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Introduction.

The concept of ultraproducts and ultrapowers is one of the main methods in the
theory of models. The ultraproduct is defined as a quotient image of the direct product
of relational structures together with the relations to be induced in it $(\lfloor 8], [17\rfloor)$ . Here
we give an attempt of an interpretation of it in terms of categories. The advantage of the
interpretation is that we can apply the new definition not only to usual structures with
relations of finite arguments, but also to any structures, like topological spaces, on which
some infinitistic notions may be dealt with, as far as the mappings that preserve the
structural relations take place between them. However, as seen later, the application of
the new definition to topological spaces causes a curious situation. Indeed, when we
consider the ultrapower of a structure, a natural isomorphic injection, which we call
the diagonal map in this paper, of the original structure into the ultrapower should be
expected, but this expectation does not hold in general. In the last section of this
paper, it will be shown that the diagonal map of a structure into the ultrapower would
be an isomorphic injection only when the structure satisfies some finitary condition.

To discuss about it, first we have to interpret the meaning of isomorphic injections
as a notion in the theory of categories. Injections are a kind of monomaps. It is
interesting that many propositions that hold between monomaps also hold between
injections. Moreover, under the assumtions of completeness and of a kind of smallness
of the treated category, it is seen that any map in it can be expressed as a composition
of an epimap and an injection. Thus such a category becomes a bicategory in the sense
of Isbell $([3\rfloor, [4\rfloor)$ . After reviewing the general notions about categories and establishing
the terminology in \S 1, we will give the definition of injections in terms of categories,
and investigate the properties of them in \S 2. The proposition that the diagonal map
of an object into the ultrapower of it is an injection is completely interpreted in the
theory of categories. However the finitary condition under which the proposition above
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holds for an object is no more a notion in general categories, but that in concrete

categories, categories whose objects have basic sets. In \S 3, we study about $\ovalbox{\tt\small REJECT} ncrete$

categories. As well known, the correspondence between terms in the $th\ovalbox{\tt\small REJECT} ry$ of categories

and those in the thory of sets is not strictly literal. In order to make it more literal

and natural, it is convenient to introduce some conditions on concrete categories, which

are usually satisfied by most of specific substantial concrete categories. Under the

condition we investigate about ultrapowers in a concrete category. \S 4 is devoted to

prove the Theorems about the diagonal maps into ultrapowers and the finitary conditions

on objects, as stated before.

\S 1. General notions on categories.

In this section we give the definitions of basic notions about categories, and

establish the terminology. Several propositions are stated without proofs, which are to

be found in [1], [2], [7], [9], $[12\rfloor, [13]$ or [15].

A category $\mathfrak{U}$ is a class of abstract elements called maps, among which associative

compositions are partly defined (that is, some pairs $f,g$ in $\mathfrak{U}$ uniquely determine a $h=fg$

in $\mathfrak{U}$ ) where conditions C. 1), C. 2) and C. 3) stated below are satisfied. The class of all

identities in $\mathfrak{A}$ is denoted by $|\mathfrak{U}|$ . Maps in $|\mathfrak{U}|$ are called objects. Let $f,$ $g$ and $h$ be

maps in $\mathfrak{U}$ .
C. 1) Each $f$ uniquely determines an $A$ and a $B$ in $|\mathfrak{A}|$ such that $fA=Bf=f$

$A$ and $B$ in C. 1) are called the domain and the range of $f$ respectively, and

denoted by $A=Do(f)$ and $B=Rg(f)$ .

C. 2) The composjti0n $fg$ is defined in $\mathfrak{U}$ if and only if Do $(f)=Rg(g)$ .

C. 3) If either of $f(gh)$ and $(fg)h$ is defined in $\mathfrak{A}$ then the other is also

defined and they are identical.

Hence we have Do $(fg)=Do(g)$ and Rg $(fg)=Rg(f)$ . The triple $\ovalbox{\tt\small REJECT} mwsition$ fgh

is defined if and only if both $fg$ and $gh$ are defined. When Do $(f)=A$ and Rg $(f)=B$,

we write
$A\rightarrow^{f}B$ or $f:A\rightarrow B$, for which we may simply write $A-B$ if there

is no need to name the map. Similarly the composition of $A-B$ and $B\rightarrow C$ is

represented by $A-B-C$ . However in the diagram of fig. 1, for instance, it is

not necessary to have $fg=h$ . If the equality holds, we say that the diagram is

commutative. and write as in fig. 2 when we show the commutativity particularly. Also
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the diagram in fig. 3 shows $fg=hk$ .

$A\downarrow fg\rightarrow Bh\backslash C$ $A\rightarrow Bh\backslash C\copyright\downarrow fg$ $k\downarrow AC\rightarrow D\rightarrow B@\downarrow^{f}g$

$h$

fig. 1 fig. 2 fig. 3
The class of all maps $f$ with $A=Do(f)$ and $B=Rg(f)$ is denoted by Hom $(A, B)$ .

$f$ is called a monomap if $fg=fh$ implies $g=h$ . $f$ is called an ePimap if $gf=hf$ implies
$g=h$ . When $gf\epsilon|\mathfrak{U}|,$ $g$ is called the reverse of $f,$ $f$ is called the coreverse of $g,$ $f$ is

called reversible and $g$ is called coreversible. A reversible and coreversible map is called an
isomap. Two maps $f:A\rightarrow B$ and $g:C\rightarrow D$ are called equivalent if there exist isomaps
$a:A\rightarrow C$ and $b:B-D$ such that $bf=ga$ . The reverse of an isomap $a$, which is

unique and is automatically the coreverse of $a$ , is denoted by $a^{-1}$ .
PROPOSITION 1. A reversible map is a monomap. A coreversible map is an

epimap. Reversible epjmaps and coreversible monomaps are isomaps.

(See [9], [15]).

PROPOSITION 2. If both $A\rightarrow B$ and $B-C$ are monomaps (resp. epjmaps),

then so also is the composite map $A\rightarrow B\rightarrow C$ . If $ihe$ composite map $A\rightarrow B-C$

is a monomap (resp. an epimap), then so also is $A\rightarrow B$ (resp. $B-C$].

(See [9], [15]).

In general the class of maps of a category $\mathfrak{A}$ may be very large beyond any

cardinality. We say that $\mathfrak{U}$ is small if it is a set, and large otherwise. However, it is

sometimes convenient to require the following smallness for a large category (see [14],

[ $ 15\rfloor$ ). A category $\mathfrak{A}$ is called locally small to the right (resp. to the left), if

LS. 1) for any $A$ and $B$ in $|\mathfrak{A}|$ , Hom $(A, B)$ is a set, and

LS. 2) (resp. LS. 2’)) for each $A$ in $|\mathfrak{U}|$ there exists a set $\mathfrak{C}_{A}$ (resp. $\mathfrak{M}_{A}$ ) of
epimaps (resp. monomaps) $f$ with Do $(f)=A$ (resp. Rg $(f)=A$ ) such that for any
epjmap (resp. monomap) $g$ with Do $(g)=A$ (resp. Rg $(g)=A$ ) there exists a $f$ in $\mathfrak{E}_{A}$

(resp. in $\mathfrak{M}_{A}$ ) equivalent to $g$.

A category $\mathfrak{A}$ which is locally small both to the right and to the left is simply
called locally small. The set $\mathfrak{E}_{A}$ (resp. $\mathfrak{M}_{A}$ ) is called the set of representatives of epimaps
(resp. monomaps) from $A$ (resp. to $A$ ).
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Example. Let $|\mathfrak{U}|$ bc the class of all ordinal numbers, and let $\mathfrak{U}$ be the category

which consists of all maps $f:A-B$ uniquely determined by each $A$ and $B$ in $|\mathfrak{U}|$

such that $A\leqq B$. Then every map in $\mathfrak{U}$ is a monomap and an epimap. $\mathfrak{U}$ is locally

small to the left, but not to the right.

Let $\mathfrak{U}$ and $\mathfrak{B}$ be categories, and $F$ an application from $\mathfrak{B}$ to $\mathfrak{U}$ . $F$ is called a

(covariant) functor if it preserves the compositions. (In this paper we deal with neither

contravariant functors nor many-argumented functors, about which refer to [1], [2],

[7], [10], [ $ 13\rfloor$ or [ $15-|.$ ) A functor from a small category $\mathfrak{B}$ to $\mathfrak{U}$ is called a diagram

in $\mathfrak{U}$ , where $\mathfrak{B}$ is called the indcx category and each map $a$ in $\mathfrak{B}$ is called the index

of the map in the diagram to which $a$ is applied. A diagram is often represented by

letters for objects in $|\mathfrak{U}|$ and arrows between them for maps in ?1, like fig. 1. However,

the same objects or the same maps in $\mathfrak{U}$ may be different things in a diagram, if they

are images from different indices. Furthermore, when we say about an object of a

diagram, it means the image of an object in the index category. An arrow in a diagram

may be incidentally an object in $\mathfrak{U}$ , but it is by no means an object in the diagram.

Let $\mathfrak{D}$ be a diagram in $\mathfrak{A}$ with the index category $\mathfrak{B}$ , and $X$ an object in $\mathfrak{U}$ .
Assume that a map $f_{A}$ : $D_{A}-X$ (resp. $f_{A}$ : $X-D_{A}$ ) is assigned to each $A\epsilon|\mathfrak{B}|$ where
$D_{A}$ is the object of the diagram indexed with $A$ . Such a family $\{f_{A}\}_{A\epsilon}\mathfrak{s}\mathfrak{B}|$ is called

compatible to the right (resp. to the left) for $\mathfrak{D}$ if for each arrow $D_{\Lambda}-D_{B}$ in $\mathfrak{D}$ we

have

$D_{A}D_{B}\downarrow\nearrow\backslash \copyright Xf_{A}f_{B}$ $(resp$ . $X\copyright\downarrow\backslash \nearrow f_{B}f_{A}D_{B}D_{A}]$

Further, we say that $X$ is the direct limit (resp. the inverse limi) of $\mathfrak{D}$ with

the canonical mals $f_{A}$ , if $\{f_{A}\}_{A_{-}|\mathfrak{B}|}$, is $\ovalbox{\tt\small REJECT} mpatible$ to the right (resp. to the left) for
$\mathfrak{D}$ , and for any $Y\epsilon|\mathfrak{A}|$ and for any family $\{g_{\Lambda}\}_{A\epsilon|}\mathfrak{B}_{I}$ of maps $g_{A}$ : $D_{A}-Y$ (resp.

