GENERALIZED MIXED-TOPOLOGIES IN DUAL LINEAR SPACES.
By |
SATOSHI ARIMA

Introduction. In a previous paper we introduced the definition of the
generalized mixed-topology in a locally convex linear topological space and a
general method to construct a neighbourhood basis for each of various mixed
topologies.

Roughly speaking, the generalized mixed-topology associated with a locally
convex linear topology g and a family % of suitable subsets of a linear space E
is the finest locally convex linear topology which is identical with g on each
member of %, and in E, it is generally finer than p.

In the special case such that two locally convex linear topologies f and 7
are defined in E and % is a family of all the z-bounded subsets of E, it coincides
with the mixed-topology which was defined by A. Persson [5§] by means of
abstracting a unique property of the mixed-topology defined by A. Wiweger [6],
who is the first to investigate systematically, in a normed space, the mixed
topology, however which was called first by A. Alexiewicz and Z. Semadeni.

In this paper, we shall develop at some length the theory of the generalized
mixed-topology and we shall show some applications and examples in dual linear
spaces.

Henceforth, by the mixed topology we mean the generalized mixed-topology
defined in [4].

In the former part of this paper, we shall describe preliminary definitions
and summarizations of the results in [4], and in addition to them we shall show
some properties of the mixed topology.

In the later, the suitable form of a neighbourhood for the mixed topology
in dual linear spaces will be researched, and we shall show examples of mixed
topologies in dual linear spaces and investigate properties of them.

§ 1. Preliminary definitions and notations.

A family % of subsets of a linear space over the real number field R is
called primitive if U satisfies the following conditions;

(P if A€W, 2eR,Ax0, then 21A€Y,

(P) if AW 2eR,|2| <1, then 2ACA,
(Py) if xcE, then there exists AW such as A,
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and a family U of subsets of E is called neighbourhood basis at 0 for a linear
Hausdorff topology (LHT) if Ul is primitive and satisfies the following conditions;

(0)) if xeE, then there exists AR, Ax0 such that AxeU for every Uell,

(05) #f Urell and Usell, then there exists Usell such that UscU,n U,

0;) #f Uiell, then there exists Uyl such that U,>U,+U,, where U,+U,
denotes the set {x+v;xcU; and yeU,},

(H) it xeE, xx0, then there exists Uell such as xéU.

A linear Hausdorff topology satisfying the condition;

(R) each member of U is convex,
is called a locally convex linear Hausdorff' topology.

We mean this by a locally convex topology (or LCT), and by a locally
convex space (LCS) we mean a linear space with a locally convex topology.
We denote the linear space of all continuous linear functionals on £ for a

locally convex topology = by (E, z) or simply by E’, and we call (E,z) the dual
space of E with z, or simply the dual of E.

In this paper, whenever we speak of the dual space of E, we assume that

E is a locally convex space.

Then, E and E’ are in duality by the natural bilinear functional such that
<x,%'>=x"'(x) for all xE and all x'cE’, that is, E and E’ satisfy the dual

conditions ; ,
(Dy) for any xx0 in E, there exists x'¢E’ such as <x,x' > =0,
(D;) for any x'x0 in E’, there exists xcE such as <x,x'>x0.

and E and E’ are called the dual linear spaces (for the natural bilinear functional),
where the roles of £ and E’ are interchagable.

A family B of subsets of an LCS E(or E’) is called admissible for topolo-
gizing the dual space E’ of E (or E resp.) if B is a primitive family which satisfies
the condition (k) and the following conditions;

IS

(@) if BieB and BB, then there exists Bye®B such that ByD B, U By,

(b) each member of B is bounded for the weak topology w(E,E’) (or w' (E’,
E)) which is defined as the weakest topology that makes the bilinear functional
continuous in each variable separately,

(c¢) each member of B is closed for w(E, E')(or v’ (E’, E)).
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A primitive family % is called A-primitive if U satisfies the conditions (&),
and is called K-primitive if U satisfies the conditions (k) and (c), and is called
H-primitive if % satisfies the condition (H), we denote sometimes each of them
by £(MN), K(N) and H (A) respectively.

