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Introduction.

The concept of ultraproducts and ultrapowers is one of the main methods in the
theory of models. The ultraproduct is defined as a quotient image of the direct product
of relational structures together with the relations to be induced in it ( L8], [17]). Here
we give an attempt of an interpretation of it in terms of categbries. The advantage of the
interpretation is that we can apply the new definition not only to usual structures with
relations of finite arguments, but also to any structures, like topological spaces, on which
some infinitistic notions may be dealt with, as far as the mappings that preserve the
structural relations take place between them. However, as seen later, the application of
the new definition to topological spaces causes a curious situation. Indeed, when we
consider the ultrapower of a structure, a natural isomorphic injection, which we call
the diagonal map in this paper, of the original structure into the ultrapower should be
expected, but this expectation does not hold in general. In the last section of this
paper, it will be shown that the diagonal map of a structure into the ultrapower would

be an isomorphic injection only when the structure satisfies some finitary condition.

To discuss about it, first we have to interpret the meaning of isomorphic injections
as a notion in the theory of categories. Injections are a kind of monomaps. It is
interesting that many propositions that hold between monomaps also hold between
injections. Moreover, under the assumtions of completeness and of a kind of smallness
of the treated category, it is seen that any map in it can be expressed as a composition
of an epimap and an injection. Thus such a category becomes a bicategory in the sense
of Isbell ([3], [4]). After reviewing the general notions about categories and establishing
the terminology in §1, we will give the definition of injections in terms of categories,
and investigate the properties of them in §2. The proposition that the diagonal map
of an object into the ultrapower of it is an injection is completely interpreted in the

theory of categories. However the finitary condition under which the proposition above
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holds for an object is no more a notion in general categories, but that in concrete
categories, categories whose objects have basic sets. In §3, we study about concrete
categories. As well known, the correspondence between terms in the theory of categories
and those in the thory of sets is not strictly literal. In order to make it more literal
and natural, it is convenient to introduce some conditions on concrete categories, which
are usually satisfied by most of specific substantial concrete categories. Under the
condition we investigate about ultrapowers in a concrete category. §4 is devoted to
prove the Theorems about the diagonal maps into ultrapowers and the finitary conditions

on objects, as stated before.

§1. General notions on categories.

In this section we give the definitions of basic notions about categories, and
establish the terminology. Several propositions are stated without proofs, which are to
be found in [1J, [2], [7], [9], [12], [13] or [15].

A category W is a class of abstract elements called maps, among which associative
compositions are partly defined (that is, some pairs f,& in A uniquely determine a h=fg
in %) where conditions C.1), C.2) and C. 3) stated below are satisfied. The class of all
identities in % is denoted by |%|. Maps in |%| are called objects. Let f, g and & be
maps in .

C.1) Each f uniquely determines an A and a B in |W| such that fA=Bf=f.

A and B in C.1) are called the domain and the range of f respectively, and

denoted by A=Do (f) and B=Rg(f).

C.2) The composition fg is defined in N if and only if Do ( f)I=Rg(g).

C.3) If either of fl(gh) and (fg)h is defined in W then the other is also
defined and they are identical.

Hence we have Do (fg)=Do (g) and Rg (fg)=Rg (f). The triple composition fgh
is defined if and only if both fg and gh are defined. When Do (f)=A4 and Rg(f)=B,
we write A—J—C—>B or f: A—B, for which we may simply write A—B if there
is no need to name the map. Similarly the composition of A——>B and B—>C is
represented by A——>B——C. However in the diagram of fig. 1, for instance, it is
not necessary to have fg=h. If the equality holds, we say that the diagram is

commutative. and write as in fig. 2 when we show the commutativity particularly. Also
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the diagram in fig. 3 shows fg=#hk.

g g
A—ﬁ?f A——)B A—>B
) © |f k f
~.C ¢ | o
3 C—D
h
fig. 1 fig. 2 fig. 3

The class of all maps f with A=Do (f) and B=Rg (f) is denoted by Hom (A4, B).
f is called a monomap if fg=fh implies g=h. fis called an epimap if gf=hf implies
g=h. When gfe|U|, g is called the reverse of f, fis called the coreverse of g, f is
called 7eversible and g is called coreversible. A reversible and coreversible map is called an
isomap. Two maps f: A——B and g: C——D are called equivalent if there exist isomaps
a:A——>C and b:B——>D such that bf=ga. The reverse of an isomap a, which is

unique and is automatically the coreverse of @, is denoted by a~'.

ProrosiTioN 1. A reversible map is a monomap. A coreversible map is an

epimap. Reversible epimaps and coreversible monomaps are isomaps.

(See [9], [15])

ProrositioN 2. If both A——B and B——C are monomaps (resp. epimaps),
then so also is the composite map A——>B——>C. If the composite map A—>B—>C
is a monomap (resp. an epimap), then so also is A——B (resp. B—>C).

(See [9], [15]).

In general the class of maps of a category U may be very large beyond any
cardinality. We say that W is small if it is a set, and large otherwise. However, it is
sometimes convenient to require the following smallness for a large category (see [14],
[15)). A category U is called locally small to the right (resp. to the left), if

LS. 1) for any A and B in |U|, Hom (A, B) is a set, and

LS. 2) (resp. LS.2)) for each A in |N| there exists a set €4 (resp. M) of
epimaps (resp. monomaps) f with Do (f)=A (resp. Rg(f)=A) such that for any
epimap (resp. monomap) g with Do (g)=A (resp. Rg(g)=A) there exists a [ in €,
(resp. in M) equivalent to g.