$g_{A}$ : $Y-D_{A}$ ) $\ovalbox{\tt\small REJECT} mpatible$ to the right (resp. to the left) for $\mathfrak{D}$ , there exists uniquely a
$h:X\rightarrow Y$ (resp. $h:Y-X$ ) such that

$f_{A}X$

$D_{A}\copyright\backslash \nearrow\downarrow hY$

$g_{A}$

$Yg_{A}$

$(resp$ .
$h\downarrow X\nearrow\backslash \copyright D_{A}f_{A}]$

for each $A\epsilon|\mathfrak{D}|$ . The map $h$ is called the characteristic map induced by the
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$\ovalbox{\tt\small REJECT} mpatible$ family $\{g_{A}\}_{A\epsilon}|\mathfrak{D}|$ . The direct limit (resp. the inverse limit) is uniquely
determined up to the equivalence class, if it exists. The direct limit of a diagram $\mathfrak{D}$ is
denoted by $\lim_{\rightarrow}[\mathfrak{D}]$ or $\lim D_{A}$ where $\mathfrak{B}$ is the index category of $\mathfrak{D}$ . Similarly the

$ A\epsilon\rightarrow$

inverse limit of $\mathfrak{D}$ is denoted by $\lim_{\leftarrow}[\mathfrak{D}]$ or $\lim D_{A}$ . Further, for instance, the direct
$A\epsilon\leftarrow|\mathfrak{B}|$

limit of the diagram in fig. 4 is denoted as in fig. 5.

$A^{f\bigwedge_{ig}B}\backslash _{4}C$ $\lim_{\rightarrow}[A_{\searrow C ,fig.5}^{\nearrow B}]$

Let $\mathfrak{D}$ be a diagram in $\mathfrak{U}$ which consists of an object $A$ , objects $B_{\lambda}$ and maps
$f_{\lambda}$ : $ A-B_{\lambda}wheJe\lambda$ is the index that runs through a set $\Lambda$ . Then the direct limit of $\mathfrak{D}$

$f_{\lambda}$

is often described as $\lim_{\rightarrow}[A\rightarrow B_{\lambda}]_{I\epsilon\Lambda}$ or as $\lim_{\rightarrow}[f_{\lambda} : A\sim B_{\lambda}]_{\lambda\epsilon\Lambda}$ . Similar conventions
are used for other diagrams as well as for inverse limits.

A category $\mathfrak{U}$ is called right complete (resp. left complete) if every diagram in $\mathfrak{U}$

has the direct limit (resp. the inverse limit). $\mathfrak{U}$ is called finitely right conplet (resp.
$ti$nitely left complete) if every finite diagram in $\mathfrak{U}$ has the direct limit (resp. the inverse
limit). $\mathfrak{U}$ is called (finitely) complete if it is (finitely) both right and left complete.

If the diagram $\mathfrak{D}$ contains no arrows, then $\lim_{\leftarrow}[\mathfrak{D}]$ is called the product of
$A\epsilon \mathfrak{D}$ , and denoted by $\Pi[\mathfrak{D}]$ or $\prod_{\lambda\epsilon\Lambda}A_{\lambda}$ where $\Lambda$ is the index category of $\mathfrak{D}$ , and
$\lim_{\rightarrow}[\mathfrak{D}]$ is called the coproduct of $A\epsilon \mathfrak{D}$ , and denoted by $\Pi*[\mathfrak{D}]$ or $\prod_{\lambda\epsilon A}*A_{\lambda}$ . If $\Lambda$ is
a finite set $\{$ 1, 2, $\cdots$ , $n\}$ , then $\prod_{\lambda\epsilon\Lambda}A_{\lambda}$ and $\Pi*A_{\lambda}$ are denoted by $A_{1}\times A_{2}\times\cdots\times A_{n}$

$\lambda\epsilon Af_{\lambda}$

and $A_{\iota^{*}}A_{2^{**}}\cdots A_{n}$ respectively. $X=\lim_{\leftarrow}[A\rightarrow B]_{\lambda\epsilon\Lambda}$ is called the equalizer of
maps $f_{\text{{\it \‘{A}}}}$ , and the canonical map $X\rightarrow A$ is called the equalizer map. $X=\lim_{\rightarrow}$

$f_{\lambda}$

$[A\rightarrow B]_{2\epsilon\Lambda}$ is called the coequalizer of maps $f$), and the canonical map $B\rightarrow X$

$f_{\lambda}$

is called the coequalizer map.
$X=\lim_{\leftarrow}[A_{\lambda}-B]_{\lambda e\Lambda}$ is called the. pullback of maps

$f_{\lambda}$ , and the canonical map $X-B$ is called the pullback map. $X=\lim_{\rightarrow}[A\rightarrow^{f_{\lambda}}B_{\lambda}]_{\lambda\epsilon A}$

pushout of maps $f$), and the canonical map $A-X$ is called is called the pushout
map. When $\Lambda$ consists of finite members, the product $\prod_{\lambda\epsilon A}A_{\lambda}$ is called the finite
product. Similarly finite coproducts, finite equalizers, etc., are defined. A category $\mathfrak{A}$ is
said to have (finite) products, or closed with (finite) products, if every indexed family

$\{A_{\lambda}\}_{\lambda\epsilon\Lambda}$ has the product, where $\Lambda$ is a (finite) set. $\mathfrak{U}$ is said to have (finite) equalizers,
$f_{\lambda}$

or closed with (finite) equalizers, if every diagram $[A-B]_{\lambda rA}$ for a (finite] set
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$\Lambda$ has the equalizer. Similar definitions are given for the closedness with (finite)

coproducts, (finite) pullbacks, etc..

PROPOSITION 3. An equalizer map $\iota s$ a monomap $\cdot$ A coequalizer map is an

epimap.

(See [10] or [13]).

PROPOSITION 4. A category is left (resp. right) complete if and only if it is

closed with products (resp. coproducts) and with finite eqnalizers (resp. finite
coequalizers).

(See [10] or [15]).

PROPOSITION 5. If
$X=\lim_{\leftarrow}[_{B\nearrow}^{A\sim^{f}}C]$ and $f$ is a monomap, then the canonical

map $X-B$ is a monomap. Also the dual proposition holds for a pushout and

epjmaps.

(See [13] or [15]).

Let $\mathfrak{D}$ and $\mathfrak{D}^{\prime}$ be two diagrams with the same index category $\mathfrak{B}$ . A collection

$\mathfrak{H}$ of masp $h_{A}$ : $D_{A}-D_{A}^{\prime}$ , where $D_{\Lambda}$ and $D_{A}^{\prime}$ are objects in $\mathfrak{D}$ and $\mathfrak{D}^{\prime}$ respectively

indexed by A $\epsilon|\mathfrak{B}|$ , is called a natural transformation from $\mathfrak{D}$ to $\mathfrak{D}^{\prime}$ , if for every

a $\epsilon \mathfrak{B}$ with $a:A\rightarrow B$ we have $f_{a}^{\prime}h_{A}=h_{B}f_{a}$ where $f_{a}$ and $f_{a}^{\prime}$ are maps in $\mathfrak{D}$ and $\mathfrak{D}$
‘

respectively indexed by $a$ . $\mathfrak{H}$ is called a natural epi-transformation (resp. a natnral

$mono-transformation)$ , if every $h_{A}$ is an epimap (resp. a monomap). If $X=\lim_{\rightarrow}[\mathfrak{D}],$
$X^{\prime}=$

$\lim[\mathfrak{D}^{\prime}]$ and if $g_{A}$ : $D_{A}-X$ and $g_{A}^{\prime}$ : $D_{A}^{\prime}-X^{\prime}$ are canonical maps, then the set

$\{g_{A}^{\prime}h_{A}\}_{A\epsilon 1}\mathfrak{B}|$ of maps is compatible to the right for $\mathfrak{D}$ , and we have the characteristic

map $h:X-X^{\prime}$ , which we call the direct limit of $\mathfrak{H}$ . Similarly the inverse limit

of $\mathfrak{H}$ is defined.

PROPOSITION 6. If $\mathfrak{H}$ is a natural epi-transformation from a diagram $\mathfrak{D}$ to

another $\mathfrak{D}^{\prime}$ , then the direct limit of $\mathfrak{H}$ is an epjmap. Similar proposiit0n holds for
a natural mono-transformation and the inverse limit.

PROOF. We use the same notations as stated above. Assume $u,$ $v:X^{\prime}-Y$

and $uh=vh$ , where $Y\epsilon|\mathfrak{A}|$ . Then we have $ug_{A}^{\prime}h_{A}=uhg_{A}=vhg_{A}=vg_{A}^{\prime}h_{A}$ , and $h_{A}$

being an epimnp, $ug_{4}^{\prime}=vg_{A}^{\prime}$ . Since the $\ovalbox{\tt\small REJECT} 1lection$ $\{ug_{A}^{\prime}\}_{A\epsilon|}\mathfrak{B}\mathfrak{s}$ of maps is compatible

to the right for $\mathfrak{D}^{\prime}$ , the uniqueness of the characteristic map $X^{\prime}-Y$ implies $u=v$ .
$q.e.d$ .
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COROLLARY. 1. If $f_{\lambda}$ : $A-B_{\lambda}$ is an epimap for every $\lambda\epsilon\Lambda$ , then the push0ut

map $f:A\rightarrow X$ is an epimap, pr0vided the pushout $X$ exists.
$f_{\lambda}$

PROOF. Let $\mathfrak{D}^{\prime}$ be the diagram $[A-B_{\lambda}]_{\lambda\epsilon\Lambda}$ , and $\mathfrak{D}$ the constant diagram

with the index category $\mathfrak{D}^{\prime}$ where $A$ is assigned to every member of $\mathfrak{D}^{\prime}$ . Apply the

previous proposition to the natural transformation $\mathfrak{H}=\{f_{\lambda}\}_{\lambda\epsilon\Lambda}$ . $q.e.d$ .
Referring to Proposition 2, we can see that every canonical map $B_{\lambda}\rightarrow X$ in the

corollary above is also an epimap.