Remarks:

(R)) The conditions (P3) and (a) imply that each finite set is contained in
at least one of members of B.

(R;) The conditions (P,) and (k) are sufficient for the condition (0j).

A subfamily B of a primitive family % is called coarser than % (or cquivalently
% is finer than B) if B is also primitive, and this is the case if and only if two

primitive families satisfy the condition ;

(Q.) for every Be®B, therc exists AN such that ACB.
A subfamily B of a family % is called a co-base for % if % and B satisty

the conditidn ;

(Q.) for cvery AN, there exists BeB such that BoA.
A co-base B for % is called the circled co-base for % if C(%), the family of
all the circled envelopes of members of %, coincides with B.

The convex co-base B for U is similarly defined as the co-base such that
% (%), the family of all convex envelopes of members of %, coincides with 3.

We denote the topology defined by uniform convergenc on members of an
admissible family B of E(or ¥ of E’) by p(E',B° (or p(E,B)), where B°(B'9)
denotes the family of all the polar sets of members of B(®) and forms a
neighbourhood basis at 0 for p (E’,B° (or p (E,B)).

It is easily seen that if an admissible family B in E is a co-base for a family
% (which needs not be admissible), then the topology of uniform convergence
on ¥, p(E’, W), is identical with p (E’, B°).

We say that a topology p in E is an admissible topology relative to the
dual linear spaces (E,7) and (E,7)' if it satisfies the three conditions ;

(t) p is a locally convex topology in E,

(t) each member of (E,t) is continuous for p on E,

(t) there is an admissible family W in E' such that p coincides with
p (E, W)
and this is the case if and only if w(E, E') <p< S(E, E’), where S(E, E’), is the
strong topology, that is, the uniform convergence topology on every bounded
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subsets of E’, and the weak topology w(E, E’) is the uniform convergence
topology on every finite subsets of E’.

An admissible topology p relative to the dual linear spaces (E,r) and
(E,t)Y is called compatible with the duality if the following condition is
satisfied ;

(&) (E’ P)'=(E, ),
and this is the case if and only if w(E,E')<p< m(E,E’), where m(E,E') is
the Mackey topology.

(Rs) It is known that the bounded subsets are the same for any compatible
topology.

§ 2. (Generalized) mixed-topology in an LCS E.
In this section, we recall briefly some of the results in [4].

(2.1) Let an LCT g be defined in a linear space E, and let U be a
neighbourhood basis at 0 for g, and let A be a primitive family which consists
of {A, cel}.

Taking an arbitrary subfamily U, of U, we set

(1) Us=Rk{U(U.NnA)}

where Uelly;cll and & {---} denotes the convex envelope of {-:-}, then the family
U= of all the sets (1) is also a neighbourhood basis at 0 for a new locally convex
topology, which is called the (generalized) mixed topology determined by z and
N and is denoted by a (g, A) or simply pe.

(2.2) p= is not weaker than p. i.e. p<p-.

Henceforth, we assume that p*=a (g, £(N)), ~i. e. #* is the mixed topology
determined g and a k-primitive family, and that % is the family which contains
k(A) as the circled convex co-base, then:

2.3) p|A=p=| A for every Al
where p| A, p#| A denote the topologies induced on A by g and g respectively.

(2.4) Let p and v be two LCTs in E, and let p* and v* be two mixed
topologies determined by the same k-primitive family, then the following condi-
tions are equivalent; |

(i) p|A=viA (ii) v <p* and p<vs (il) pe=re

(2.5) In particular

a(p k(M))=a {a(s kX)), kA }.
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(2.6) Let f be a linear mapping from an LCS E with LCT g into another
LCS F with an LCT ¢/, then f is (g ¢/)-continuous on every Ae¥ if and only if
S is (u o) -continuous on E.

(2.7) It follows from (2.4) that a(m, k(%)) is the finest LCT in E which is
identical with ¢ on each A€,

(2.8) In particular, if k(%) is a family of all the v-bounded circled convex
subsets of E, then a(us k(W) coincides with Persson’s mixed-topology, and
moreover if k(N) is a v -neighbourhood basis at 0 which is locally convex and
locally bounded then a (g, 2()) coincides with Wiweger’s mixed-topology.

