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\S 1. INTRODUCTION

The queueing system studied is the one in which (i) two diHerent types
of customers arrive at a service mechanism in independent Poisson streams with
mean rates $\lambda_{1}$ and $\lambda_{2}$ ; (ii) the queue-discipline is “first come, first served” ; and
(iii) the .service-time $distrfl$)$utions$ of both types are general with probability
densities $dD_{1}(s)$ and $dD_{2}(s)$ respectively. In a previous paper [1] we discussed
the distributions of the number of customers in the system and the waiting time.
In the present paper the distribution of the time taken for a waiting time $w$ to

reduce to zero for the first time is obtained, and from this are deduced the ex-
plicit expressions for thc distributions of (1) the length of the busy period, (2) the

number of customers served during a busy period and (3) the time taken for a

queue of given length to disappear. N. U. Prabhu [2] has studied these quantities
in the queueing system $M/G/1,$ $i.e.$ , the system in which the customers arrive
in a Poisson process with mean rate $\lambda$, and the service-time distribution is $dB(t)$

$(0<t<\infty)$ . The waiting-time process was investigated by L. Tak\’acs [3], who also

made a systcmatic study of the distributions of thc busy period and the number

of customers scrvcd during a busy pcriod. The purpose of this paper is to study

some aspects of the extcnded qucueing system $M(\lambda_{\iota^{\prime}},\lambda_{0})/G(D_{1}, D_{2})/1$ by using
the technique introduced in N. U. Prabhu [2].

\S 2. THE TIME TAKEN FOR THE WAITING-TIME TO REDUCE TO ZERO

There is a queue in front of a single server, and the waiting customers are
served in order of arrival, with no defections from the queue. We are interested

in the virtual waiting-time $W(t)$, which can be defined as the time a customer

would have to wait for service if he arrived at time $t$. $W(t)$ is continuous from
the left; at epochs of arrival of customer, $W(t)$ jumps upwards discontinuously
by an amount equal to the service-time of the arriving customer; otherwise
$W(t)$ has slopc $-1$ while it is positive. If it reaches zero, it remains at zero until

the next arrival epoch. The proposed definition of thc time, $T$, required for the

waiting time to reduce to zero is as follows. Let $w$ be the waiting time $W(t_{0})$,

and let the waiting time reduce to zero for the first time at $t_{0}+T$ ; then a

random variable $T$, which is the first passage time from $w$ to zero of the process
$W(t)$ , is the desired one and we wish to obtain its distribution. In order to do

this, we introduce the notation
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$dB_{m’ n}(t|w)=P\{t<T<t+d\ell, M=m, N=n|W(\ell_{0})=w\}$ ,

$i.e.$, conditionally on $W(t_{0})=w$, the joint distribution of $T$ and the numbers $M$

and $N$ of two types of customers served during the interval $(t_{0}, \ell_{0}+T)$, excluding
the customers waiting in the queue or being served at the instant $\ell_{0}$ . The
random variables $M$ and $N$ are called the numbers of “new” type 1 and 2
customers respectively. Denoting the conditional probability density of $T$ by
$dB(\ell|w)$ we have the relation

$dB(t|w)=\sum_{m,n}dB_{nbn}(t|w)$. (1)

Let us derive a recurrence’ relation for $dB_{mn}(t|w)$ . For $m=n=0$ we have

$dB_{0,0}(t|w)=e^{-(\lambda_{1}+\lambda_{2})t}\delta(t-w)$ (2)

where $\delta(\ell)$ is the Dirac delta function.

For if no new customers arrive during $(t_{0}, t_{0}+w)$ then the waiting time $w$

reduces to zero at time $\ell_{0}+w$ . For $m+n\geqq 1$ the joint distribution $dB_{n4n}(t|w)$

of $T,$ $M$ and $N$ satisfies the integral equations;

$dB_{m’ 0}(\ell|w)=\int_{r^{--0}}\int_{*=0}\lambda_{1}e^{-(\lambda_{1}+\lambda_{2})\tau}dB_{m-1,0}wt-w(\ell-\tau|w-\tau+s)d\tau dD_{1}(s),$ $m\geqq 1$, (3)

$dB_{m’ n}(\ell|w)=\int_{=0}\int_{\iota--0}\{\lambda_{1}e^{-(\lambda_{1}+\lambda)\tau}zdB_{n\succ 1n}(\ell-\tau|w-\tau+s)d\tau dD_{1}(s)wt-\iota v$

