
CALCULUS IN NON-LINEAR PROGRAMMING PROBLEM

By

KANTI SWARUP and R. K. GUPTA

In the recent paper [1] Wilde has derived with the help of calculus, the necessary
conditions for a relative minimum of non-linear differentiable objective function of non-
negative values constrained by non-linear differentiable inequalities.

It is possible to establish the sufficiency of these conditions by using only well
known theorems of differential calculus provided we assume further that the objective
function is such that it can be transformed into a strictly convex function under given
constraints. (Assuming sufficient differentiability, an anisotropically convex function may
be transformed into a convex function by application of the theory of invariance of
quadratic forms [4]. ) The results are expressed entirely in terms of partial derivatives.

According to Wilde a non-linear programming problem is to find a set of non-
negative variables, $x_{j}(j=1,2,\cdots J)$ that satisfy a set of differentiable constraints:

$f_{\ell}(x_{j})\geq 0$ $(i=1,2, \cdots I)$ (1)

and that also minimise a differentiable non-linear objective function $g(x)$ .
Let $f_{i}(x_{f})$ represent $I$ functions mapping $J$ real variables $x_{f}$ into real variables $f_{i}$ .

This transformation may be expressed by the following $I$ equations in the $I+J$ variables
$f_{\ell}$ and $x_{f}$.

$f_{\ell}-f_{i}(x_{f})=0_{j=1,\cdot J}^{i=1,\cdot\cdot..I}\}$ (2)

Let these equations have real solution ( $f_{i}^{o},$ $x_{j}^{0_{1}}$ such that

$f_{i}^{o}-f_{i\backslash }^{o_{(}}x_{f})=0$ (3)

The differentiability of $f_{i}(x_{j^{1}}$ guarantees that the $I$ functions $f_{i}=f_{i}(x_{j})$ regarded as
functions of all $I+J$ independent variables are differentiable in the neighbourhood of
the point $(f_{t}^{o}, x_{j}^{o})$ .
From among these $I+J$ independent variables, let us select any $I$ say $x_{l}(l=1, \cdots , p)$

and $f_{q}$ $(q=p+1, \cdots , I)$ wh$ere1\leq p\leq I$

If Jacobian
$|J(f_{i}^{o}, x_{j}^{o})|\neq 0$ (4)

then the set of equations (2) can be solved for $I$ variables $x_{l}$ and $f_{q}$ in terms of
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remaining $J$ variables which to be definite, we shall call $F_{r}(r=1,2, \cdots p)$ and $X_{s}(s=$

$p+1,$ $\cdot\cdot J$ )

Now we consider differentiable function $g(x_{j})$ as in [1]

$g(x_{f})=G(F_{r}, X_{s})$ (5)

at any point $(F_{r}, X_{\epsilon})$ in the vicinity of $(F_{r}^{o}, X_{\iota}^{o})$ such that $F_{r},f_{q},$ $x_{l}$ and $X_{\epsilon}$ satisfy

equation (2).

Let the value of $G$ at the point $(F_{\gamma}^{o}, X_{s}^{o})$ be designated by $G^{o}$ . Using the

approximation $threm$ about ( $F_{r}^{o},$ $X^{O|}$ , we have

$g-G^{o}=\sum_{r=1}^{p}(\frac{\partial G}{\partial F_{r}})^{o}(F_{r}-F_{r}^{o})+\sum_{s=p+1}^{J}(\frac{\partial G}{\partial X_{s}})^{o}(X_{S}-X_{l}^{o})$

$+\underline{\frac{1}{|2}}[\sum_{r=1}^{p}(\frac{\partial}{\partial}2\frac{G}{F_{r}^{2}})^{o}(F_{r}-F_{r}^{o})^{2}+lk=1$

$+\sum_{r=1}^{p}\sum_{\epsilon=p+1}^{J}(\frac{\partial^{2}G}{\partial F_{r}\partial X_{s}})^{o}(F_{r}-F_{r}^{0})(X_{\epsilon}-X_{l}^{o})+\sum_{s=p+1}^{J}(\frac{\partial^{2}G}{\partial X_{l}^{2}})^{o}(X_{l}-X_{\iota}^{0})^{2}$

$+\sum_{i,j=p+1}^{J}(\frac{\partial^{2}G}{\partial X_{i}\partial X_{f}})^{o}(X_{t}-X_{i}^{0})(X_{f}-X_{j}^{o})]S$ (6)

The symbol $(\frac{\partial G}{c1F_{k}})^{o}$ for some index $k(1\leq k\leq p)$ represents partial derivative of

$G$ with respect to $F_{k}$ at $(F_{r}^{o}, X_{l}^{o})$ .
Now we have assumed that equations (2) are such that the transformed objective

function $G(F_{r}, X_{*})$ is strictly convex differentiable function over the convex set $S$ ’ of

feasible solutions $x_{j}$ .
Therefore

$L=\underline{\frac{1}{|2}}[\sum_{r=1}^{p}(\frac{\partial^{2}G}{\partial F_{r}^{2}\prime})^{o}(F_{r}-F_{r}^{o})^{2}+\sum_{r=1}^{p}\sum_{s=p+1}^{J}(\frac{\partial’ G}{\partial F,\partial X_{s}})^{o}(F_{r}-F_{r}^{o})(X_{s}-X_{l}^{o})$

$+\ell k=1$

$+\ell,j\Rightarrow\sum_{\tau\neq J}^{J}p=1(\frac{\partial^{2}G}{\partial X_{i}\partial X_{j}})^{o}(X_{t}-X_{i}^{o})(X_{f}-X_{j}^{o})]$

(7)

(\copyright If $(f_{i}^{o},$ $x_{j}^{o})$ is a basic feasible solution)