COROLLARY 2. Let $\mathfrak{D}$ be a diagram in $\mathfrak{U}$ with the index category $\mathfrak{B}$ , and
$D_{A}$ the object in $\mathfrak{D}$ indexed by $A\epsilon|\mathfrak{B}|$ . We assume that $X=\lim_{\rightarrow}[\mathfrak{D}]$ exists. If $Y\epsilon|\mathfrak{U}|$

and $\{g_{A} : D_{A}-Y\}_{A\epsilon|\mathfrak{B}_{1}}$ is a family of epimaps $g_{A}$ compatible to the right for $\mathfrak{D}$ ,

then the characteristic map $X\rightarrow Y$ is an epimap.

Let $A$ and $B$ be two objects in $\mathfrak{U}$ . $A$ is called prjme on $B$ if there is no map
$A\rightarrow B$, and $non-lrime$ otherwise.

PROPOSITION 7. Let $\{A_{\lambda}\}_{\lambda\epsilon\Lambda}$ be an indexed family of objects in $|\mathfrak{A}|$ , and $\xi$

a member of $\Lambda$ . If $A_{\xi}$ is non-prime on $A_{\lambda}$ for every $\lambda\epsilon\Lambda$ , then the canonical map
$\prod_{\lambda\cdot\Lambda}A_{\lambda}\rightarrow A_{\xi}$ is coreversible, and particularly an epimap.

PROOF. Take a map $f_{\lambda}$ : $A_{\xi}\rightarrow A_{\lambda}$ for each $\lambda\epsilon\Lambda$ , and particularly let $f_{\xi}=A_{\xi}$ .
Then the characteristic map $A_{\xi}\rightarrow\prod_{\lambda e\Lambda}A_{\lambda}$ induced by the family $\{f_{\lambda}\}_{\lambda\epsilon A}$ is surely the

coreverse of the canonical map $\prod_{\lambda\epsilon\Lambda}A_{\lambda}-A_{\xi}$ . See [9] for the detail. $q.e.d$ .

Especially if $A_{\lambda}=A$ for every $\lambda\epsilon\Lambda$ , then no $A_{\xi}$ is prime on another and the

canonical map $\prod_{\lambda\epsilon A}A_{\lambda}-A_{\xi}$ is always coreversible. In this case the product $\prod_{\lambda\epsilon A}A_{\lambda}$ is

called the p0wer of $A$ and denoted by A.

\S 2. Injections.

In this section we will give the definition of injections and study the properties

of them. Injections are maps which are to turn out the set-theoretical injections in

concrete categories. Injections are monomaps, and it is interesting that many theorems

about monomaps are also valid after replacing injections for monomaps. Furthermore,

under the assumption of right completeness and local smallness to the right, any map

in a category is decomposed into an epimap and an injection. This fact will be seen

first. Finally we will give the definition of ultraproducts of objects in terms of the

theory of categories. We sometimes omit the dual statement in the definitions or in



24 TADASHI OHKUMA

the $th\infty rems$ if there is no need to state particular terminology or particular notices.

DEFINITION 1. A category is called right perfect, if it is locally small to the

right and right complete. Left perfectness of a category is dually given. A category

is perfect if it is both right and left perfect.

DEFINITION 2. A map $g:A\rightarrow C$ is called an epi-factor of a map $f:A\rightarrow B$,

if it is an epimap and there exists a map $h:B-C$ with $f=hg$. Dually $g:C-B$
is called a mono-factor of $f:A-B$, if it is a monomap and there exists a map
$h:A\rightarrow C$ with $f=gh$ .

DEFINITION 3. A factorization $A\rightarrow^{g}C-B$ of $f:A-B$ is called an epifactori-
$h$

zation if $g$ is an epimap. An epifactorization $A\rightarrow^{g}C\rightarrow^{h}B$ of $f:A\rightarrow B$ is called

critical if any epifactor of $f$ is an epifactor of $g$. When $A\rightarrow^{g}C\rightarrow^{h}B$ is a critical

epifactorization of $f:A-B,$ $g,$ $h$ and $C$ are called the epicomponent, the injection part

and the image of $f$ respectively, and denoted by $i_{f},$ $j_{f}$ and ${\rm Im}(fJ$ respectively. $f:A\rightarrow B$

is called an injection if it has the domain $A$ itself as the epicomponent.

Let $\mathfrak{U}$ be a right perfect category, and $f:A\rightarrow B$ a map in it. Since $\mathfrak{U}$ is locally

small to the right, there exists a set $\mathfrak{E}_{A}$ of representatives of epimaps from $A$ . Let $\mathfrak{E}_{f}$

be the set of all maps in $\mathfrak{E}_{A}$ each equivalent to an epifactor of $f$ $\mathfrak{E}_{f}$ is not void, since

at least the domain $A$ itself is an epifactor of $f$ Let $C$ be the pushout of the family
$\mathfrak{E}_{J}$ , and $i:A\rightarrow C$ the canonical map. We say that a family $\{h_{\lambda} : A_{\lambda}\rightarrow B\}_{\lambda e\Lambda}$ is

$f_{\lambda}$

compatible for the pushout diagram $[A\rightarrow A_{\lambda}]_{\lambda\epsilon\Lambda}$ if $h_{\lambda}f_{\lambda}=h_{\xi}f_{\xi}$ for any $\lambda$ aud $\xi$ in
$\Lambda$ . Since for each $g\epsilon \mathfrak{E}_{f}$ with $g:A\rightarrow A,$ , we have $h_{g}$ : $A_{q}\sim B$ with $h_{q}g=f$, the

family $\{h_{9}\}g\epsilon \mathfrak{E}_{f}$ is compatible for the pushout diagram $[A\rightarrow^{g}A_{J}]_{q\epsilon \mathfrak{C}_{J}}$ , and we have

the characteristic map $j:C\rightarrow B$ with $f=ji$ . By Corollary 1 of Proposition 6, $i$ is an

epimap, and hence an epifactor of $f$ Obviously $i$ is the epicomponent of $f$, and
$j$ $j$

$A\sim C\rightarrow B$ is the critical epifactorization of $f$ Thus we have

THEOREM 1. If a category $\mathfrak{U}$ is right perfect, then any map in it admits the

critical epifactotrization of it.
In general if $f:A\rightarrow B$ admits the critical epifactorization, it is obvious that the

epicomponent of $f$ is uniquely determined up to the equivalence class. Since $i_{f}$ is an

epimap, $f=ki_{f}$ implies $k=j_{f}$ . Hence the injection part of $f$ is also uniquely determined
$\tau\cdot\leftrightarrow*-*L\Leftrightarrow-.*\ovalbox{\tt\small REJECT}\tau\tau\circ 1\Leftrightarrow---\prime 1_{\alpha\sigma 0}$
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Next we shall investigate the properties of injections.

LEMMA 1. If a map $f:A-B$ admits the critical epifactortzation, then the
injection part $j_{f}$ is an injection.

PROOF. Let ${\rm Im}(f$]
$C\underline{g}\rightarrow^{h}B$ be an epifactorization of $j_{f}$ : ${\rm Im}(f)\rightarrow B$. Then

since $gi_{f}$ is an epifactor of $f$, there exists a $g^{\prime}$ : $C\rightarrow{\rm Im}(f)$ such that $g^{\prime}gi_{f}=i_{f}$ .
Since $i_{f}$ is an epimap, this shows $g^{\prime}g={\rm Im}^{(}f$). Hence $g$ is a reversible epimap, and
is an isomap by Proposition 1. $q.e$ . $d$ .

LEMMA 2. If the category is closed with coequalizers, then any injection
$j:A\rightarrow B$ is a monomap.

PROOF. Let $f,$ $g:D\rightarrow A$ be two maps with $jf=jg$, and $h:A\rightarrow C$ the
coequalizer map of $\{f,g\}$ . Since the family $\{j, jf\}$ is compatible to the right for the
diagram $[D\rightarrow\rightarrow A]J$ we have the characteristic map $k:C-B$ such that $j=kh$ . Since

$g$

$h$ is an epimap by Proposition 3, it is an epifactor of $j$. Hence it is equivalent to the
object $A,$ $i$ . $e.$ , an isomap. But then $hf=hg$ implies $f=g$. $q$ . $e$ . $d$ .

Lemma 1 shows that the term “the injection part” for $j_{f}$ is adequate. Theorem
1, together with Lemma 1 and Lemma 2, shows that a right perfect category is a
bicategory in the sense of Isbell (see [3], [6], [19]).

THEOREM 2. A reversible map is an injection.
$h$ $k$

PROOF. Assume that $f:B-A$ is the reverse of $g:A-B$, and $A\rightarrow C\rightarrow B$

is an epifactorization of $g$. Then the epimap $h$ has the reverse fl: $C-A$ , and hence
is an isomap. $q.e.d$ .

THEOREM 3. If the composite map $A\rightarrow^{f}B\rightarrow^{g}C$

is an injection, then so also
is $f$ If the category $\mathfrak{U}$ is closed $w!th$ pushouts, and both maps $f:A-B$ and
$g:B\sim C$ are injections, then the composite map $gf$ is also an injection.

PROOF. The first statement is obvious, since any epifactor of $f$ is an epifactor
of the $\ovalbox{\tt\small REJECT} m\mu$)$site$ map $gf$.

Assume that $f:A\rightarrow B$ and $g:B\rightarrow C$ are injections and $A\rightarrow^{k}D\rightarrow^{h}C$ is an
epifactorization of the composite map $gf$. Let $X$ be the pushout of $\{f, k\}$ and
$a:D\rightarrow X,$ $b:B\rightarrow X$ the canonical maps. Since
the family $\{g, h\}$ of maps is compatible for the

$\nearrow^{f}$

$\backslash -\sim$
$\sim\backslash _{\lambda}$

$B\sim g$

pushout diagram
$A^{\prime B}f$

$b$ $x-\underline{(}>C$

$\backslash _{k}D$

we have the characteristic $ A\sim$
$\nearrow a/hv$

map $c:X\sim C$. $b$ is an epimap by Proposition 5 $k$

$D/$



26 TADASHI OHKUMA

and hence an epifactor of the injection $g$. Henoe $b$ is an isomap. But then $k$ is an

epifactor of the injection $f$, since $f=b^{-1}ak$ . Hence $k$ is an isomap. $q.e.d$ .