$+\lambda_{2}e^{-(\lambda_{1}+\lambda_{3})\tau}dB_{n_{4}n-1}(t-\tau|w-\tau+s)d\tau dD_{2}(s)\},$ $m,$ $n\geqq 1$ (4)

and

$dB_{0’ n}(t|w)=\int_{=0\cdot=0}^{w}\lambda_{2}e^{-(\lambda_{1}+\lambda_{2})e},$ $n\geqq 1$ . (5)

Notice that, for $m\geqq 1$ and $n=0$ (or $m=0$ and $n\geqq 1$) at least one new
type 1 (or type 2) customer must arrive during $(t_{0}, t_{0}+w)$, as otherwise the
waiting time $w$ will reduce to zero at $ t_{0}+w<t_{0}+\ell$ ; let the first new customer

arrive at the instant $t_{0}+\tau(0<\tau<w)$ .
If $s(0<s\leq\ell-w)$ is the service time of this customer, then the waiting

time of a customer who arrives at time $t_{0}+\tau+0$ becomes $w-\tau+s$. During the
residual interval $(t_{0}+\tau, t_{0}+t)m-1$ type 1 (or $n-1$ type 2) customers must be

served. Thus we have the recurrence relation (3) (or (5)). The expression (4) can
easily be derived by noticing if the first new arrival be type 1 or type 2.

From (3), (4) and (5) we obtain, for $t\geqq w$,

$dB_{m},0(\ell|w)=e^{-(\lambda_{1}+\lambda_{2)}t}\lambda_{1}w\frac{(\lambda_{1}t)^{m-1}}{m!}dDi^{m}(\ell-w)$, $m\geqq 1$, (6)
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$dB_{mn}(t|w)=e^{-\lambda t}\lambda w\frac{(\lambda t)^{m+n-1}}{m!n!}\alpha^{m}\beta^{n}dD_{1}^{*}mdD_{2}^{n}(t-w)$ , $m,$ $n\geqq 1$ (7)

and

$dB_{0\hslash}(t|w)=e^{-(\lambda_{1}+\lambda_{2)}t}\lambda_{2}w\frac{(\lambda_{2}t)^{n-1}}{n!}dD_{z^{n}}^{\cdot}(t-w)$ , $n\geqq 1$ (8)

where $\lambda_{1}=\alpha\lambda,$ $\lambda_{2}=\beta\lambda,$ $\alpha+\beta=1$ and $D$;“ $(t)$ is the k-fold convolution of $D_{\ell}(t)$ with

itself and $Di^{0}(t)$ is zero if $\ell<0$ and unity if $t\geqq 0$ .
Using the identity

$\int_{=l0}sdD_{\ell}^{n}(z-s)dD_{\ell}^{m}(s)=\frac{mz}{m+n}dD_{\ell}^{*n+n}(z)l$ (9)

the expressions (6) and (8) can be easily proved by mathematical induction (see

Appendix). As a check we shall prove that the solution ($7|$ satisfies (4). To do

this, substituting for $dB_{m-1,\hslash}(t|w)$ and $dB_{m’ n-1}(t|w)$ in the right-hand side of (4)

we obtain

$\int\int_{-\Leftarrow 0s=0}[-\lambda-.-\lambda(t-)\lambda(w-\tau+S)\frac{\{\lambda(\ell-\tau)\}^{m}}{(m-1)!}\frac{+n-2}{l!}\alpha_{1^{J^{n}}}^{m-1^{\wedge}}wt-w_{\lambda\alpha eedDi^{m-1}dD_{2}^{n}(t-w-s)dD_{1}(s)}$

$+\lambda\beta e^{-\lambda\tau}\cdot e^{-\lambda(t-\tau)\lambda(w-\tau+S)^{\underline{\{}\lambda(\ell-\tau)\}^{m+n-2}}\alpha^{m}\Gamma_{\dot{J}}^{Jn-1}dDi^{m}\cdot dD_{2}^{n-1}(\ell-w-S)dD,(s)]d\tau}m!(n-1)!$

$=\frac{e^{-\lambda t}\lambda^{n+n}\alpha^{m}\beta^{n}}{(m-1)!(n-1)!}\int_{\tau-0}(t-\tau)^{m+n-2}[(w-\tau)(\frac{1}{}m+\frac{1}{\prime l})dDi^{m}\cdot dD_{\underline{\cap}}^{n}(t-u)w$