A category U which is locally small both to the right and to the left is simply
called locally small. The set €, (resp. M) is called the set of representatives of epimaps
(resp. monomaps) from A (resp. to A).
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Example. Let |%| bc the class of all ordinal numbers, and let A be the category
which consists of all maps f: A——B uniquely determined by each A and B in |¥|
such that A < B. Then every map in % is a monomap and an epimap. U is locally

small to the left, but not to the right.

Let A and B be categories, and F an application from B to A. F is called a
(covariant) functor if it preserves the compositions. (In this paper we deal with neither
contravariant functqrs nor many-argumented functors, about which refer to [1], [2],
[7], [10], [13] or [15].) A functor from a small category B to U is called a diagram
in %, where B is called the index category and each map a in B is called the index
of the map in the diagram to which a is applied. A diagram is often represented by
letters for objects in || and arrows between them for maps in ¥, like fig. 1. However,
the same objects or the same maps in A may be different things in a diagram, if they
are images from different indices. Furthermore, when we say about an object of a
diagram, it means the image of an object in the index category. An arrow in a diagram
may be incidentally an object in ¥, but it is by no means an object in the diagram.

Let ® be a diagram in U with the index category B, and X an object in .
Assume that a map fi: Da—X (resp. fa: X——>D.,) is assigned to each Ae|B| where
D, is the object of the diagram indexed with A. Such a family {fa} .8/ is called
compatible to the right (resp. to the left) for D if for each arrow Ds——Djp in D we

have P P
D A A DA
lAEAX (resp. Xg l >
Do, b

Further, we say that X is the direct limit (resp. the inverse limi) of ® with
the canonical maps fa, if {fa}i @ is compatible to the right (resp. to the left) for
®, and for any Ye|U| and for any family {gu}. @, of maps g4:Ds—Y (resp.
ga:Y—>D,) compatible to the right (resp. to the left) for D, there exists uniquely a
h: X—>Y (resp. h: Y—>X) such that

Ja, x vy &4
DAglh_ <resp. hl © D4 )
P | X7

for each Ae|®D|. The map & is called the characteristic map induced by the
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compatible family {ga} . ®,. The direct limit (resp. the inverse limit) is uniquely
determined up to the equivalence class, if it exists. The direct limit of a diagram D is

denoted by hm [®] or 11m D, where B is the index category of ®. Similarly the

A‘I%!
inverse limit of ® is denoted by 11m [D] or llm D,. Further, for instance, the direct
AG]}SB!
limit of the diagram in fig. 4 is denoted as in fig. 5.
—B _ _—HB
A< ¢ lim [A |
fig. 4, fig. 5.

Let ® be a diagram in A which consists of an object A, objects B; and maps

fi: A—>B, whele 2 is the index that runs through a set 4. Then the direct limit of ®

fi

is often described as 11m [A-—aBZJM or as hm [fi: A—>B;Ji4. Similar conventions

are used for other dlagrams as well as for inverse limits.

A category U is called right complete (resp. left complete) if every diagram in WU
has the direct limit (resp. the inverse limit). 9 is called Sinitely right conplet (resp.
finitely left complete) if every finite diagram in 9 has the direct limit (resp. the inverse

limit). A is called (finitely) complete if it is (finitely) both right and left complete.

If the diagram ® contains no arrows, then 1<i£n (D] is called the product of
Ae®, and denoted by /7 [D] or I A; where A is the index category of D, and
lim [D] is called the coproduct of jzlAe ®, and denoted by I7*[D] or 17 *A; If 4is
a—)ﬁnite set {1,2,...,n}, then H A; and II* A; are denoted by AIXA2>< X An

ded

and A,*A.*-*A, respectively. X—hm [A—5 Blis is called the equalizer of
4_.

maps f;, and the canonical map X——A is called the equalizer map. X =1im

fa

[A——BJia is called the coequalizer of maps f;, and the canonical map B——»X
is called the coequalizer map. X =1i‘r_n [A;L)B] 24 1s called the' pullback of maps
fi» and the canonical map X——B is called the pullback map. X=lim [A—ZL)B,I] 24
pushout of maps f;, and the canonical map A——>X is called is czﬁfed the pushout
map. When A consists of finite members, the product I A, is called the Jfinite
product. Similarly finite coproducts, finite equalizers, etc., a;éddeﬁned. A category U is
said to have (finite) products, or closed with ( finite) products, if every indexed family

{A:}24 has the product, where A is a (finite) set. 9 is said to have ( finite) equalizers,

or closed with (finite) equalizers, if every diagram [Afx—>B]M for a (finite) set
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A has the equalizer. Similar definitions are given for the closedness with (finite)
coproducts, (finite) pullbacks, etc..

PRrOPOSITION 3. An equalizer map 1s a monomap. A coequalizer map is an
epimap.

(See or [13]).

ProposiTION 4. A category is left (resp. right) complete if and only if it is
closed with products (resp. coproducts) and with finite eqnalizers (resp. finite

coequalizers).
(See [10] or [I5]).

ProrosiTION 5. If X= hm [ /,C] and f is a monomap, then the canonical
map X——>B is a monomap. Also the dual proposition holds for a pushout and
epimaps.

(See or [15]).

Let © and ® be two diagrams with the same index category B. A collection
9 of masp ha:Da—>D'4, where Dy and D'4 are objects in ® and P’ respectively
indexed by A ¢|B|, is called a natural transformation from D fo Y, if for every
a ¢B with a: A——B we have f'q ha=hgf, where f, and f', are maps in D and '
respectively indexed by a. $ is called a natural epi-transformation (resp. a mnatnral
mono-transformation), if every h, is an epimap (resp. a monomap). If X= hm @], X'=
hm [®'] and if gs:Da—>X and g'a:D'4—X' are canonical maps, then the set
{g 4 ha}am, of maps is compatible to the right for D, and we have the characteristic
map h:X—>X', which we call the direct limit of §. Similarly the inverse limit
of 9 is defined.