THEOREM 4. An eqalizer map is an injection.
$f_{\lambda}$

PROOF. Let $g:A-B$ be the equalizer map of the diagram $[B\rightarrow C]_{\lambda\epsilon A}$

and $A\rightarrow Dh\rightarrow Bk$ an epifactorization of $g$. For any 2, $\xi\epsilon\Lambda$ we have $f_{\lambda}kh=f_{\lambda}g=f_{\xi}g=$

$f_{\xi}kh$ . But since $h$ is an epimap, we have $f_{\lambda}k=f_{\xi}k$ . Hence the familv $\{k,f_{\lambda}k\}_{\lambda\epsilon\Lambda}$ is
$f_{\lambda}$

compatible to the left for the diagram $[B\rightarrow C]_{\lambda\epsilon A}$ and we have the characteristic

map $h^{\prime}$ : $D\rightarrow A$ such that $gh^{\prime}=k$ . Then $gh^{\prime}h=kh=g$ which implies $h^{\prime}h=A$ sinoe $g$

is a monomap by Proposition 3. Hence $h$ is a reversible epimap and hence an isomap

by Proposition 1.

THEOREM5. If the category is closed with pushouts,
$X=\lim_{\leftarrow}[_{B\nearrow}^{A\backslash ^{f}}C]andqed$

$f$ is an injection, then the canonical map $X-B$ is an injection.

This theorem is proved similarly to the next theorem.

THEOREM 6. Assume that the category is closed with pushout and let $\mathfrak{D}$ and
$\mathfrak{D}^{\prime}$ be diagrams wiih the same index category $\mathfrak{B}$ . If $\mathfrak{H}$ is a natural transformation of
$\mathfrak{D}$ into $\mathfrak{D}^{\prime}$ such that every $h_{A}\epsilon \mathfrak{H}$ with A $\epsilon|\mathfrak{B}|$ is an injecton, then the inverse

limit $x$ of $\mathfrak{H}$ is an injection of $X=\lim_{\leftarrow}[\mathfrak{D}]$ into $X^{\prime}=\lim_{\leftarrow}[\mathfrak{D}^{\prime}]$ (provided they exist).

PROOF. Let $g_{A}$ : $X-D_{A}$ and $g_{A}^{\prime}$ : $X^{\prime}\rightarrow D_{A}^{\prime}$ be the canonical maps of $X$ and
$X^{\prime}$ respectively where $D_{A}$ and $D_{A}^{\prime}$ are objects of diagrams $\mathfrak{D}$ and $\mathfrak{D}^{\prime}$ respectively

indexed by $A\epsilon|\mathfrak{B}|$ . Let $X\rightarrow Y-X^{\prime}hk$ be an epifactorization

$ofx.LetZ_{A}bethepushoutofy_{A}:Y\rightarrow Z_{A}thecanonica1maps.Sincethefami1y\{h_{A}, g_{A}k\}\{g_{A}, h\}andz_{A}$

: $D_{A}-Z_{A}$ $hXD_{A}\}^{\prime}-z’\downarrow^{1}\underline{y_{A}\underline{g}}_{\Lambda}I_{A}^{z_{A}}$

is compatible for the pushout diagram $[x_{\hslash}^{g_{A}D_{A}}\nearrow]\backslash Y$ there is the $kX’\rightarrow D_{A}\downarrow\underline{g_{A}^{\prime I^{1},ll_{A}}}$

characteristic map $u_{A}$ : $z_{A}\rightarrow D_{A}^{\prime}$ such that $h_{A}=u_{A}z_{A}$ and $u_{A}y_{A}=$

$X\rightarrow^{g_{A}}D_{A}\rightarrow D_{B}f_{a}$

$g_{A}^{\prime}k$ . Then since $z_{A}$ is an epimap by Propositian 5, it is an

epifactor of the injection $h_{A}$ . Hence it is an isomap,
$aand$

putting
$h\downarrow\nearrow^{y_{A}^{\prime}}/^{\prime},y_{B}Y|_{h_{A}}^{1,\prime}/|1_{l_{B}}$

$y_{A}^{\prime}=z_{A}^{-1}y_{A}$ , we have $y_{A}^{\prime}h=z_{A}^{-1}y_{A}h=z_{A}^{-1}z_{A}g_{A}=g_{A}$ and $h_{A}y_{A}^{\prime}=$

$kX\downarrow^{1},$

$\rightarrow D_{A}^{\star}\rightarrow D_{B}$

$u_{A}z_{A}z_{A}^{-1}y_{A}=u_{A}y_{A}=g_{A}^{\prime}k$ . But then for the map $f_{a}$ : $D_{A}-D_{B}$

and $f_{a}^{\prime}$ : $D_{A}^{\prime}\rightarrow D_{B}^{\prime}$ in the diagram $\mathfrak{D}$ and $\mathfrak{D}$
‘ respectively indexed by $a\epsilon|\mathfrak{B}|$ , we have

$h_{p}f_{-\eta_{\Lambda}^{\prime}}=ph_{A}v_{\Lambda}^{\prime}=p_{n}\sigma_{\Lambda}^{\prime}k=\sigma_{R}^{\prime}k=h_{R}\backslash /^{\prime}R$ . Since $h_{R}$ is a monomaD bv Lemma 2. we
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have $f_{a}y_{A}^{\prime}=y_{B}^{\prime}$ for any $a:A\rightarrow B$ in the index category B. Henoe the family

$\{y_{A}^{\prime}\}_{A\epsilon|\mathfrak{B}|}$ is compatible to the left for $\mathfrak{D}$ , and we have the characteristic map $h^{\prime}$ : $Y-X$

such that $g_{A}h^{\prime}=y_{A}^{\prime}$ for every $A\epsilon|\mathfrak{B}|$ . Now $g_{A}h^{\prime}h=y_{A}^{\prime}h=g_{A}$ , and the uniqueness of

the characteristic map $X-X$ induced by the family $\{g_{A}\}_{A\epsilon_{1}}\mathfrak{B}_{1}$ implies $h^{\prime}h=X$.

Henoe $h$ is a reversible epimap and henoe an isomap by Proposition 1. $q.e.d$ .
One can see that Theorems 2, 3, 4, 5, and 6 for injections correspond to Proposions

1, 2, 3, 5, and 6 for monomaps respectively. Note that we assumed only the closedness

of the category with coequalizers and pushouts in the Theorems. Henoe the theorems

hold for general finitely right complete categories.

Now we shall give the definition of ultraproducts in terms of categories.

DEFINITION 4. Assume that the caregory $\mathfrak{U}$ is closed with products and right

complete. Let $\Lambda$ be a set and $A_{\lambda}$ an object in $|\mathfrak{U}|$ assigned to each $\lambda\epsilon\Lambda$ . Let $\Xi$ and $\Xi^{\prime}$

be subsets of $\Lambda$ . If $\Xi^{\prime}\subset\Xi$ , then the product $\prod_{\lambda\epsilon\Xi^{\prime}}A_{\lambda}$ is called a subproduct of $\prod_{\lambda e\Xi}A_{i}$ .
Let $\xi$ be an element of $\Xi^{\prime}$ and $p_{\xi}^{\Xi}$ ;

$\prod_{\lambda\epsilon\Xi}A-A_{\xi}$ the canonical map. Then the family

$\{p_{\xi}^{\Xi}\}_{\xi\epsilon\Xi}$ , induces a characteristic map $p_{\Xi}^{\Xi}$ , : $\prod_{\lambda\epsilon\Xi}A_{\lambda}-\prod_{\lambda\epsilon\Xi},A_{i}$ , which we call the projection

of $\prod_{\lambda e\Xi}A_{\lambda}$ to the subroduct $\prod_{\lambda\ell\Xi},$

$A_{j}$ . Particularly each canonical map $p_{\xi}^{\Xi}$ ; $\prod_{\lambda e\Xi}A_{\lambda}-A_{\xi}$ is

taken as a projection.

A filter $\Gamma$ of $\Lambda$ is a family of subsets of $\Lambda$ such that $\Xi^{\prime}\subset\Xi$ and $\Xi^{\prime}\epsilon\Gamma$ imply
$\Xi\epsilon\Gamma$ and that $\Xi,$ $\Xi^{\prime}\epsilon\Gamma$ implies $\Xi\cap\Xi^{\prime}\epsilon\Gamma$ . $\Gamma$ is called an ultrafilter if it is maximal.

The pr0duct system of objects $A_{\lambda}$ with $\lambda\epsilon\Lambda$ over the filter $\Gamma$ of $\Lambda$ is the diagram

$\mathfrak{D}=[p_{\Xi^{\prime}}^{\Xi} : \prod_{\lambda\epsilon\Xi}A_{\lambda}-\prod_{\lambda\epsilon\Xi},A_{\lambda}]_{\Xi,\Xi\epsilon^{\Gamma},B^{\prime}\subset\Xi}$ in $\mathfrak{U}$ where $p_{\Xi}^{\Xi}$ , is the projection. We call the

direct limit of the product system $\mathfrak{D}$ the reduced $p\gamma oduct$ of $A_{\lambda},$
$\lambda\epsilon\swarrow t$ , over the filter $\Gamma$ ,

and denote it by $\prod_{\lambda\epsilon\Xi}A_{\lambda}/\Gamma$ . If $\Gamma$ is an ultrafilter, then the reduced product is called an

ultraproduct. If $A_{\lambda}=A$ for all $\lambda\epsilon\Lambda$ , then the reduced (ultra-) product is called the

reduced (ultra-) power of $A$ , and is denoted by $A^{\Lambda}/$[. Unless otherwise is stated, we

assume that $p_{\Xi}^{\Xi}$ , and $p_{\xi}^{\Xi}$ denote the projections in the senses above, and the canonical

map $\prod_{\lambda\cdot\Xi}A_{\lambda}-\prod_{\lambda\epsilon\Lambda}A_{i}/\Gamma$ is denoted by $q_{\Xi}$ .
When $A_{\lambda}=A$ for every $\lambda\epsilon\Lambda$ , then the identity map $d_{\lambda}$ : $A\rightarrow A_{\lambda}(d_{\lambda}=A)$ induces

the characteristic map $d_{\Xi}$ : $A-\prod_{\lambda e\Xi}A_{\lambda}$ for each $\Xi\subset\Lambda$ .

LEMMA 3. If $\Xi^{\prime}\subset\Xi$ where $\Xi\subset\Lambda$ , then $p_{\Xi}^{\Xi},$ $d_{\Xi}=d_{\Xi^{\prime}}$ .
PROOF. Obviously $p_{\xi}^{\Xi\prime}p_{\Xi}^{\Xi},$ $d_{\Xi}=d_{\xi}$ , from which the lemma follows immediately.

