminology of Whitehead’s paper on

transverse fields [7].

Theorem. Let K be a smoothable triangulated manifold. Then the Hauptver-
mutung holds for K if and only if for any smooth embedding f: K — R" of K into
a Euclidean space with codimension greater than zero, any transverse field ¢ of
class C™ (r=>1)on f(K) in R*, any ¢-neighborhood N of f(K), and any triangulated
manifold L homeomorphic with K there is a piecewise-linear embedding g:L — N
such that ng:L — f(K) is a homeomorphism (onto) where n is the g-projection.

Proof. Suppose the Hauptvermutung holds for K. By the Whitney Embedding
there is a smooth embedding f: K — R™ which we may assume to have
codimension greater than zero. By (1.10) of [7], f(K) admits a transverse field ¢ of
class C= and by (1.5) of [7] there is a g-neighborhood N of f(K). It follows by (1.9)
and (13.3) of [7] that there is a combinatorial manifold L’ in N such that = |L': L' —
f(K) is a homeomorphism (onto). Now let L be a triangulated manifold which is
homeomorphic with K. By hypothesis, there is a piecewise-linear homeomorphism
g:L— L' 1t follows that zg: L — f(K) is a homeombrphism.

Conversely, suppose K, f, g satisfy the conditions of the theorem. If g: L—»N is a

piecewise-linear mapping such that = |g(L): g(L)—>f(K) is a homeomorphism, it follows

that = |g(L) is a C!-triangulation of f(K) since n: N—f(K) is a regular C'-mapping
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by remarks following (1.7) of [7]. By hypothesis, there is a piecewise-linear embedding
g': K— N such that #g': K — f(K) is a homeomorphism. It follows that z(g’(K)
is a C'-triangulation of f(K). By theorem 8 of [6], two triangulated manifolds which
C!-triangulate the same differentiable manifold are piecewise-linearly homeomorphic.
Thus g(L) and g’ (K) are piecewise-linearly homeomorphic and hence L and K are also.

We have thus reduced the Hauptvermutung for smoothable triangulated manifolds
to a problem of nicely approximating differentiable embeddings of such manifolds by
piecewise -linear ones. Actually, it is only the niceness condition that gives difﬁculty as
any locally tame embedding of a locally finite simplicial #--complex as a closed subset of
a Euclidean space can be approximated by a piecewise-linear embedding provided the
codimension is greater than #+1 [1,2]. We may replace #-+1 by 2 and delete the

local tameness condition in the case of embeddings of closed combinatorial manifolds [4].
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