(2.9) Some important examples of k-primitive families in E are;

i) the family of all the bounded (or totally bounded, compact) convex
circled subsets for an LHT in E,

ii) the family of all the convex envelopes of symmetric finite subsets of E,

iii) and, of course, each admissible family in E,

iv) a convex neighbourhood basis at 0 for every locally convex topology.

§ 3. In this secticn we shall show, in addition to [4], some properties of
the mixed topolcgy.

Let two locally convex topologies # and v be defined in a linear space E,
and let %A, B be two primitive families in E, and let U, U UL B, B> and B? be a
neighbourhood basis at 0 for g a (g, ), a(z, B), v, a (v, A and « (v, *B) respectively.

Proposition 3.1. If u<vy, then «a(pn, N<a /v, N).

Proof. For every Ucdl, by p<v, there exists VeB such that VcU, so for
each ¢el, there exists V.« such that V.nA.cU.nA, hence for every U=l there
exists VB such that

Ve=Fk { UI (Vin A)}cCk {l% (UnA)}=U".

Remark 3.1. In particular, if p<v and p|A=v|A for every A A, then

al(,k(N))=a(y, k) by (2.4).

Proposition 3.2. If W and B satisfy the condition (Q.), then a(p, B)<a(p,N).

~ Proof. For each A N={A,cl}, let By denote one ByB={By, jeJ} such
that B;DA, and take U.ll such that U,cUj, then for every U?ll? there exists
U+ll* such that
Ue=k{U UnA)} Ck{U (UnnBs} Ck{U (UjnBy}=U?

In the special case such that B is a subfamily of a family %, by rephrasing
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Prop. 3.2 we have a corollary.
Corollary. If B is a co-base for N, then a (1, B)<a(p, N).
Proposition 3.3. If <y, then p<a(n, V)<,

Proof. The former inequality is evident by (2.2), so we shall prove the
later. Let I’ be a neighbourhood basis at 0 for a (g, B). For any U*cllY, which is
decided correspondingly to a subfamily 1, of W, by hypothesis there exists a
subfamily B; of B such that

B,={V.B; V.cU, for each U, U,} \
and moreover there exists VeB such that Vc NV, where V.8, consequently there
exists Vi®B such that

V=k{U (VaV)} ck {5 (UnV )=U"

cel
where U,lly and V. B={V,¢l}.

Corollary. a(p, W)=y

In prop. 3.3 setting #=v we obtain this.

Proposition 3.4. If p>v, then p=a(p, B).

Proof. By u>v, there exists WU such that U NW.cUnV. for each ¢l
where: V8, Uelly and there exists Ul such that UcU,NW, for any ¢l. So, for
any subfamily Ul; of U, that is, for any U*W’, we have Ucll such that

UcUnW.Ck UI(U,nW,)}Ck { UI (UnVy}=0U"
where U, Uy, Vo8B,
that is, a(z, B)<p, while by (2.2), u<Ta (s, B).
Hence p=a(p, ).

Corollary 1. I/ p=v then a(p, B)"a (v, N).

In fact, by Prop. 3.3, a(n,¥)<Iyv, and changing the rdles of ¢ and v in
Prop. 3.4 we obtain v=" (v, ).

So, we see that p<a (4, V)< (v, W)=v if pr-7u.

Corollary 2. I/ for every Ack(N) there exists U such that Uz A, or for
every U there exisls Ack(N) such thal Uc A, then p=c(p, ke (N)).

In fact, taking A,k(N) in the place of V. in the proof of Prop. 3.4, we
similarly obtain p=a (s, £ (2)).

In the second case, of course U is k-primitive family, so, by Prop. 3.2
ali, k(N <a (e W=p, while p<a (g, k(N)), hence p=a(p, k).

Proposition 3.5. If P is the family of all the symmetric line segments,
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(2x4+(1=2) (—x);0<2<]1, 2cE}, then for any primitive Samily B
a(p B)<a(p P

that is, B is the finest primitive family of which mixed topologies associated with
1 a (e, PB), is the finest of all the mixed topologies determined with the same LCT
and primitive families.