$q.e$ . $d$ .
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Henoe we have a map $ d:A\rightarrow A^{\Lambda}/\Gamma$ as the direct limit of the natural trans-

formation $\{d_{\Xi}\}_{\Xi\epsilon\Gamma}$ . Note that although each $d_{\Xi}$ is an injection by Theorem 6, its

direct limit $d$ is not necessarily an injection.

The maps $d_{\Xi}$ : $A-A^{\Xi}$ and $ d:A-A^{\Lambda}/\Gamma$ will be called the diagonal maps.

The notations $d_{\Xi}$ and $d$ will be used always in this meaning.

It is easily verified that if $\mathfrak{U}$ is a concrete category of structures in which every

relation considered has finite arguments, then the definition above of reduced products

agrees with the usual one given in the theory of models. (See [8], [17], [18]]. But

our definition is slightly wider, sinoe it can be applied to structures with infinitistic
relations, like topological spaces. However, the following example shows that the

application of our definition to the category of topological spaces leads to a curious

conclusion.

Example. Let $\mathfrak{C}$ be the category which consists of all topological spaces as the

objects and all continuous functions between them as the maps. Referring to Proposition

4, it is easily seen that $\mathfrak{C}$ is complete. Further, $\mathfrak{C}$ is locally small, and henoe it is

perfect. The direct product of topological spaces with the weak topology satisfies, as

well known, the condition of the product of them in the theory of categories.

Now let $\{A_{\lambda}\}_{\lambda\epsilon A}$ be an indexed family of topological spaces, and $ X=\prod_{\lambda\cdot A}A,/\Gamma$

the ultraproduct over a non-trivial ultrafilter $\Gamma$ of $A$ . Let $V$ be a non-void open set

of $X$ and $\Xi$ a set in $\Gamma$ . Then sinoe the canonical map $q_{\Xi}$ ;
$\prod_{ie\Xi}A_{\lambda}\rightarrow X$ is continuous,

the inverse image $q_{\Xi}^{-1}(V)$ of $V$ should be open in $\prod_{\lambda\epsilon\Xi}A_{\lambda}$ , and henoe there exist a finite

number of indices $\lambda_{J},$ $\lambda_{2},$ $\cdots$ , $\lambda_{n}$ and non-voild open sets $V_{1},$ $V\cdot,$ $\cdots$ , $V_{\hslash}$ each in $A_{\lambda 1},$ $A_{\lambda_{2}}$ ,

...
$A_{\lambda}n$ respectively such that $x\epsilon\prod_{\lambda\iota\Xi}A_{\lambda}$ and $p_{i_{k}}^{\Xi}(x)\in V_{k}$ imply $q_{\Xi}(x)\in V$. Let $\Xi^{\prime}$ be the

set obtained by reducing $\lambda_{1},2_{2},$ $\cdots$ , $\lambda_{n}$ from $\Xi$ . Sinoe $\Gamma$ is non-principal $\Xi^{\prime}$ is also a

set in $\Gamma$ . Sinoe for each $x^{\prime}\epsilon\prod_{\lambda\epsilon\Xi^{\prime}}A_{\lambda}$ there exists an $x\epsilon\prod_{\lambda\epsilon\Xi}A_{\lambda}$ such that $p_{\lambda_{k}}^{\Xi}(x$ ] $\in V_{k}$ for

every $k=1,2,$ $\cdots$ , $n,$
$x^{\prime}$ is mapped into $V$ by the canonical map $q_{\Xi}$ . Sinoe $q_{\Xi}$ is an

epimap by Proposition 6, it is continuous function onto whole spaoe $X$. Therefore $V=X$

and $X$ has only two open sets, the void set and the whole set. Thus $X$ has a very trivial
topology regardless of the collection $\{A_{\lambda}\}_{\lambda\epsilon_{A}}$ of spaces. If we previously assume that the

objects in $\mathfrak{C}$ are all Hausdorff spaces, then any non-principal ultraproduct of spaces consists
of at most a single point. It is significant that when $A_{\lambda}=A$ for every $\lambda c\Lambda$ , the
diagonal map $ d:A\rightarrow A^{\Lambda}/\Gamma$ is no more an injection in this case. In \S 4, we shall
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investigate some conditions for the objects $A$ in a perfect concrete category $\mathfrak{U}$ so that
the diagonal map $d$ be an injection for any $\Lambda$ and $\Gamma$ .

\S 3. Concrete categories.

In this section we deal with concrete categories, of which first we shall establish the
terminology. Originally the terminology of the theory of categories seems to be constructed
on the analogy of the theory of sets, but the correspondence of the terms between the
both thoeries is not $\ovalbox{\tt\small REJECT} mpletely$ literal. We shall introduoe some $\ovalbox{\tt\small REJECT} nditions$ on categories

so that the correspondenoe becomes more natural and literal.

A concrete category $\mathfrak{C}$ is a subcategory of the category of all sets, $i.e.$ , a category
in which with each object $A$ a set $\mu(A)$ called the basic set of $A$ is associated in such
a way that $\mu(A)=\mu(B)$ implies $A=B$, and each map $f:A-B$ is an application
from $\mu(A)$ to $\mu(B)$ where the composition of maps is the usual one of the applications.
Each object in a concrete category is called a structure, and a structure $A$ whose basic
set $\mu(A)$ is a subset of $\mu(B)$ of $B$ is called a substructure of $B$.

DEFINITION 5. A concrete category $\mathfrak{C}$ is called set-theoretical, if the following
conditions CF $1$ ) $\cdots CF5$) are satisfied.

CF 1) If $A,$ $B\epsilon|\mathfrak{C}|$ and $\mu(A)\subset\mu(B)$ , then the application $j$ from $\mu(A)$ to
$\mu(B$ ] such that $ j(\alpha)=\alpha$ for any $\alpha\epsilon A$ is a map $iu\mathfrak{C}$ , and for any $C\epsilon|\mathfrak{C}|$ and

$ f\epsilon$ Hom $(C, B)$ such that $f(\mu(C))\subset\mu(A)$ there exists $a$ $ g\epsilon$ Hom $(C, A)$ such
that $f=jg$.
CF 2) Every monomap $f:A\rightarrow B$ is a $one-to$-one application from $\mu(A)$ to
$\mu(B)$ , and every epjmap $f:A\rightarrow B$ is an application onto $\mu(B)$ .
CF 3) The basic set of the product of a family $\{A_{\lambda}\}_{\lambda\epsilon_{\Lambda}}$ of objects is the set-
theoretical direct product of the basic sets $\mu(A_{\lambda}),$ $\lambda\epsilon\Lambda$ .
CF 4) If $f:A-B$, then there exists a $C\epsilon|\mathfrak{C}|$ such that $\mu(C)=f(\mu(A))$ .
CF 5] If $K$ is the equalizer of the indexed family $\{f_{\lambda} : A\rightarrow B\}_{\lambda\epsilon A}$ of maps

$f_{\lambda}$ , and $k:K\rightarrow A$ is the equalizer map, then $k(\mu(K))$ coincides with jnst the
set { $\alpha\epsilon\mu(A]|f_{\lambda}(\alpha]=f_{\xi}(\alpha]$ for any 2, $\xi\epsilon\Lambda$ }.

The map $j$ in CF 1) will be called the identical map. In CF 5), it is easily seen
that $k(\mu(K)$ ] is included in the latter set, but the coincidenoe does not seem generally

true.
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Hereafter we assume that the category $\mathfrak{C}$ is concrete and set-theoretical.

LEMMA 4. If $A,$ $B\epsilon|\mathfrak{C}|$ and $\mu(A$ ] $\subset\mu(B)$ , then the identical map $j:A-B$

is an injection. Conversely, if $A,$ $B\epsilon|\mathfrak{C}|$ and $j:A-B$ is an injection, then there

exists a substructure $C$ of $B$ and an isomap $a:A\rightarrow C$ such that $j=j^{\prime}a$ where
$j^{\prime}$ : $C\rightarrow B$ is the identical map.

$b$

PROOF. Let $A\rightarrow^{a}C\rightarrow B$ be an epifactorization of the identical map $j:A-B$

where $\mu$ ($A]\subset\mu(B)$ . Sinoe $ft(b(C))=\mu(A)$ by CF 2), there exists a $g:C-A$ such

that $b=jg$ by CF 1). Henoe we have $j=ba=jga$ . Sinoe $j$ is naturally a monomap,

$A=ga$ . Henoe $a$ is a reversible epimap, and henoe an isomap by Proposition 1.

Assume that $A,$ $B\epsilon|\mathfrak{C}|$ and $j:A-B$ is an injection. By CF 4), there exists

a $C\epsilon|\mathfrak{C}|$ such that $\mu(C)=j(\mu(A))$ . Sinoe $\mu(C)\subset\mu(B)$ , we have the identical map

$j^{\prime}$ : $C\rightarrow B$ and a map $a:A\rightarrow C$ such that $j=j^{\prime}a$ by CF 1). Sinoe $a(\mu(A])=j(\mu(A))$

$=\mu(C),$ $a$ is an epimap and henoe an isomap as an epifactor of the injection $j$. $q.e.d$ .

Remark. $C$ in CF 4) is a substructure of $B$. Henoe we have the identical map

$j:C\rightarrow B$ and a map $g:A\rightarrow C$ such that $f=jg$ by CF 1). Sinoe $g(\mu(A))=f(\mu(A))$

$j$

$=\mu(C),$ $g$ is an epimap and $A\rightarrow^{g}C-B$ is a critical epifactorization of $f$ Henoe

any map $f$ in a set-theoretical concrete category admits the critical epifactorization.

Bisides, it would be $\ovalbox{\tt\small REJECT} mpatible$ to the definition of the image of a map to put $C={\rm Im}(f)$ ,

and we assume that $\mu({\rm Im}(f))$ is a substructure of $\mu$ (Rg $(f)$ ) from now on.