$+\int s\{\frac{dDi^{m-1}dD_{2}^{r_{n}}(t-w-s)dD_{1}(s}{r\iota})+\frac{dDi^{m}\cdot dD_{2}^{n-1}(t-w-s)dD_{\sim}n(S}{1l})\}-\rfloor d\tau t-w$

.
$.=0$

$=e^{-\lambda t}\lambda w^{(\lambda t)^{m+n-1}}r\iota^{m}\beta^{n}dDi^{m}\cdot dD_{2}^{n}(t-rv)-- dB_{m’ \mathfrak{n}}(tw)$ .
$m$ ! $n$ !

In above expression we have used the identity

$\int^{z}s\{\frac{dDi^{m-1}dD_{2}^{n}(z}{n}\underline{-s)d}\underline{D_{1}(S}\underline{)}+-\frac{dDi^{m}\cdot dDi^{n-1}(z-s)dD_{\wedge}\circ(s)}{m}\}=\frac{z}{m’\iota}dDi^{m_{*}}dD_{2}^{n}(z)$ (10)
$=0$

which can easily be proved by taking Laplace transforms of both sides. Notice
that the right-hand side of (7) can be written as follows:

$\underline{w}_{i}$ . $\frac{e^{-2_{1}t}(\lambda_{1}f^{\backslash })^{m}}{m!}\cdot\frac{e^{-\lambda_{2}}(\lambda_{2}t)^{n}}{n!}dDi^{m}*dD_{2}^{n}(t-w)$, $m,$ $’\iota\geq 1$ .

It is of some interest to point out the meaning which is given by the right-
hand side of (6). Suppose that $m$ type 1 customers arrive in the period $(t_{0}, t_{0}+\ell)$ .
If all our $m$ type 1 customers happened to arrive after the time $\ell_{0}+w$ then our
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modified busy period $T$ would end at $t_{0}+w<t_{0}+t$. Furthermore there are other
ways in which the customers could arrive and produce an end to the modified
busy period earlier than $t_{0}+t$, even though their service times have the required

... total. Fortunately, the probability that the customers arriving at random, would
arrive in such a way that $ t_{0}+\ell$ is the first instant when the server becomes lree
is given by $ rv/\ell$. The details of the argument are found in D. R. Cox and W. L.
Smith [4]. Here the details are omitted.

Notice that the probability that no type 2 customers arrive for time interval
$(t_{0}, \ell_{0}+\ell)$ is ’ and the probability that exactly $m$ type 1 customers arrive in
$(\ell_{0}, \ell_{0}+t)$ is $e^{-\lambda_{1}t}(\lambda_{1}\ell)^{m}/m$ !. Since $dD_{1}^{*}m(t)$ is the probability density of the sum
of $m$ independent service times of type 1 customers the probability that no type
2 and exactly $m$ type 1 customers arrive in $(t_{0}, t_{0}+\ell)$ and that their service times
sum to within a differential of $t-w$ is

$e^{-\lambda_{2}t}\cdot\frac{e^{-\lambda_{1}}(\lambda_{1}t)^{m}}{m!}dDi^{m}(t-w)$ .
Thus, the expression (6) gives the probability that no type 2 customers and

exactly $m$ type 1 customers arrive in $(\ell_{0}, t_{0}+t)$ and the modified busy period, $T$,
ends within a differential of $t_{0}+t$ . Similarly the meaning of the right-hand side
of (8) can easily be given by symmetry.

It is easy to see that the meaning of the alternating form for (7) is given
by the same sort of argument.

Now it follows from (6), (7) and (8) that

$i\cdot- 0\sum_{-}^{n}dB_{i,n-\ell}(f^{1}\ovalbox{\tt\small REJECT} tv)--l--0\sim\backslash n’(^{n_{i}})*$

$\equiv e^{-\lambda t}\lambda w\frac{(\lambda t)^{1-1}}{n’!}\{\alpha dDi+\beta dD_{2}^{\cdot}\}^{n}(\ell-w)$ . (11)

Hence the joint distribution, $dB,,$ $(t|w)$, of $T$ and $t1_{1}e$ total number of both
types of customers served during the interval $(t_{0}, t_{0}+t)$, excluding the customers
in the system at time $\ell_{0}$ is given by (11).