Proof. It is obvious that P satisfies the conditions (P), (F) and (P;). Let

8 be an arbitrary primitive family, then for any P, there exists B8 such that
BoP by (Pg) and (Pa).

By Prop. 3.2 a (s, B)<a (1, P).

Proposition 3.6. The family @ of all the weakly closed convex envelopes of
symmetric finite subsets of E is the finest admissible family of which mixed
topology associated with n is the finest of all the mixed topologies determined wilh
1t and admissible families.

Proof. It is easily verified that @ is an admissible family.

Let B be an arbitrary admissible family, for every ¢+ there exists BeB such

that BD¢ by (R,) and convexity of B. So a (g B)<a (g, @)

Theorem 3.1. Let p be the mixed topology determined by a locally convex
topology 1+ and a primitive family N in E.

Then, the bounded subsets in E are lhe same for p and 1.

Proof. If a subset B of E is u-bounded, then for each subfamily U, of U,
there exists U, such as Uy NU where Ully and 4¢R, 4 +0 such as rBc U,
then 2, BNAcUNA for each U,
So U(BNA)C E(JI(U,nA,) where U.ll,, AN

eel
Since the union of all members of A covers E, we have a AyR, 2,0 such

that
ZoB=2,Bn UIA,= UI(ZanA,)C‘U(U_,nA,)(:k{ UI(U,nA,)}—-U" for each U~ lle.
ce ee eel 144

Hence B is y*-bounded.

Conversely if B is po-bounded, then by (2.2) B is r-bounded.

§4. A neighbourl;ood basis at 0 for an admissible mixed-topology in dual

linear spaces E and E'.
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Though a family %° of all polar sets of members of a primitive family % is
not necessarily primitive, however the following lemmas hold :

Lemma 4.1. If % is an H-primitive family in E, then N° is K-H-primitive
Jamily in the dual E' of E.

Proof. For any AcR, A%0, 2A°=(A/2°N° because A/, and for |2 <1, A¢R,
AA°C A° follows from ADAA. Hence the conditions (Py) and (P;) are satisfied.

Suppose that there exists an x’cE’ which is not contained in any A%, that
is, 2’'€U A° where AL

But the union of all A%, UA'=(NA)={0}°>E’ because that % is H-
primitive, so #’¢E’. This is a contradiction to x’¢E’, hence ° satisfies the condition
(Ps).

The intersection of all A%N°, N A°=(U A)°=E°={0}.

This implies that A° satisfies the condition (H).

It is well known that %° satisfies the conditions (k) and ().

Lemma 4.2. If a K-H-primitive family N is the weakly closed convex co-
base for an H-primitive family M, then N° and M° are the same K-H-primitive
Jamily.

Proof. Since M is a subfamily of a family M, N°'cIM?, on the other hand
if M°M° then M=M= {K (M U0)}°={K(M)}° N9, so McN®. Hence NO=Ne,

Lemma 4.3. If % is a K-H-primitive family in E', then there exists an H-
primitive family M in E such that MO=9.

Proof. By Lemma 4.1, %° in E is a K-H-primitive family, and A%=K
(AU0), since AN is weakly closed, convex and containing of 0, K(AUO0)=A,
hence A®=9.

Let M be the family containing A° as the weakly closed convex co-base.
Then I is an H-primitive family such that MO=A. In fact, if MM, 1R, 150,
then there exists A° such that K(M)=A° and K(AM)=iK(M)=1AN° so AMeM,
and moreover for |2| <1, K(AM)=2A°Cc A=K (M) so AMc M, hence M satisfies
(P1) and (P).

It follows from A CIN that IM satisfies (P;) and (H).

Lemma 4.4. If U is a primitive family of which members are weakly
bounded, then N is a K-H-primitive family satisfying the condition (0,)

Proof. It is similarly verified for A° to satisfy (P,), (Ps), (k), () and (H). We
shall show that (0,) is satisfied, consequently so is (P;). Since each Ae¥ is weakly
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bounded, for any A€¥, there exists 2R, %0 such that Acig® for every ¢, the
family of all the finite subsets of E’, that is, for any ¢€¥, there exists AeR, A0
such that 14°DK (¢)D¢ for every A%AC.