ProrposiTiON 6. If 9 is a natural epi-transformation from a diagram D to
another ®', then the direct limit of © is an epimap. Similar proposiiton holds Jfor
a natural mono-transformation and the inverse limit.

Proor. We use the same notations as stated above. Assume wu,v:X'—>Y
and uh=vh, where Y e|U|. Then we have ug' aha=uhga=vhgi=vg ahas, and ha
being an epimnp, ug’4=vg’4. Since the collection {ug' 4} a8 of maps is compatible

to the right for @', the uniqueness of the characteristic map X '——Y implies u=v.

g.e.d.
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CoroLLARY. 1. If f,: A——>B; is an epimap for every i/, then the pushout
map f: A—>X is an epimap, provided the pushout X exists.
Proor. Let @' be the diagram [A—fX—>BA]M, and ® the constant diagram

with the index category ®' where A is assigned to every member of ®'. Apply the

previous proposition to the natural transformation $={fi}zs- q.e.d.
Referring to we can see that every canonical map B;—>X in the

corollary above is also an epimap.

COROLLARY 2. Let ® be a diagram in W with the index category B, and
D, the object in D indexed by Ae|B|. We assume that X=lim [D] exists. If Ye|U|
and {ga:Da—Y } 448, 15 a family of epimaps ga compc;ible to the right for D,
then the characteristic map X——Y is an epimap.

Let A and B be two objects in A. A is called prime on B if there is no map
A——B, and non-prime otherwise.

ProrositioN 7. Let {A:}ia be an indexed family of objects in |N|, and &
a member of A. If A: is non—prime on A, for every AcA, then the canonical map
{ZAA"_"’Af is coreversible, and particularly an epimap.

Proor. Take a map f;:A.——>A, for each Aed, and particularly let fi=A..
Then the characteristic map Ae——:{{ A; induced by the family {fi}.4 is surely the

coreverse of the canonical map I A;——>A,. See for the detail. g.ed.
€4

Especially if A;=A for every Ac/, then no A: is prime on another and the
canonical map {IA A,——A; is always coreversible. In this case the product IHA A; is
called the power of A and denoted by A, ‘

§ 2. Injections.

In this section we will give the definition of injections and study the properties
of them. Injections are maps which are to turn out the set-theoretical injections in
concrete categories. Injections are monomaps, and it is interesting that many theorems
about monomaps are also valid after replacing injections for monomaps. Furthermore,

under the assumption of right completeness and local smallness to the right, any map

in a category is decomposed into an epimap and an injection. This fact will be seen

first. Finally we will give the definition of ultraproducts of objects in terms of the

theory of categories. We sometimes omit the dual statement in the definitions or in
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the theorems if there is no need to state particular terminology or particular notices.

DeriniTioN 1. A category is called right perfect, if it is locally small to the
right and right complete. Left perfectness of a category is dually given. A category
is perfect if it is both right and left perfect.

DerFINiTION 2. A map g: A——C is called an epi-factor of a map f: A—>B,
if it is an epimap and there exists a map & : B——C with f=hg. Dually g:C—B
is called a mono-factor of f: A—B, if it is a monomap and there exists a map
h: A—>C with f=gh.

DerFiniTION 3. A factorization A—g—>C—h—>B of f: A—— B is called an epifactori-
zation if g is an epimap. An epifactorization A—£->C—h—>B of f:A—>B is called
critical if any epifactor of f is an epifactor of g. When A—g—>CL>B is a critical
epifacto‘rization of f: A—>B, g, h and C are called the epicomponent, the injection part
and the image of f respectively, and denoted by i, j; and Im(f) respectively. f: A—>B
is called an imjection if it has the domain A itself as the epicomponent.

Let %A be a right perfect category, and f: A— 5B a map in it. Since ¥ is locally
small to the right, there exists a set 4 of representatives of epimaps from A. Let G,
be the set of all maps in €, each equivalent to an epifactor of . &, is not void, since
at least the domain A itself is an epifactor of £ Let C be the pushout of the family
€,, and i: A——C the canonical map. We say that a family {h;: A;——>B}iu is
compatible for the pushout diagram [A—f-x—»A;]M it hifi=hef: for any 1 aud ¢ in
A. Since for each ge¢€; with g:A—A,, we have h,: A,——>B with h,g=/f, the
family {4,} 0, I8 compatible for the pushout diagram [ALA!,]W@ Py and we have
the characteristic map j: C——B with f=ji. By Corollary 1 of Proposition 6, 7 is an
epimap, and hence an epifactor of f. Obviously 7 is the epicomponent of f, and
A—Z‘—>C—i—>B is the critical epifactorization of f. Thus we have

TueoreMm 1. If a category W is right perféct, then any map in it admits the
critical epifactotrization of it.

In general if f: A—— B admits the critical epifactorization, it is obvious that the
epicomponent of f is uniquely determined up to the equivalence class. Since i, is an

epimap, f=ki, implies 2=j;. Hence the injection part of f is also uniquely determined

w1 +n +tha ansivralannca Alace
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Next we shall investigate the properties of injections.
LemMa 1. If a map f: A—B admits the critical epifactortzation, then the
injection part jr is an injection.

h .

Proor. Let Im (f)-25C-2B be an epifactorization of jy:Im (f)—>B. Then
since giy is an epifactor of f, there exists a g':C— Im(f) such that g’gi,=i,
Since i, is an epimap, this shows g’'g=Im(f). Hence g is a reversible epimap, and
is an isomap by [Proposition 1| : q.e. d.

LemMA 2. If the category is closed with coequalizers, then any injection

j:A—>B is a monomap.