\copyright For definition of basic feasible, non-degenerate and relative minimum etc., reference may be had

to Wilde’s paper.
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$L=\underline{\frac{1}{|2}}[\sum_{\gamma=1}^{p}(\frac{\partial^{1}G}{\partial F_{r}})^{o}F_{r}^{2}+\sum_{r=1}^{p}.\sum_{r=p+1}^{J}(\frac{\partial^{2}G}{\partial F_{r}\partial X_{s}})^{o_{F_{r}X_{s}\sum_{\ell\neq k}^{p}(}}+l,k=1\frac{\partial^{2}G}{\partial F,\partial F_{k}})^{0}F_{\ell}F_{k}$

$+\sum_{s=p+1}^{J}(\frac{\partial^{2}G}{\partial X_{l}^{2}})^{o}X_{\epsilon}^{2}+l,j-p+1i\neq J\sum_{-}^{J}(\frac{\partial^{2}G}{\partial X_{\ell}\partial X_{f}})^{o}X_{i}X_{f}]$

(8)

is a positive definite form, { $[2]$ Appendix}

$i.e$ . $L>0$ ,

for all values of $F_{r},$ $X_{s}$ except when
$F_{r}=0$

$X_{s}=0$

then $L=0$ . (9)

Theorem :

For a basic non-degenerate feasible solution to give a relative minimum, it is

necessary and sufficient that

$(\frac{\partial G}{\partial F_{r}})^{o}\geq 0$ $(r=1, \cdot p)$

(10)

$\left(\begin{array}{l}\partial G\\-\partial X_{s}^{-}\end{array}\right)\geq 0$ $(s=p+1, \cdots J)$

The non-degeneracy of the solution implies that it will remain feasible for

sufficiently small changes in $F_{r}$ and $X_{s}$ .
Necessary condition has been proved by Wilde in Lemma {1} of his paper.

To establish the sufficiency of these conditions we have to show that $G_{o}$ is a

relative-minimum,

when

$(\frac{\partial G}{\partial F_{r}})^{o}\geq 0$ $(r=1, \cdot\cdot p)$

$(\frac{\partial G}{\partial X_{s}})^{o}\geq 0$ $(s=p+1,\cdots J)$

Proof: The proof is divided into two parts. $\cdot$

1st Part: At least one of the first order partial derivatives is not zero.

2nd Part: All the first order partial derivatives are zero.

FIRST PART

Let $(\frac{\partial G}{\partial F_{k}})^{o}>0(1\leq k\leq p)$ while all other first order derivatives may be zero.
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From (6)

$g-G^{o}=(\frac{\partial G}{\partial F_{k}})^{o}F_{k}+O(F_{r}^{2}, X_{s}^{2})$ (11)

A point $(F_{r}, X_{s})$ considered can be taken in such a small neighbourhood of $(0,0)i.e$.
$(f_{i}^{o}, x_{j}^{o})$ so that $O(F_{r}^{2}, X_{s}^{2})$ can be neglected in comparison to $F_{k}\neq 0$

therefore $g-G^{o}>0$

or $g>G^{o}$

In case $F_{k}=0$ then $O(F_{r}^{2}, X_{s}^{2})$ can no longer be neglected and then

$g-G^{o}=L+O(F_{r}^{3}, X_{l}^{3})$ (12)

The result is also obvious when more first order partial derivatives are not zero.

SECOND PART

$\left(\begin{array}{l}G\partial\\\partial^{-}F_{r}^{-}\end{array}\right)=0$ $(r=1, \cdots p)$

$(\frac{\partial G}{\partial X_{s}})^{o}=0$ $(s=p+1, \cdots J)$

Now

$g(F_{r}, X_{S})-G^{o}=L+O(F_{r}^{3}, X_{s}^{3})$ (13)

Thus for (12) and (13) together, we have $L$ as a positive definite form.

Therefore $L>0$ for all feasible $(F_{r}, X_{\theta})$ except when
$F_{r}=0$ $(r=1, p)$

$X_{s}=0$ $(s=p+1, \cdots J)$

then $L=0$

in that case our feasible solution coincides with $(f_{\ell}^{o}, x_{j}^{o})$ which is a unique basic feasible
solution. Thus for all $(F,, X_{s})$ other than $(f_{4}^{0}, x_{j}^{o})$

$L>0$

$O(F_{r}^{3}, X_{s}^{3})$ can be neglected in comparison to $O(F_{r}^{2}, X_{s}^{2})$ which occurs in $L$ .
Therefore in some neighbourhood of $(f_{i}^{o}, x_{j}^{o})$

$g-G^{o}>0$

Thus $G^{o}$ is a minimum (relative).

Hence for any feasible solution $(f, x_{f})$ in some neighbourhood of non-degenerate
basic feasible solution $(f_{i}^{o}, x_{j}^{o})$
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$g>G^{o}$

$i.e$ . $G^{o}$ is a relative minimum.

As in [1] we have

$y_{l}=$

$h_{f}=\{$

$\left\{\begin{array}{l}\frac{\partial G}{\partial f_{i}} i=1,p\\0 i=p+l,\cdots\cdots I\end{array}\right.$

(14)
$0$ $j=1,$ $p$

$\frac{\partial G}{\partial x_{j}}$ $1=p+1,\cdots\cdot\cdot J$

Hence our theorem:

For a non-degenerate basic feasible solution $(f_{i}^{o}, x_{j}^{o})$ to give a relative-minimum

(which is also absolute minimum) the necessary and sufficient conditions are

$y_{i}^{o}\geq 0$ $i=1,$ $\cdots I$

(15)
$h_{j}^{o}\geq 0$ $j=1,$ $\cdots J$
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