Lemma 4.5. Let © be a family of subsets of E.

If the family &° is a neighbourhood basis at 0 for a locally convex topology
which is consistent with the structure of the dual E' of E, then the family &
contains an admissible family T relative to E and E' as the weakly closed
convex circled co-base such that T0=C".

Proof. The family &% of all bipolar sets of members of & is, by
4.1, a K-H-primitive family, and satisfies the conditions () and (b). In fact (a)
follows from the fact that S3cS!NSY implies SYOSPUSY, and for (b), let ¥ be the
family of all the finite subsets of E’, then for any ¢e¥, there exists Ax0 such
that 2pC S° for every S%@?, dually for any S®%&® there exists 10 such that ¢°>
AS® for every ¢%¥°, a neighbourhood basis at 0 for weak topology, so &%
satisfies (b).

Since (S%0)0=S%0=80 take &% as the family ¥, then T°=E&° and for any S¢S,
the weakly closed convex circled envelope KC(S) of S belongs to I, because that
KC(S)=S™,

Henceforth, in this section, we assume that whenever we speak of a
neighbourhood it is weakly closed.

Proposition 4.1. Let U= be a neighbourhood basis at O for the mixed
topology a(p, N) determined by an admissible topology and a K-H-primitive
family N in the dual E' of E.

Then there exists an admissible family © in E such that W=8&°, aud

moreover there exist an admissible family B and a K-H-primitve family M in E
such that for each Se&
S=,r.]1 (B.UM.)
where M.e M={M,;ccl} and B.eB;CB.
Proof. For each U<lls, taking a subfamily 1I; of Ul according to U* we

have

Us=K { U (U.nAN}=( U UNAN={ () (U2 A
where U.ll;, A eN={A,, tel}.
Let & be the family of all the sets such as
S=n (U U A9, Uiy,

el
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then U°=@&° and the family & is an admissible family in E because that
UF={ U UnA)}™= U (UuA)}'= 0 (UadP= (U2 U A)=S

cel

that is, (17°=& and (1% is an admissible family in E by [Cemma 4.5.
Take U0={U%; Uell} as the admissible family B, and take NA° as the H-
primitive family M by Lemma 4.3, then for Se&

S=n (B:UMl)s Mz€m= {MU ‘61}9 Blf%.’:ug'

cel
Conversely the following proposition holds.
Proposition 4.2. Let B b8 a family containing an admissible Sfamily in E
as a co-base and let M be an H-primitive family in E.

If © is the family of all the sets such as
S= n (B.UM.,)

where M. M= (M., ¢l}, BB, a subfamily of B, then the uniform convergence'
topology on ©, p(E', &) is the mixed topology determined by the uniform convergence
topology on B, p (E',B°) and the K-H-primitive family M° in E’.

Proof. This follows only from the computation as following ; if S¢S, then

S°={n (B,UM,)}°={QI (BUM)}'"=K[{ N (B.UM))}]1=K{U (B'UM")}

cel cel cel
where BleBjc®B°, a neighbourhood basis at 0 for p (E7,8%) and M%Mo, MO is a K-H-
primitive family by [Lemma 4.1,

Noticing that the set N (B,UM.) in Prop. 4.1 is closed, convex, circled and
bounded relative to the weak topology, indeed, in the proof of Prop. 4.1
N(UUAY)=N (UnA)l=n (UA,) 0= ﬂK(U,nA,)°= NK(UUA?Y, we may give the
. following definition.

Difinitionn. We say that the family of all the sets such as S;=n (B.NM)
where B.B;CB, M M= {M., I} is the mixed admissible family assoc:ated with B
and WM, if B is an admissible family and M is a K-H-primitive family in dual
linear spaces E and E’', and somelimes we denote it (BoIN).

§5. Properties of mixed topologies in dual linear spaces.

Throughout this section and the next, we assume that a locally convex
topology ¢ is defined in E as the initial topology, and that whenever we speak
of a topology, its neighbourhood is weakly closed.