Using (1) and (11) we find that the conditional distribution, $dB(\ell|tv)$, of 7‘
is given by

$dB(\ell^{\dagger}w)=_{n\overline{-}0}^{\alpha_{7}}\sim\backslash \frac{w}{t}e^{-\lambda}\frac{(\lambda t)^{n}}{n!}\{\alpha dDi+\beta dD_{2}^{\cdot}\}^{n}(t-w)$, $t\geqq w$. (12)

We notice that the conditional joint distribution $dB_{n}(t|w)$ given by (11)
may be derived by substituting $\alpha D_{1}(s)+\beta D_{2}(s)$ into the service-time distribution
in the results derived by Prabhu [2]. In this case we can easily extend above
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arguments to the case of $k(>2)$ types of customers.

\S 3. THE BUSY PERIOD

A busy period begins when a (type 1 or 2) customer arrives to find the

server free to deal with him at once ($i.e.$ , there is a ‘zero queue’). It ends when
the server completes the service of a customer and finds that there are no custo-

mers presently demanding service ( $i.e.$ , there is a ‘zero’ queue again). Let the

server be idle at time $\ell_{0}-0$ and a type 1 or 2 customer arrive at $\ell_{0}$ ; if-then the
server becomes idle for the first time at $\ell_{0}+T$, the random variable $T$ is the

length of the busy period. Denote the numbers of type 1 and 2 customers

(including the one who arrived at time $t_{0}$ ) who are served during the busy $p\epsilon riod$

$(t_{0}, t_{0}+T)$ by $M$ and $N$ respectively. From (7) the joint distribution of $T,$ $M$ and
$N$ is given by

$dB_{m\cdot n}(\ell)=\int_{l\Rightarrow 0}^{t}$ {a $dB_{n- 1\hslash}(t|s)dD_{1}(s)+\beta dB,||,$ $n-1(\ell_{I}^{1}S)dD_{2}(s)$ }

$=e^{-\lambda t}\frac{(\lambda t)^{m+n-1}}{m!n!}\alpha^{m}\beta^{n}dDi^{m}\cdot dD2^{n}(t)$ (13)

since the service time of thc type $i$ customer $\backslash vho$ arrived at time $t_{0}$ has the

distribution function $D_{i}(\ell)$ . In (13) we have again applied (10).

We call $s$ in (13) the initial service-time of the busy period that $\backslash c\prime ill$ be

derived later and say that the busy period is generated by $s$ .
The distribution of the length of the busy period $i^{\iota^{\backslash }}$ given by

$ dB(\ell)=\sum_{m.,\prime}dB_{*’\downarrow}(\ell)=\sim^{\tau}\backslash \underline{\nabla}dB_{mt\iota}(\ell)J_{m.n\not\in\Downarrow}^{-1m+n\overline{j}}\infty$

$=\underline{\rangle}e^{-\lambda\iota}\frac{(\lambda\ell)^{J-1}}{j!};=1\infty\{\alpha dDi+\beta dD_{0}^{\cdot}\}^{f}(t)$ , $ 0<t<\infty$ . $(14|$

Similarly, the distribution of the length of the busy period started by type
$i$ customer can be obtained. Let $f_{m’ n}$ be the probability of exactly $m$ type 1 and
$n$ type 2 customers receiving service during a busy period. From (1.3) $\backslash \backslash re1\iota$ ave

$f_{mn}=\int_{r-- 0}dB_{mn}(t)=\frac{\alpha^{n}}{m}\frac{\beta^{n}}{!n}!\int_{t\overline{-}0}e^{-\lambda t}(\lambda l)^{m+\prime\prime\cdot- 1}dDi^{m}\cdot dD_{-}^{n}(\ell)\infty\infty,$ , $m+\prime l’.>.1$ . $(1^{\ulcorner})|$

In the ordinary queue $M/G/1$ we shall $\backslash \backslash \prime rite(_{J}\prime i,n$ for the probability that.
if we were to ‘start’ a busy period $\backslash vith$ the simultaneous arrival $0[i$ customets,

then exactly $n$ customers will have been served by the time the busy period ends.