Proor. Let f, g:D—>A be two maps with jf=jg, and h: A——C the
coequalizer map of {f,g}. Since the family {j, jf} is compatible to the right for the

diagram [D—3A], we have the characteristic map k#: C—B such that j=kh. Since
g

h is an epimap by it is an epifactor of j. Hence it is equivalent to the

object A, i.e., an isomap. But then Af=hg implies f=g. g.e. d.

shows that the term “the injection part” for j, is adequate.
1, together with and shows that a right perfect category is a
bicategory in the sense of Isbell (see [3], [6], [19]).

TueorEM 2. A reversible map is an injection.

k
Proor. Assume that f: B—->A is the reverse of g: A——>B, and A—>C—>B

is an epifactorization of g. Then the epimap % has the reverse f&: C—>A, and hence
is an isomap. q.e.d.
‘Tueorem 3. If the composite map A—LBLC is an injection, then so also

is f. If the category W is closed with pushouts, and both maps f: A—>B and
g&: B——C are injections, then the composite map gf is also an injection.

Proor. The first statement is obvious, since any epifactor of f is an epifactor

of the composite map gf.

Assume that f: A——B and g: B—C are injections and A—>D—C is an

epifactorization of the composite map gf. Let X be the pushout of {f, k} and

a:D——X,b: B—>X the canonical maps. Since F B g

the family {g, 2} of maps is compatible for the 7 \b\‘X }_\_; C
pushout diagram Ak<g we have the characteristic A - a/v/h/ ’
map c¢: X——C. b is an epimap by k p_-
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and hence an epifactor of the injection g. Hence b is an isomap. But then % is an
epifactor of the injection f, since f=b~'ak. Hence k is an isomap. g.e.d.
TuroreMm 4. An eqalizer map is an injection.
Proor. Let g: A—>B be the equalizer map of the diagram [B-Zf—)C]zsA
and A——h>D——}i>B an epifactorization of g. For any ,&/4 we have fikh=f,g=/f:g=
fikh. But since % is an epimap, we have fik=f:k. Hence the familv {&, fik}ia is

compatible to the left for the diagram [Bi-)C] 24 and we have the characteristic
map &' : D—>A such that gh’ k. Then gh'h=kh=g which implies #’'h=A since g
is a monomap by [Proposition 3. Hence % is a reversible epimap and hence an isomap
by [Propo . g.e.d.

TueoreMm 5. If the category is closed with pushouts, X= hm C B> Cl and
f is an injection, then the canonical map X——>B is an mjectzon.

This theorem is proved similarly to the next theorem.

THEOREM 6. Assume that the category is closed with pushout and let D and
' be diagrams wiih the same index category B. If § is a natural transformation of
D into D' such that every haeH with A €|B| is an injecton, then the inverse
limit x of © is an injection of X=lim [D] into X'=lim [D'] (provided they exist).

Proor. Let gi: X— Dy and(-—g’,; : X'—>sD' 4 be(—the canonical maps of X and
X'’ respectively where D4 and D', are objects of diagrams ® and @’ respectively

indexed by Ae|B|. Let X—h—> YLX ' be an epifactorization g4

of x. Let Z, be the pushout of {gu, 2} and z.:Ds—>Z4 K

ya: Y——>Z, the canonical maps. Since the family {k4, g 4R}

|
}
ga D k
is compatible for the pushout diagram [X/ A], there is the J« g'a l Ha
Y X

characteristic map %4 : z4—>D'4 such that hy=wu4z4 and usys=

Ja

g'ak. Then since z4 is an epimap by Propositian 5, it is an X —""DlAjDB
. h l /y A

epifactor of the injection %,4. Hence it is an isomap, and putting B I I

Ya=27"ya, we have Yih=2.'yih=27'2484=84 and huy's= kl }hA ;

v v
U42427Ya=usya=g s+k. But then for the map fo:D,——Ds X' —D's—D's
and f',: D’4——>D’p in the diagram ® and 9©' respectively indexed by ae|B|, we have
hofVV s=Ff bV .=F.0" ,k=0o'vk=hav'n. Since hr is a monomap bv [Lemma 2 we
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have f.,y'a=y's for any a: A—>B in the index category B. Hence the family
(¥4} 4c 19 is compatible to the left for ®, and we have the characteristic map h:Y—X
such that guh'=y'4 for every Ae|B|. Now guh'h=ysh=gs and the uniqueness of
the characteristic map X—>X induced by the family {ga} @, implies A'h=X.
Hence / is a reversible epimap and hence an isomap by [Proposition 1. q.e.d.

One can see that Theorems 2, 3, 4, 5, and 6 for injections correspond to Proposions
1,2,3,5 and 6 for monomaps respectively. Note that we assumed only the closedness
of the category with coequalizers and pushouts in the Theorems. Hence the theorems
hold for general finitely right complete categories.

Now we shall give the definition of ultraproducts in terms of categories.

DerFiniTION 4. Assume that the caregory 9 is closed with products and right

=

complete. Let A be a set and A; an object in || assigned to each Ze4. Let & and Z
be subsets of 4. If 5’c&, then the product /7 A; is called a subproduct of IIZ A,

2e8’

Let & be an element of 5" and p%:1] A—>A; the canonical map. Then the family

AeS

{p%} eczr induces a characteristic map pZ. : E A ;——)ﬁg ’A ;, which we call the projection

of gg A; to the subroduct {,{- Al Particularly each canonical map p%: hﬂg A,—A; is
taken as a projection.

A filter T of A is a family of subsets of A such that &’c& and Z'el’ imply
ZeI" and that &, &'el” implies EN&'el’. T is called an ultrafilter if it is maximal.