In general it often occurs that under some condition an object $A$ and a map

$f:A\sim B$ are determined for $B\epsilon|\mathfrak{C}|$ up to the equivalenoe class. If further $f$ is an

injection, then $C$ in Lemma 4 and the identical map $j:C-B$ are respectively

equivalent to $A$ and $f$ by Lemma 4. Hence, if a particular set is not concerned as for

the basic set of $A$ , we can assume that $A$ is a substructure of $B$ and the injection $f$

is the identical map from $A$ to $B$.
LEMMA 5. If $\mathfrak{C}$ is left complete, and $\{A_{\lambda}\}_{\lambda\epsilon\Lambda}$ is a family of substructures of

a structure $B$ , then there exists a substructure $C$ of $B$ such that $\}^{\ell}(C)=\bigcap_{\lambda\epsilon A}\mu(A_{\lambda}$ ].

PROOF. Put $B_{\lambda}=B$ for every $\lambda\epsilon\Lambda$ , and let $p_{\xi}$ : $\prod_{\lambda\epsilon\Lambda}A_{\lambda}\rightarrow A_{\xi}$ be the projection of

the product to its component. Letting $j_{\xi}$ : $A_{\xi}\rightarrow B_{\xi}$ be the $\iota identical$ map for each

$\xi\in\Lambda$ , which is an injection by Lemma 4, the characteristic map $p;\prod_{\lambda\epsilon\Lambda}A_{\lambda}-\prod_{ieA}B_{\lambda}$

induced by the family $\{j_{\xi}p_{\text{\’{e}}} ; \prod_{\lambda\epsilon\Lambda}A_{\lambda}-B_{\xi}\}_{\xi\epsilon A}$ is an injection by Theorem 6. Henoe
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$\prod_{\lambda\epsilon\Lambda}A_{\lambda}$ can be assumed as a substructure of $\prod_{\lambda\epsilon\Lambda}B_{\lambda}$ , by the remark above. Let $K$ be the
equalizer of the family $\{j_{\epsilon}p_{\xi}\}_{\xi\epsilon\Lambda}$ of maps (notioe that $B_{\lambda}=B$ for all $\lambda\in\Lambda$ ) and
$k:K-\prod_{\lambda\epsilon A}A_{\lambda}$ the equalizer map. Then sinoe $k$ is an injection by Theorem 3, it is
assumed as a substructure of $\prod_{\lambda\epsilon\Lambda}A_{\lambda}$ . Put $C={\rm Im}(j_{\xi}p_{\xi}k)$ . Sinoe $j_{\xi}p_{\xi}k(\alpha)=j_{\lambda}p_{\lambda}k(\alpha)$

for any $\alpha\epsilon\mu(K)$ and $\xi,$ $\lambda\epsilon\Lambda,$ $\mu(C)$ is determined independently of the index $\xi\epsilon\Lambda$ ,

and so also is the substructure $C$ of $B$. Sinoe $j_{\xi}p_{\xi}(\mu(\prod_{\lambda\epsilon\Lambda}A_{\lambda}))=\mu(A_{\xi}),$ $\mu(C)\subset\mu(A_{\xi})$ for
any $\xi\epsilon\Lambda$ , and henoe $\mu(C)\subset\bigcap_{\lambda\epsilon\Lambda}\mu(A_{\lambda}$ ]. On the other hand, if $\alpha\epsilon\bigcap_{\lambda\epsilon\Lambda}\mu(A_{\lambda})$ , then $j_{\xi}(\alpha)=$

$j_{\lambda}(\alpha)$ for any $\xi,$ $2\epsilon\Lambda$ . Sinoe $\mu(\prod_{\lambda\epsilon\Lambda}A_{\lambda})$ is the direct product $\prod_{\lambda\epsilon\Lambda}\mu$ ( $A_{\lambda}]$ by CF 3), $\alpha$ uniquely
determines an $\hat{\alpha}\epsilon\rho(\prod_{\lambda\epsilon\Lambda}A_{\lambda})$ such that $ p_{\xi}(\hat{\alpha})=\alpha$ for any $\xi\epsilon\Lambda$ . Henoe we have $j_{\xi}p_{\xi}(\hat{\alpha})=$

$j_{\lambda}p_{i}(\hat{\alpha}$] $=\alpha$ for any $\xi,$ $\lambda\in\Lambda$ and $\hat{\alpha}\epsilon\mu$ ($K]$ by CF 5). Henoe $\alpha=j_{\text{\’{e}}}p_{\xi}(\hat{\alpha})\epsilon j_{\xi}p_{\xi}(\mu(K))=$

$\mu(C$ ] which shows $\bigcap_{\lambda\epsilon A}\mu(A_{\lambda}$ ] $\subset\mu(C)$ . $q.e.d$ .
COROLLARY. If $\mathfrak{C}$ is finitely letf complete, and $A$ and $A^{\prime}$ are subs $t$ructures

of $B\epsilon|\mathfrak{C}|$ , then there exists a substructure $C$ of $B$ snch that $\mu(C)=\mu(A)\cap\mu(A^{\prime})$ .
LEMMA 6. If $\mathfrak{C}$ is finitely left complete and $f:A-B$ is an epimap, then

for any substructure $B^{\prime}$ of $B$ there exists a substructure $A^{\prime}$ of $A$ such that $\mu(A^{\prime})$

$=f^{-1}(\mu(B^{\prime}))$ .

PROOF. Let $A\times B$ be the product of $\{A, B\}$ and $p_{A}$ ; $A\times B\rightarrow A$ the projection.

The family $\{A,f\}$ of maps induces a characteristic map $c:A\rightarrow A\times B$, and there
exists a substructure $C$ of $A\times B$ such that $\mu(C)=c(\mu(A))$ by CF 4). Letting $j$ be the
identical map froui $B^{\prime}$ to $B,$ $A\times B^{\prime}$ can be assumed as a substructure of $A\times B$ with
the injection which is the characteristic map induced by the family $\{A, j\}$ of injections.

By the corollary of Lemma 5, there exists a substructure C’ of $A\times B$ such that $\mu(C^{\prime})$

$=\mu(C)\cap\mu(A\times B^{\prime})$ . Let $c^{\prime}$ : $C^{\prime}\sim A\times B$ be the identical map. Then there exists a
substructure $A^{\prime}$ of $A$ such that $\mu$ ( $A^{\prime}]=p_{A}c^{\prime}(\mu(C^{\prime}))$ by CF 4). It is easy to see that $A^{\prime}$

satisfies the condition of the lemma. $q.e.d$ .
COROLLARY. If $\mathfrak{C}$ is firitely left complete, $f:A-B$ is a map in $\mathfrak{C}$, and $C$

is a substructure of $B$, then there exists a substructure $A^{\prime}$ of $A$ such that $\mu(A^{\prime}$ ] $=$

$f^{-1}(f(\mu(A)]\cap\mu(C))$ .
Sinoe the correspondenoe between a structure and its basic set $\mu(A$ ] is one-to-

one, hereafter we will rather identify them, and the letters $A,$ $B$, etc. for structures

are assumed to denote the basic sets $\mu(A),$ $\mu(B)$ etc. themselves. (For instanoe we write
$A\subset B$ in plaoe of $\mu(A]\subset\mu(B))$ . Accordingly, the structure $C$ in CF 4) and $A^{\prime}$ in
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Lemma 6 are denoted by $f(A)$ and $f^{-1}(A)$ respectively. According to the original
difinition, an object $A$ means the identical map of the basic set of a structure to itself.

Such an idntical map, the object, will be denoted $by\rightarrow A$ from now on.

Henceforth, we often deal with subsets of the basic set of a structure, say $A$ ,

which are not necessary the basic sets of substrucutres of $A$ , and with functions from
the basic set of a structure, or from its subset, to another, which are not neoessarily

maps in the category. We will write $f:A\cdots\rightarrow B$ with the broken arrow to show

that $f$ is a function from $A$ to $B$, which is not necessarily a map in the category,

where $A$ and $B$ are sets or structures, and in the latter case they are automatically

taken as the basic sets of them. When $f:X\cdots\rightarrow Z$ and $Z\subset Y$, where $X,$ $Y$ and $Z$ are
sets, the restriction of $f$ on $X$ is denoded by $f/X$. Particularly if $X,$ $Y$ and $Z$ are
structures, and $f$ is a map in $\mathfrak{C}$ , then letting $j$ be the identical map from $X$ to $Y$ we
have $f/X=fj$ .

DEFINITION 6. Let $\mathfrak{C}$ be a concrete category, $A$ and $B$ structures in $\mathfrak{C}$ , and
$\varphi:A\cdots\rightarrow B$ a function from $A$ to $B$ (not necessarily a map in $\mathfrak{C}$ ). $\varphi$ is called finitely

compatible if for any finite subset $X$ of $A$ there exists a map $f:A\rightarrow B$ in $\mathfrak{C}$ such
that $\varphi/X=f/X$. A structure $B$ is called finitary if every finitely comptible function
from any structure $A$ to $B$ is a map in $\mathfrak{C}$ . A structure $B$ is called finite if its basic
set is finite. $B$ is called strongly finitary, if it is equivalent to a substructure of the
product of a family of finitary finite structures. The category $\mathfrak{C}$ itself is called $(strongl^{\backslash }y)$

finitary, if every structure in it is (strongly) finitary.

Concerning to the nature of finitary categories, refer to [16].

LEMMA 7. In a $se\succ theoretical$ concrete category, a substructure of a (strongly)

finitary structure is (strongly) finitary.

PROOF is easy.

LEMMA 8. Let $\mathfrak{C}$ be a set-theoretical concrete category, $\{B_{l}\}_{\lambda\epsilon A}$ $a$ indexed
family of objects and $B=\prod_{\lambda\epsilon\Lambda}B_{\lambda}$ . If $B_{\lambda}$ for every $2\epsilon\Lambda$ is finitary, then $B$ is also
finitary.

PROOF. Let $A$ be a structure and $\varphi:A\cdots\rightarrow B$ a finitely compatible $f\iota mction$ .
Then for any finite set $X$ of $A$ there exists a map $f:A-B$ such that $f/X=\varphi/X$.
Henoe, letting $p_{\lambda}$ : $B\rightarrow B_{\lambda}$ be the projection, $p_{\lambda}f/X=p_{\lambda}\varphi/X$ for every $2\epsilon\Lambda$ where
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$p_{\lambda}f:A\rightarrow B_{\lambda}$ is a map in $\mathfrak{C}$ . Thus the function $p_{\lambda}\varphi:A\cdots\rightarrow B_{\lambda}$ is finitaly $\ovalbox{\tt\small REJECT} mpatible$

and henoe it is a map in $\mathfrak{C}$ , sinoe $B_{\lambda}$ is finitary. Let $g:A-B$ be the characteristic
map induced by the family $\{p_{\lambda}\varphi\}_{\lambda\epsilon\Lambda}$ of maps. Then for each $\lambda\epsilon\Lambda$ and $\alpha\epsilon A$ , we have
$p_{\lambda}g(\alpha)=p_{\lambda}\varphi(\alpha)$ , which shows $g(\alpha)=\varphi(\alpha)$ by CF 3). Therefore $\varphi=g$ and $\varphi\epsilon \mathfrak{C}$ . $q.e$ . $d$ .