This number $n$ includes the initial $i$ customers who started the busy period. This

probability parallels the distribution (12) $wi$th $D_{1}(\ell)=D_{g}(t)$. A ‘normal’ busy period
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will, of course, start with the arrival of just one customer, and $\phi_{1,n}$ is the probability
that exactly $n$ customers are served in the course of such a busy period. Thus the
probability $\psi_{1}$ , parallels the distribution (14) with $D_{1}(t)=D_{2}(t)$ . The asymptotic
formulae of $\psi_{m’ n}$ (and $\psi_{1,\hslash}$ ) for large values of $n$ have been given by D. R. Cox
and W. L. Smith.

\S 4. THE TIME TAKEN FOR THE QUEUE OF GIVEN LENGTH TO DISAPPEAR

Let $\ell_{0}$ be an epoch just before the commencement of service of type 1 or
type 2 customer, and let the numbers of type 1 and type 2 customers in the
queue at that instant be $m$ and $n$ respectively.

We are interested in the time taken for the queue to disappear.

If this event occurs at time $t_{0}+T$, then the result of \S 2 can be applied to
obtain the conditional distribution, $dF(t|m, n)$, of $T$ as follows.

$dF(t|m, n)\underline{=}P$ { $\ell<T<\ell+d\ell|(m,\dot{n})$ at time $t_{0}$ }

$=\int_{-1’ 0}dDi^{m}dD_{2}t|l(rv)dB(\ell|w)$

$=\sum_{j=0}^{\infty}e^{-\lambda t}\frac{(\lambda\ell)^{j-1}}{j!}\int\lambda ww\sim 0t\{\alpha dDi+\beta dD_{2}^{\cdot}\}^{j}(t-w)\cdot dDi^{m}*dD_{2}^{n}(w)$ .
For the waiting time of a customer who arrives at $t_{0}$ is equal to the total

service time $w$ of $m$ type 1 and $n$ type 2 customers waiting in the queue, and
this should reduce to zero at $\ell_{0}+T$.

If there are $k$ customers ( $i.e.$, the sum of numbers of both types of custo.
mers) at instant $t_{0}$, the corresponding distribution $dF(t|m+n=k)$ of $T$ is given by

$dF(t|m+n=k)=\int_{u’\Leftrightarrow 0}^{t}\sum_{m-0}^{k}\left(\begin{array}{l}k\\m\end{array}\right)\alpha^{m}\beta^{\iota-l\hslash}dDi^{m_{*}}d\theta_{2}^{k-in}(w)dB(\ell|w)$

$=\sum_{j=0}^{\infty}e^{-\lambda t}\lambda\frac{(\lambda\ell)^{j-1}}{j!}\int_{u’=0}^{t}w\{\alpha dDi+\beta dD_{2}^{\cdot}\}^{k}(w)$ . $\{a dD:+\beta dD_{2}^{*}\}^{f}(t-w)$

$=\sum_{j--0}^{\infty}e^{-\lambda t}\frac{(\lambda t)^{f}}{j!}$ . $\frac{k}{k+j}\{\alpha dD;+\beta dD_{2}\}^{k+j}(t)$.
In above algebra we have again applied (9).

APPENDIX

PROOF FOR (6); It is easily seen that (6) is true for $m=1$ . We shall now
suppose (6) has been proved for 1, 2, $\cdots$ , $m-1$ and attempt to show that it is then
necessarily for $m$ . Once we have accomplished this the truth of (6) for all $m$ is
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established.

Let us assume that (6) holds for 1, 2, $\cdots,$ $m-1$ ; then substituting for $dB_{n-1,0}$

$(t|w)$ in the right-hand side of (3) we have

$dB_{n’ 0}(\ell|w)=e^{-(\lambda_{1}+\lambda_{2})t}\frac{\lambda_{1}^{m}}{(m-1)!}\int(\ell-\tau)^{m-}d\tau\int_{l-0}^{t-w}l\overline{-}0w(w-\tau+s)d\alpha^{n-1}(t-w-s)dD_{1}(s)$

$=e^{-\lambda\iota}\frac{\lambda_{1}^{m}}{tm-1)!}\int(\ell-\tau)^{m-2}\{w-\tau+\frac{\ell-w}{m}\}dDi^{r\iota}(\ell-w)d\tau- 0w$

$=e^{-\lambda t}\lambda_{1}w\frac{(\lambda_{1}t)1n-1}{m!}dDi^{m}tt-w)$ .
This completes the proof of (6). In above exprcssion we havc used thc

identity (9) with $m=1$ .
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