The product system of objects A, with ieA over the filter I' of A is the diagram
D=[p:: Il A;——I A))s5.r,ecs in A where P, is the projection. We call the
direct limiicsgof the lgfoduct system ® the reduced product of A, Zed, over the filter I,
and denote it by IT A,/I". If I' is an ultrafilter, then the reduced product is called an
ultraproduct. 1f 2:5‘,1,1=A for all Aed, then the reduced (ultra-) product is called the
reduced (ultra-) power of A, and is denoted by A4/I'. Unless otherwise is stated, we
assume that pZ and p? denote the projections in the senses above, and the canonical
map ;IZq A;—)E A,/I is denoted by g:.

When A;=A for every e/, then the identity map d;: A——> A, (d:=A) induces

the characteristic map ds: A——II A, for each Zc /.
ie8

LevMmA 3. If 5'CE where EC A, then pi ds=ds'.

Proor. Obviously p%’ pZ, ds=d;, from which the lemma follows immediately.
g.e. d.
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Hence we have a map d: A——>A*/I" as the direct limit of the natural trans-
formation {ds}zr. Note that although each ds is an injection by its

direct limit d is not necessarily an injection.

The maps dg: A—Af and d: A—>A4/I" will be called the diagonal maps.
The notations ds and d will be used always in this meaning.

It is easily verified that if 9 is a concrete category of structures in which every
relation considered has finite arguments, then the definition above of reduced products
agrees with the usual one given in the theory of models. (See [8], [17], [18]). But
our definition is slightly wider, since it can be applied to structures with infinitistic
relations, like topological spaces. However, the following example shows that the
application of our definition to the category of topological spaces leads to a curious

conclusion.

Example. Let € be the category which consists of all topological spaces as the
objects and all continuous functions between them as the maps. Referring to
4, it is easily seen that € is complete. Further, € is locally small, and hence it is
perfect. The direct product of topological spaces \ with the weak topology satisfies, as

well known, the condition of the product of them in the theory of categories.

" Now let {A;}:« be an indexed family of topological spaces, and X=UA A,/
the ultraproduct over a non-trivial ultrafilter I" of 4. Let V be a non-void open set

of X and 5 a set in /'. Then since the canonical map ¢::/] A;——X is continuous,
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the inverse image ¢z' (V') of V should be open in 175 A;, and hence there exist a finite
number of indices 4;, 4y, --+, 2, and non-voild open Afsets Vi, Vi, o+, Va €ach in A“, A;z,
-+ A, respectively such that xegg Az and p4, (x)e Vi imply gs(x)eV. Let &' be the
set obtained by reducing 4y, 4o, -+, 4, from 5. Since I’ is non-principal &’ is also a
set in I'. Since for each x’ Cl,], A, there exists an xellg A; such that pi (x)e Vi for
every k=1,2,---,n, x' is rri;:pped into V by the can(;nical map ¢:. Since gz is an
epimap by it is continuous function onto whole space X. Therefore V=X
and X has only two open sets, the void set and the whole set. Thus X has a very trivial
topology regardless of the collection {A;}:, of spaces. If we previously assume that the
objects in § are all Hausdorff spaces, then any non-principal ultraproduct of spaces consists
of at most a single point. It is significant that when A;=A for every ¢4, the

diagonal map d: A——A4/I" is no more an injection in this case. In §4, we shall
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investigate some conditions for the objects A in a perfect concrete category U so that

the diagonal map d be an injection for any 4 and I.

§3. Concrete categories.

In this section we deal with concrete categories, of which first we shall establish the
terminology. Originally the terminology of the theory of categories seems to be constructed
on the analogy of the theory of sets, but the correspondence of the terms between the
both thoeries is not completely literal. We shall introduce some conditions on categories
so that the correspondence becomes more natural and literal.

A concrete category € is a subcategory of the category of all sets, i.e., a category
in which with each object A a set y(A) called the basic set of A is associated in such
a way that u(A)=p(B) implies A=B, and ‘each map f: A——>B is an application
from p(A) to y(B) where the composition of maps is the usual one of the applications.
Each object in a concrete category is called a structure, and a structure A whose basic
set p(A) is a subset of ¢ (B) of B is called a substructure of B.

DerFiNiTION 5. A concrete category € is called set-theoretical, if the following
conditions CF 1)..-CF 5) are satisfied.

CF1l) If A,BelC| and p (A)cp(B), then the application j from p(A)to

1 (B) such that jla)=a for any ac A is a map iu G, and for any Ce |G| and

fe Hom (C, B) such that f(u(C))cu(A) there exists a geHom (C, A) such

that f=jg.

CF 2) Every monomap f: A——>B is a one-to-one application from pn(A) to

1 (B), and every epimap f: A——B is an application onto u(B).

CF 3) The basic set of the product of a family {A.}i, of objects is the set-

theovetical divect product of the basic sets u(A;), Ae.

CF4) If f: A—>B, then there exists a Ce|C| such that p(C)=f(u(A)).

CF5) If K is the equalizer of the indexed family {f,: A——B}i, of maps

fas and k: K——A is the equalizer map, then k(,u. (K)) coincides with jnst the

set {ae n(A)|fi(@)=fe (a) for any 2, &€ A}.

The map j in CF 1) will be called the identical map. In CF5), it is easily seen
that %(u(K)) is included in the latter set, but the coincidence does not seem generally

true.
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Hereafter we assume that the category § is concrete and set-theoretical.

Lemma 4. If A,Be|C| and p(A)cp(B), then the identical map j: A—>B
is an injection. Conversely, if A, Be|C€| and j: A—>B is an injection, then there
exists a substructure C of B and an isomap a:A——>C such that j=ja where
7' : C——>B is the identical map.