COROLLARY 1. In a set-theoretical concrete category, a strongly finitary
structure is finitary.

COROLLARY 2. If $\mathfrak{C}$ is a set-theoretical concrete category and $B$ is the inverse
limit of a diagram $\mathfrak{D}$ in $\mathfrak{C}$ , in which every object is finitary, then $B$ is also finitary.

We omit the detail of the proof, but referring to the proof in [10] of Proposition
4 of this paper, we can know that the inverse limit $B$ is obtained as an equalizer of
maps from a product of objects in $\mathfrak{D}$ to another. Henoe $B$ is taken as a substructure of a
suitable product of objects in $\mathfrak{D}$ by Lemma 4. From this and Lemmas 7, 8, the
corollary follows immediately.

In the proof of Lemma 8, assumption CF 3) is essential and the corollary above
follows from Lemma 4. Lemma 8 and the corollaries do not seem valid if we omit the
assumption that $\mathfrak{C}$ is set-theoretical.

\S 4. Ultrapowers in a concrete category.

As seen in the example at the end of \S 2, the ultrapower of a structure is
sometimes reduced to trivial one. As stated there we will investigate here the condition
for a structure, say $A,$ $not$ to make the ultrapower of it so trivial, and particularly the
condition so that the diagonal map $ d:A\rightarrow A^{\Lambda}/\Gamma$ be an injection for any $\Lambda$ and $\Gamma$ .
To spare the notioe in each occurenoe, we agree that when $\mathfrak{D}$ is the product system of
objects $A_{\lambda},$

$\lambda\epsilon\Lambda$, over the filter $\Gamma$ of $\Lambda,$ $p_{\Xi^{\prime}}^{\Xi}$ or $p_{\xi}^{\Xi}$ denotes the projections from $\prod_{\lambda\epsilon\Xi}A_{\lambda}$ to

$\prod_{\lambda\epsilon\Xi},A_{\lambda}$ or to $A_{\xi}$ respectively where $\Xi,$ $\Xi^{\prime}\epsilon\Gamma$ , and $\xi\epsilon\Xi,$
$q_{\Xi}$ denotes the canonical map

from $\prod_{\lambda\epsilon\Xi}A_{\lambda}$ to $\prod_{\lambda\epsilon A}$ A $/\Gamma$ , and when $A_{\lambda}=A$ for every $\dot{\lambda}\epsilon\Lambda,$ $d_{\Xi}$ : $A-A^{\Xi}$ and $ d:A\rightarrow$

$ A^{\Lambda}/\Gamma$ denote the diagonal maps. For convenienoe sake we sometimes identify the
maps $f$ and $g$ in CF 1), though they should be distinguished from each other in the
strict sense. Further, throughout this section, the category $\mathfrak{C}$ is assumed $\ovalbox{\tt\small REJECT} ncrete$, set-

theoretical and perfect to both sides.

THEOREM 7. Let $A$ be an structure in $\mathfrak{C}$ . If the diagonal map $ d:A\rightarrow$

$ A^{\Lambda}/\Gamma$ is an injection for any set $\Lambda$ and its ultrafiltr $\Gamma$, theu $A$ is finitary.

PROOF. Let $B$ be a structure, $\varphi$ a finitely $\ovalbox{\tt\small REJECT} moatible$ function from $B$ to $A$ and
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ee the collection of all finite subsets of $B$. Put $\Lambda=Hom(B, A)$ , and for each $ X\epsilon\chi$ , let
$\Xi_{X}$ be the set { $f\epsilon\Lambda|f(\alpha)=\varphi(\alpha)$ for any $\alpha\epsilon X$ }. Sinoe $\varphi$ is finitely $\ovalbox{\tt\small REJECT} mpatible,$ $\Xi_{f}$ is

not void for any $X\epsilon \mathfrak{X}$ . Put $\Gamma^{\prime}=$ { $\Xi_{r}|X\epsilon$ SE}. Sinoe $\Xi_{X^{\prime\prime}}\subset\Xi_{X}\cap\Xi_{X^{\prime}}$ for any $X,$ $ X^{\prime}\epsilon$ ae
and $X^{\prime\prime}=X\cup X^{\prime}$ , there is an ultrafilter 1“ of $\Lambda$ which includes $\Gamma^{\prime}$ . Let $ d:A\rightarrow$

$ A^{\Lambda}/\Gamma$ be the diagonal map. Sinoe it is an injection, it is an isomap from $A$ to a

$substruc\}ured(A)$ of $ A^{\Lambda}/\Gamma$ by Lemma 4 (here the convention stated above is used).

Let $A_{f}(=A)$ be the $f$-component of the product
$B$

$A^{\Lambda}$ and $A^{\Xi}$ for $\Xi\epsilon\Gamma$ and we name the maps as
$g_{\Lambda}/@\backslash g_{\Xi}$

$q_{\Xi}$

in fig. 6 where $p_{\Xi}^{\Xi},,$ $p_{j}^{\Xi}$ and $p^{\Lambda}$ are the projections, $ A^{A}-A^{\Xi}--A^{\Lambda}/\Gamma$

$q_{\Xi}$ (and similarly for $q_{\Lambda}$ ) is the canonical map and
$p_{f}^{A}\backslash @/p_{f}^{\Xi}$

$A_{f}$

$g_{\Xi}$ (similarly for $g_{\Lambda}$ ) is the characteristic map fig. 6

induced by the family $\{f:B\rightarrow A_{f}\}_{f\epsilon_{-}^{-}}.$ . The commutativity indicated in the diagram

follows from the definition of the product system and that of the characteristic map $g_{g}$ .
Further, we have $d_{\Xi}=p_{\Xi}^{\Lambda}d_{A}$ and $d=q\Xi d_{\Xi}$ for the diagonal maps $d_{\Lambda},$ $d_{\Xi}$ and $d$. Now we

shall show that for any $\beta\in B$ we have $q_{A}g_{A}(\beta)=d\varphi(\beta)$ . Indeed, let $X$ be any finite subset

of $B$ containing $\beta$ , and put $\Xi=\Xi_{X}$ . Then by the definition of $\Xi_{X},$ $ p_{f}^{\Xi}g_{\Xi}(\beta)=f(\beta)=\varphi(\beta$] for

any $ f\epsilon\Xi$ . Henoe $g_{\Xi}(\beta)=d_{\Xi}\varphi(\beta)$ and $ q_{\Lambda}g_{A}(\beta)=q_{\Xi}p_{\Xi}^{\Lambda}g_{\Lambda}(\beta)=q_{\Xi}g_{\Xi}(\beta)=q_{\Xi}d_{\Xi}\varphi(\beta$ ] $=d\varphi(\beta)$ .
This shows $\varphi=d^{-1}q_{\Lambda}g_{\Lambda}$ where $d^{-1}$ : $d(A)-A$ is the isomap. Hanoe $\varphi\epsilon \mathfrak{C}$ . $q.e$ . $d$ .

However, it is doubtful that we have the converse of this $th\ovalbox{\tt\small REJECT} rem$ .
Example. Let $N$ be the additive semi-group of all natural numbers excluding

$0$ with the addition $+$ . We generate a category $\mathfrak{C}^{\prime}$ from $\{N\}$ so that it is closed with

products, coproducts, equalizers and coequalizers, which are to be defined in the sense

of the theory of general algebric systems, where the maps are addition preserving

functions. Then $\mathfrak{C}^{\prime}$ is a perfect set-theoretical concrete category. Let $\Gamma$ be a non-

principal ultrafilter of the basic set $\Lambda$ of $N$ and put $ M=N^{\Lambda}/\Gamma$ . $M$ is prime on $N$.
At thie stage, the diagonal map $d:N\rightarrow M$ would be an injection. Omit all structures

from $\mathfrak{C}^{\prime}$ which are prime on $A$ , except for the unit structure $U=\{0\}$ , obtaing a full

subcategory $\mathfrak{C}$ of $\mathfrak{C}^{\prime}$ . $N^{\Lambda}/\Gamma=U$ in $\mathfrak{C}$ and $\mathfrak{C}$ would be $co$mplete (after an adequate

modification if necessary). Further $N$ will remain finitary in $\mathfrak{C}$ , but the diagonal map

$N-U$ is no more an injection.
-f 1——-1- $--\perp L-\perp$ $xrr/\cap-----$ $xr$
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Now we shall investigate the condition of a structure $A$ which infer that the diagonal
map $ A\rightarrow A^{\Lambda}/\Gamma$ be an injection for any $\Lambda$ and $\Gamma$ .