Proor. Let ALC-—é»B be an epifactorization of the identical map j: A—B
where p(A)cp(B). Since p(b(C))=un(A) by CF2), there exists a g:C——>A such
that b=jg by CF1). Hence we have j=ba=jga. Since j is naturally a monomap,
A=ga. Hence a is a reversible epimap, and hence an isomap by [Proposition 1l

Assume that A, Be¢|€| and j: A—>B is an injection. By CF 4), there exists
a Ce|@| such that px(C)=j(u(A)). Since p(C)cp(B), we have the identical map
j/:C—>B and a map a: A—>C such that j=j'a by CF 1). Since a(x(A))=j(u(A))
=x(C), a is an epimap and hence an isomap as an epifactor of the injection j. q.e.d.

Remark. C in CF 4) is a substructure of B. Hence we have the identical map
j:C—>B and a map g: A—>C such that f=jg by CF1). Since g(u(A))= f(u(A))
=u(C), g is an epimap and A-8.c1.B is a critical epifactorization of f. Hence
any map f in a set-theoretical concrete category admits the critical epifactorization.
Bisides, it would be compatible to the definition of the image of a map to put C=Im(f),
and we assume that z#(Im(f)) is a substructure of #(Rg(f)) from now on.

In general it often occurs that under some condition an object A and a map
f: A—>B are determined for Be|@| up to the equivalence class. If further f is an
injection, then C in and the identical map j: C——>B are respectively
equivalent to A and f by Hence, if a particular set is not concerned as for
the basic set of A, we can assume that A is a substructure of B and the injection f
is the identical map from A to B.

LemMma 5. If © is left complete, and {A.}i4 is a family of substructures of
a structure B, then there exists a substructure C of B such that p (C)=“Qﬂ(A1).

Proor. Put B;=B for every ¢/, and let p; :XI(IA A,—>A; be the projection of
the product to its component. Letting je: A:—>B; be the [identical map for each
&eA, which is an injection by Lemma 4, the characteristic map p: {L A;———)l{g B;
induced by the family {j¢ p:: !7/‘ A;——>B:}:, is an injection by Hence
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{7 A can be assumed as a substructure of 77 B, by the remark above. Let K be the
e:;ualizer of the family {j pe}ecs of maplsm (notice that B;=B for all Ae¢4) and
k:K——)Z A; the equalizer map. Then since % is an injection by it is
assumed as a substructure of /7 A;. Put C=Im(j: p: k). Since j:p:k(a)=jp:k(a)
for any aep(K) and £, 1€ /I:I ‘A;z(C ) is determined independently of the index ¢e 4,
and so also is the substructure C of B. Since j:p: (¢ ([l Aj))=p(As), p(C)cp(As) for
any £ed, and hence ,a(C)Clg/,z (A;). On the other h:tf'ld, if aexgpz(A;), then je(a)=
Ji(a) for any &, €. Since p (Il A;) is the direct product /7 ;2(A;) by CF 3), & uniquely
determines an & e u(I1 A)) Suéi‘f that p; (&)=a for any & ef/}d Hence we have j; p; (&)=

Aed
Jipr(@)=a for any £,4¢ /4 and &ep(K) by CF5). Hence a=j; pe(&)e e pe (1 (K))=
¢ (C) which shows ﬂA p(A)cp(C). g.e. d.
CoroLLARrY. If € is finitely letf complete, and A and A’ are substructures

of Be|G|, then there exists a substructure C of B snch that 1(C)=p(A)Np(A') .

Lemma 6. If € is finitely left complete and f: A——>B is an epimap, then
Sfor any substructure B’ of B there exists a substructure A’ of A such that p(A’)
=f~1(x(B")).

Proor. Let A x B be the product of {4, B} and p4: A x B—>A the projection.
The family {A,f} of maps induces a characteristic map ¢: A—>A x B, and there
exists a substructure C of A x B such that ¢ (C)=c(«(A)) by CF 4). Letting j be the
identical map fromw B’ to B, A X B’ can be assumed as a substructure of A x B with
the injection which is the characteristic map induced by the family {A,j} of injections.
By the corollary of there exists a substructure C’ of A x B such that x(C’)
=p(C)Npu(AxB’'). Let ¢':C'—>A xB be the identical map. Then there exists a
substructure A’ of A such that px(A’)=p4c (£(C’)) by CF4). It is easy to see that A’
satisfies the condition of the lemma. q.e. d.

CoroLrary. If € is finitely left complete, f: A—>B is a map in €, and C
is a substructure of B, then there exists a substructure A' of A such that p(A')=
T fe(A)np(C)).

Since the correspondence between a structure and its basic set p(A) is one-to-
one, hereafter we will rather identify them, and the letters A, B, etc. for structures
are assumed to denote the basic sets x(A4), 1 (B) etc. themselves. (For instance we write

ACB in place of yu(A)cp(B)). Accordingly, the structure C in CF4) and A’ in
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are denoted by f(A) and f~'(A) respectively. According to the original
difinition, an object A means the identical map of the basic set of a structure to itself.

Such an idntical map, the object, will be denoted by Z from now on.

Henceforth, we often deal with subsets of the basic set of a structure, say A, -
which are not necessary the basic sets of substrucutres of A4, and with functions from
the basic set of a structure, or from its subset, to another, which are not necessarily
maps in the category. We will write f: A.--—=B with the broken arrow to show
that f is a function from A to B, which is not necessarily a map in the category,
where A and B are sets or structures, and in the latter case they are automatically
taken as the basic sets of them. When f: X.--—+Z and ZcY, where X, Y and Z are
sets, the restriction of f on X is denoded by f/ X. Particularly if X,Y and Z are
structures, and fis a map in €, then letting j be the identical map from X to Y we
have f/ X=fj.

DerINiTION 6. Let @ be a concrete category, A and B structures in €, and
¢:A--->B a function from A to B (not necessarily a map in €). ¢ is called finitely
compatible if for any finite subset X of A there exists a map f: A——B in § such
that ¢ / X=f/ X. A structure B is called finitary if every finitely comptible function
from any structure A to B is a map in €. A structure B is called finite if its basic
set is finite. B is called strongly finitary, if it is equivalent to a substructure of the
product of a family of finitary finite structures. The category € itself is called (strongly)

finitary, if every structure in it is (strongly) finitary.

Concerning to the nature of finitary categories, refer to [16].

LemMa 7. In a sei~theoretical concrete category, a substructure of a (strongly)

Sfinitary structure is (strongly) finitary.

PRrOOF is easy.

Lemma 8. Let § be a set-theoretical concrete category, {B:}ia a indexed
family of objects and B=i74 B.. If B, for every Aed 1is finitary, then B is also
finitary.

Proor. Let A be a structure and ¢:A---—B a finitely compatible function.
Then for any finite set X of A there exists a map f: A—>B such that f/ X=¢/ X.
Hence, letting p,: B— B, be the projection, p,f/ X=p,¢0 /X for every AeA where
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p2f: A—>B; is a map in €. Thus the function p,¢: A---—B; is finitaly compatible
and hence it is a map in @, since B; is finitary. Let g: A——>B be the characteristic
map induced by the family {p;¢}:s of maps. Then for each 14 and acA, we have
P18 (a)=p; ¢ (@), which shows g(a)=¢ (a) by CF 3). Therefore ¢=g and ¢e €. q.e.d.

CoroLLARY 1. In a set-theoretical concrete category, a strongly finitary

structure is finitary.

CoroLrary 2. If € is a set-theoretical concrete category and B is the inverse
limit of a diagram D in @, in which every object is finitary, then B is also finitary.

We omit the detail of the proof, but referring to the proof in of
4 of this paper, we can know that the inverse limit B is obtained as an equalizer of
maps from a product of objectsin D to another. Hence B is taken as a substructure of a
suitable product of objects in ® by [Lemma 4 From this and Lemmas 7, 8, the
corollary follows immediately.

In the proof of Lemma 8, assumption CF 3) is essential and the corollary above

follows from Lemma 4. Lemma 8 and the corollaries do not seem valid if we omit the

assumption that € is set-theoretical.

§4. Ultrapowers in a concrete category.

As seen in the example at the end of §2, the ultrapower of a structure is
sometimes reduced to trivial one. As stated there we will investigate here the condition
for a structure, say A, not to make the ultrapower of it so trivial, and particularly the
condition so that the diagonal map d: A——>A“/I" be an injection for any 4 and I.
To spare the notice in each occurence, we agree that when D is she product system of
objects A;, e/, over the filter I" of 4, pZ or pf denotes the projections from /7 A, to
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IT A; or to A; respectively where Z.5'¢I’, and £€5,qs denotes the canonical map
AeE’ K

from IT A, to I A?/I", and when Ax;—-A for every Aed, d:: A—>Af and d: A—>
A"/lj Egdenote ;i:e diagonal maps. For convenience sake we sometimes identify the
maps f and g in CF1), though they should be distinguished from each other in the
strict sense. Further, throughout this section, the category @ is assumed concrete, set-
theoretical and perfect to both sides.

Tueorem 7. Let A be an structure in €. If the diagonal map d: A—>
A4/I" is an injection for any set A and its ultrafiltr I', theu A is finitary.

Proor. Let B be a structure, ¢ a finitely compatible function from B to 4 and



34 TADASHI OHKUMA

X the collection of all finite subsets of B. Put 4=Hom (B, A), and for each Xe¥, let
Ey be the set {feAd!f(a)=¢ (a) for any ae X}. Since ¢ is finitely compatible, &, is
not void for any XeX. Put I"={5¢| XeX}. Since &y, CExyNEy for any X X' eX
and X”"=XU X’, there is an ultrafilter I" of 4 which includes I". Let d: A—>
A4/’ be the diagonal map. Since it is an injection, it is an isomap from A to a
substruciure d(A) of A4/ by (here the convention stated above is used).
Let A;(=A) be the f~component of the product

B
A g E
A4 and Af for £€¢l’ and we name the maps as 24 / ©\ gs .
in fig. 6 where pZ, p5 and p# are the projections, Al—> A5 —> A4
gs (and similarly for q4) is the canonical map and b /;\/(1@/ b7
I
gs (similarly for gi) is the characteristic map fig. 6

induced by the family {f: B—>Ay}s:. The commutativity indicated in the diagram
follows from the definition of the product system and that of the characteristic map g_}.
Further, we have ds=p% ds and d=qs ds for the diagonal maps d,, ds and d. Now we
shall show that for any B¢ B we have g1 g4 (B)=d¢ (B). Indeed, let X be any finite subset
of B containing f, and put £=25,. Then by the definition of £, p7 g=(f)=f(f)=¢(p) for
any fe 5. Hence gs (§)=ds ¢ (B) and q.g1(8)=ds p4 4 (B)=qs &5 ()=qz ds ¢ (§)=dyp (8).
This shows ¢=d~'q4g4 where d-':d(A)—>A is the isomap. Hance ¢e€. q.e.d.

However, it is doubtful that we have the converse of this theorem.