LEMMA 9. If the structure $A$ consists of a finite number, say $n$ , of elements,

then the number of elements in $ A^{\Lambda}/\Gamma$ is at most $n$ .
PROOF. Let the basic set of $A$ be $\{\alpha_{1}, \alpha\circ\cdots , \alpha_{n}\}$ and $\mathfrak{D}$ the product system of

$A_{\lambda}(=A),$ $\lambda\epsilon\Lambda$ , over an ultrafilter $l^{7}$ of $\Lambda$ . Let $\delta_{k}^{\wedge}$ be an element in $A^{\Xi},$ $\Xi\epsilon\Gamma$, for each
$k=1,2,\cdots,$ $n$ such that Pfi $(\hat{\delta}_{k})=\alpha_{k}$ for every $\lambda\epsilon\Xi$. We will show that for any element $\hat{\alpha}$ in
$A^{\Xi}$ , there exists a $\hat{\delta}_{k}$ such that $q_{\Xi}(\hat{\alpha})=q_{\Xi}(\delta_{k}^{\wedge})$ . Indeed, put $\Xi_{k}(\hat{\alpha})=\{\lambda\epsilon\Xi|p_{\lambda}^{\Xi}(\hat{\alpha}]=\alpha_{k}\}$ . Then
$\Xi=\bigcup_{k=1}^{n}\Xi_{k}(_{\hat{\alpha}})$ and there exists a $k$ such that $\Xi_{k}(\hat{\alpha})\epsilon\Gamma$ sinoe $\Gamma$ is maximal. Put $\Xi^{\prime}=\Xi_{k}(\hat{\alpha}$ ]

and $’\lambda^{\prime}\wedge=p_{\Xi}^{\Xi},$ ( $\hat{\alpha}$ ]. Then $p_{\lambda}^{g\prime}(_{\hat{\alpha}^{\prime}}$ ] $=p_{\lambda}^{\Xi}(\hat{\alpha})=\alpha_{k}$ for any $\lambda\epsilon\Xi^{\prime}$ which shows $p_{\Xi^{\prime}}^{\Xi}(_{(\hat{X}}$ ] $=p_{\Xi^{\prime}}^{\Xi}(\hat{\delta}_{k}$ ]

by CF 3). Henoe $q_{\Xi}(’\hat{x}$ ] $=q_{\Xi^{\prime}}p_{\Xi}^{\Xi}, (\hat{\alpha}$] $=q_{\Xi^{\prime}}p_{\Xi}^{\Xi}, (\hat{\delta}_{\kappa}’)=q_{\Xi}(\hat{\delta}_{k}$] and the image $q_{g}(A^{\Xi})$ consists
of at most $n$ elements $q_{\Xi}(\hat{\grave{0}}_{k}$], $k=1,2,$ $\cdots,$ $n$ . Sinoe $q_{\Xi}$ is an epimap by Proposition 4,

it maps $A^{\Xi}$ onto $ A^{\Lambda}/\Gamma$ by CF 2). Henoe $A^{\Lambda}/1^{\urcorner}$ consists of at most $n$ elements.
$q.e.d$ .

LEMMA 10. If $A$ is a finitary finite structure, then the diagonal map
$ d:A\rightarrow A^{\Lambda}/\Gamma$ is an isomap, where $\Gamma$ is an ultrafilter of $\Lambda$ .

PROOF. We use the same notations as in the previous lemma. Put $\varphi_{\Xi}(_{\hat{o}}$ ] $=\alpha_{k}$

where $k$ is such that $\Xi_{k}(\hat{\alpha})\epsilon\Gamma$ , we shall show that $\varphi_{\Xi}$ : $A^{\Xi}\cdots\rightarrow A$ is finitely $\ovalbox{\tt\small REJECT} mpatible$ .
Indeed, let $X=\{\hat{\alpha}l, \wedge 2, , \hat{\alpha}_{m}\}$ be a finite subset of $A^{\Xi}$ , and the number $k_{i}$ is such
that $\Xi_{k}(\hat{\alpha}_{\ell})\in\Gamma$ for $ i=1,2\cdots$ , $m$ . Then $\bigcap_{i=1}^{m}\Xi_{k_{i}}(\hat{\alpha}$ ] is not void. Let $\xi$ be an index in
the intersection. Then $\xi\epsilon\Xi_{k}$ , $(_{\hat{\alpha}_{i}}$ ] implies $p_{\xi}^{\Xi}(\hat{\alpha}_{i})=\alpha_{k_{i}}=\varphi_{\Xi}(\hat{\alpha}_{t})$ . Henoe $\varphi_{\Xi}/X=p_{\xi}^{\Xi}/X$

while $p_{\xi}^{\Xi}$ is a map in $\mathfrak{C}$ . Henoe $\varphi_{\Xi}$ is finitely compatible and so a map in $\mathfrak{C}$ , sinoe $A$

is finitary. Assume $\Xi^{\prime}\epsilon\Gamma$ and $\Xi^{\prime}\subset\Xi$ . Put $\hat{\alpha}^{\prime}=p_{\Xi^{\prime}}^{\Xi}(\hat{\alpha}$ ]. Then $p_{\lambda}^{\Xi\prime}(\hat{\alpha}^{\prime})=p_{\lambda}\Xi(\hat{\alpha})$ and henoe
$\Xi_{k^{\prime}}(\hat{\alpha}^{\prime})=\Xi^{\prime}\cap\Xi_{k}(\hat{\alpha})$ . Henoe $\Xi_{k}(\hat{\alpha})\epsilon\Gamma$ implies $\Xi_{k^{\prime}}(\hat{\alpha}^{\prime})\epsilon\Gamma$ . This shows $\varphi_{\Xi}(_{\hat{\alpha}}$ ] $=\varphi_{\Xi}(\hat{\alpha}^{\prime})=\varphi_{\Xi^{\prime}}p_{\Xi}^{\Xi},(\hat{\alpha})$

and the family $\{\varphi_{\Xi}|A^{\Xi}\sim A\}_{\Xi\epsilon}r$ is compatible to the right for the product system.

Henoe we have the characteristic map $c:A^{\Lambda}/\Gamma\rightarrow A$ such that $\varphi_{\Xi}=cq_{\Xi}$ . Particularly
$\varphi_{\Xi}(\hat{\delta}_{k})=\alpha_{k}$ , and $\varphi_{\Xi}$ is an epimap. Henoe $c$ is an epimap by Proposition 2 and $c$ maps
$ A^{\Lambda}/\Gamma$ onto $A$ by CF 2). But sinoe $ A^{\Lambda}/\Gamma$ contains at most $n$ elements by Lemma 9,

it has just $n$ elements and $c$ is a monomap. Now sinoe $d_{\Xi}(\alpha_{k})=\hat{\delta}_{k}$ for the diagonal
map $d_{\Xi}$ : $A\rightarrow A^{\Xi}$ , we have $ cq_{\Xi}d_{\Xi}=A\rightarrow$ . Henoe $c$ is a coreversible monomap, and henoe
an isomap by Proposition 2. Therefore $d=q_{\Xi}d_{\Xi}=c^{-1}$ is an isomap. $q.e.d$ .

LEMMA 11. Let $B$ be a finitary finite structure. If there exists a map
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$f:A\rightarrow B$ from a structure $A$ , then for any ultrapower $ A^{\Lambda}/\Gamma$, there exists a map
$g:A^{A}/\Gamma\rightarrow B$ such that $f=gd$ where $ d:A\rightarrow A^{A}/\Gamma$ is the diagonal map.

PROOF. Let $\mathfrak{D}$ and $\mathfrak{D}^{\prime}$ be the product system of $A_{\lambda}(=A$ ] and of $B_{\lambda}(=B$]

respectively over the same ultrafilter $\Gamma$ of $\Lambda$ . The notations for projections, the canonical

maps and diagonal maps for $\mathfrak{D}$ are as they were, while let $p_{\Xi}^{\prime\Xi},,p_{\lambda}^{;g},$ $q_{\Xi}^{\prime}$ , and $d_{\Xi}^{\prime},$
$d^{\prime}$ be

the corresponding projections, canonical maps and diagonal maps for $\mathfrak{D}^{\prime}$ . The family
$\{A_{B}-A_{\lambda}p_{\lambda}^{\Xi}\rightarrow^{f}B_{\lambda}\}_{\lambda\epsilon\Xi}$ of maps induoes the characteristic map $r_{B}$ : $A^{\Xi}\rightarrow B^{\Xi}$ , and we

have $p_{\Xi}^{\prime g},$ $r_{B}=r_{\Xi^{\prime}}p_{\Xi}^{\Xi},$ . Henoe the family of maps $\{r_{g}\}_{\Xi\epsilon^{\Gamma}}$ is a natural transformation

from $\mathfrak{D}$ to $\mathfrak{D}^{\prime}$ , and we have the direct limit $g^{\prime}=\lim r_{B}$ : $ A^{\Lambda}/\Gamma-B^{\Lambda}/\Gamma$ . Sinoe

$p_{\lambda}^{\prime g}r_{\Xi}d_{\Xi}=f$ for any $\lambda\epsilon\Xi$, we have
$r_{\Xi}d_{\Xi}=d_{\Xi}^{\prime}fan^{\Xi\epsilon^{\ulcorner}}dhenoe\rightarrow g^{\prime}d=g^{\prime}q_{B}d_{B}=q_{B}^{\prime}r_{B}d_{B}=$

$q_{B}^{\prime}d_{\Xi}^{\prime}f=d^{\prime}f$. But $d^{\prime}$ : $ B\rightarrow B^{\Lambda}/\Gamma$ is an isomap by Lemma 10. Henoe putting $g=$

$d^{\prime-1}g^{\prime}d$, we have $f=gd$. $q.e.d$ .
THEOREM. 8. If $A$ is strongly finitary, then the diagonal map $ d:A-A^{A}/\Gamma$

is an injection for any ultrapower $ A^{\Lambda}/\Gamma$ .
PROOF. Sinoe $A$ is strongly finitary, there exists a family $\{B_{u}\}_{\nu\epsilon\Delta}$ of finitary

finite structures such that $A$ is equivalent to a substructure of $\prod_{\nu e_{\Delta}}$ B.. Let $j:A\rightarrow\prod_{\nu A}B_{u}$

be the injection and $r_{v}$ ;
$\prod_{\nu\epsilon_{\Delta}}B_{u}\rightarrow B_{v}$ the projection for $\nu\epsilon\Delta$ . Then there exists a

$g_{\nu}$ : $A^{\Lambda}/\Gamma-B_{\nu}$ for each $\nu\epsilon\Delta$ such that $r_{\nu}j=g_{\nu}d$ by Lemma 11. Now let $ g:A^{A}/\Gamma$

$-\prod_{\nu\epsilon A}B_{\nu}$ be the characteristic map induced by the family $\{g_{\nu}\}_{\nu\epsilon\Lambda}$ , then by the

uniqueness of the characteristic map, we have $j=gd$. Sinoe $j$ is an injection, so also is

$d$ by $Th\ovalbox{\tt\small REJECT} rem1$ . $q.e.d$ .
However, in order that the diagonal map $ d:A-A\prime f/\Gamma$ be an injection, it is

not necessary that $A$ is strongly finitary. For example, let $\mathfrak{C}$ be the category of all

torsion-free abelian groups. Then $\mathfrak{C}$ is a perfect set-thoretical concrete category. Let

$A$ be the additive group of all integers, then it can be seen that the diagonal map

$ A-A^{\Lambda}/\Gamma$ is an injection for any ultrapower, but $\mathfrak{C}$ contains no finite group exoept

for $U=\{0\}$ .
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