Example. Let N be the additive semi-group of all natural numbers excluding
0 with the addition +. We generate a category €' from {/N} so that it is closed with
products, coproducts, equalizers and coequalizers, which are to be defined in the sense
of the theory of general algebric systems, where the maps are addition preserving
functions. Then @’ is a perfect set-theoretical concrete category. Let I' be a non-
principal ultrafilter of the basic set 4 of N and put M=N4/I'. M is prime on N.
At thie stage, the diagonal map d: N—M would be an injection. Omit all structures
from €’ which are prime on N, except for the unit structure U= {0}, obtaing a full
subcategory € of 6. N4/I'=U in € and € would be complete (after an adequate
modification if necessary). Further N will remain finitary in €, but the diagonal map

N——>U is no more an injection.

—~ LI | PR | . L W el 1. . aLa ATAIT fn mlena A AT
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Now we shall investigate the condition of a structure A which infer that the diagonal
map A——>A4/I" be an injection for any A and I

LemMma 9. If the structure A consists of a finite number, say n, of elements,
then the number of elements in A4/I" is at most n.

Proor. Let the basic set of A be {a;, as, -+, a,} and D the product system of
Ai(=A), A€, over an ultrafilter I of 4. Let d; be an element in A&, Zel’, for each
k=1,2,--, n such that p$ (55\,(,)=a.c for every 2¢5. We will show that for any element & in
A2, there exists a d; such that qs(&)=q:(d). Indeed, put 5y (&)= {2eZ | p5 (&)=ax}. Then

n — AN . p— . . . f—
E=UZi(a) and there exists a & such that 5y (&) eI since I' is maximal. Put 5'=5; (4)

and 4'=p% (@). Then p¥ (4')=p3(4)=ac for any €5’ which shows pZ. (4)=p% (31:)
by CF3). Hence g:(%)=gs p% (&)=4qs p% (6:)=¢s (3\,5) and the image g¢;(A%) consists
of at most # elements gs (), k=1,2, --,n. Since g; is an epimap by

it maps A% onto A4/I" by CF2). Hence A“/I" consists of at most # elements.
g.-e.d.

Lemma 10.  If A is a finitary finite structure, then the diagonal map
d: A—>A4/I" is an isomap, where I' is an ultrafilter of A.

Proor. We use the same notations as in the previous lemma. Put ¢ (3)=ax
where % is such that Z(q) e I, we shall show that ¢z : A%..- A4 is finitely compatible.
Indeed, let X={a;, "3, -+-,&m} be a finite subset of A%, and the number k; is such
that Sig(a)e I for i=1,2+,m. Then N 5i(4,) is not void. Let ¢ be an index in
the intersection. Then ¢eZy,(a,) impliesi_lp‘e7 (a)=ar,=¢s(a,). Hence ¢./X=pi/X
while pf is a map in €. Hence ¢; is finitely compatible and so a map in €, since A
is finitary. Assume £’'e¢[" and &'C 5. Put &'=p% (4). Then p<' (&')=p% (4) and hence
Z¢(2)=5"NEk(a). Hence 5¢(3)el" implies Z/(2/)e I'. This shows (&)= ¢s.(a')= s pZ(4)
and the family {¢;|A®*——>A}.r is compatible to the right for the product system.
Hence we have the characteristic map ¢: A1/I'—A such that ¢,=cq;. Particularly
@5 (0c)=ax, and ¢s is an epimap. Hence ¢ is an epimap by and ¢ maps
A/’ onto A by CF 2). But since A4/I" contains at most # elements by
it has just »# elements and c¢ is a monomap. Now since d. (a,c)=r§;c for the diagonal
map dg: A—>A%, we have cq5d5=z. Hence ¢ is a coreversible monomap, and hence
an isomap by Therefore d=g;d;=c™! is an isomap. q.e.d.

LemMa 11. Let B be a finitary finite structure. If there exists a map
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f: A—>B from a structure A, then for any ultrapower A‘/I', there exists a map
g: A4/ ——B such that f=gd where d: A—>A*/I" is the diagonal map.

Proor. Let ® and ® be the product system of A,(=A) and of B;(=DB)
respectively over the same ultrafilter I" of 4. The notations for projections, the canonical
maps and diagonal maps for ® are as they were, while let p'Z, p'5,¢'s, and d's, d' be

the corresponding projections, canonical maps and diagonal maps for . The family
3

{A s—>A;—>B;},.s of maps induces the characteristic map 7;:A*—B%, and we
have p's rs=rz ps. Hence the family of maps {rs}sr is a natural transformation
from ® to ®, and we have the direct limit g'=£m rg: A4/I'—>B*/I".  Since
'8y ds=f for any AeZ, we have rsd:=d'sf, and' hence 8'd=g'qsds=q s7:ds=
¢ sd’s f=d'f. But d': B—>B*/I" is an isomap by Hence putting g=
d'-1g’'d, we have f=gd. g.e.d.
TueoOREM. 8. If A is strongly finitary, then the diagonal map d: A——s A4/’
is an injection for any ultrapower A*/I.

Proor. Since A is strongly finitary, there exists a family {B.,}..s of finitary

finite structures such that A is equivalent to a substructure of II B,. Let j: A—II B,
veg ved

be the injection and 7,:II B,——>B, the projection for ved. Then there exists a
ved

g,: A1/T—>B, for each ved such that rj=gd by Lemma 11. Now let g: A4/l

—>IT B, be the characteristic map induced by the family {g}..s, then by the
ved

uniqueness of the characteristic map, we have j=gd. Since j is an injection, so also is

d by Theorem 1. g.e.d.
However, in order that the diagonal map d: A——>A4/I’ be an injection, it is
not necessary that A is strongly finitary. For example, let € be the category of all
torsion-free abelian groups. Then @ is a perfect set-thoretical concrete category. Let
A be the additive group of all integers, then it can be seen that the diagonal map

A—>A4/I" is an injection for any ultrapower, but € contains no finite group except

for U={0}.
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