Theorem 5.1. If a topology 1 is admissible relative to the dual Ilinear
spaces E and (E,z) and a family N is K-H-primitive, then the mixd topology
a(m,N) is also admissible relative fo E and (E, ).
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Proof. Since a(y, ) is a locally convex topology which is not weaker than
1, so the conditions (#,) and (£;) are satisfied and by Prop. 4.1 () is also satisfied.

Corollary 1. The mixed topology «(u,N) in the preceding theorem is not
weaker than the weak topology and is not stronger than the strong topology.

Corollary 2. Let a(s,%) be the mixed topology determined by the strong
topology s and a K-H-primitive family U.

Then a(s,W)=s i.e. the sirong topology is invariant to be mixed.

In fact, by cor. L.a(s.W)<s, while by (2.2) a . U)>¢ therefore a (¢, A =¢.

In the next place, we shall show an approximation theorem concerned

with the mixed topology in more general case.

Theorem 5.2. Lef E and F be two locally convex spaces in duality, and let
alw,N) be the mixed topology determined by the weak topology w(E,F) and a K-
H-primitive family N in E. If g is any linear functional which is a (w, N)-continuoits
on E, then for each ¢cR,e>0 there exists an feF such that

g (®)—<x,f>|<e
for all x in E.

Proof. This is an immediate consequence from (2.6) and a result of
Grothendieck’s, however we shall give a proof for the convenience of the reader
and for developing of arguments.

Let @ be the canonical map of F into the algebraic dual E#¥, the linear
space of all the linear functionals on E, defined by, for each feF, @ (f) ()= <x,f>
for all x in E.

Then @Q(F) is a linear subspace of E# and w(E,Q (F)) coincides with
w(E, F).

By (2.6) g is a (w, ) -continuous on E if and only if g is w(E, F)- (equiva-
lently w (E, @ (F))-continuous on every A ) i.e. for each ¢>0, there exists Uell,,
a neighbourhood basis at 0 for w(E, @ (F')), such that

g/cc (ANUNCE#
for cvéry Al

Let ¥ be the family of all the finite subsets of @ (F) in E#% then U,=¥°
and there is ¢¢¥ such that

(ANUP=(ANU)®=K(A°VUU%Y=K(A°UK (¢) ) C A+ K(¢)
where K(¢) is a weakly compact subsets of @(F) and A° is weakly closed,
so A°+K (¢) is weakly closed.
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Hence, for each ¢>0, there exist K(glz) in @ (F) such that g/ee A°+ K (¢) for
every A%, that is, for each ¢>0, there exists a @ (f)eQ (F) such that

Q(f)—gecA® for every A%Y°,
since the union of all members of W covers E and @ (f) (x)=<%,f> for all x in
E, for each ¢>0, there exists an feF such that

|g(x)—<x,f>|<e for all x¢E.

Theorem 5.3. Let E and F be two locally convex spaces in duality, and let
w* be the mixed topology determined by the weak topology w (E,F) and an admissi-
ble family U in E relative to Eeand F. Then;

i) the dual (E,we) is complete relative to p, the topology of uniform con-
vergence on members of U,

ii) the canonical image Q (F) in the algebraic dual E* is dense tn the dual
(E, w®) relative to p, ‘

iii) F is p-complete if and only if Q (F)=(E, o) =(E, w*).

Proof. At first, we shall verify that the family % is admissible relative to

E and (E,w"), that is, %° in E* is a neighbourhood basis at 0 for a locally convex
topology in (E, w?).

If &' €(E,w"), that is, for ¢>0, there exists U.ell, such that x'ec (AN U.P for
every AeY, then there exists A>0 such that 2/e(ANU.)DA because that Ae)N is
circled and w (E, F)-bouuded, so ¢ (AN U.)’c2A° for every A%, hence N° satisfies
the condition (0,), and the other conditions are obviously satisfied. ‘

Part i) and ii) are consequences from Theorem 5.2 and the fact that p is
an admissible topology in (E, w*) by [Lemma 4.5 and the above.

For iii), F is p-complete if and only if @ (F) is p-complete. By ii), Q(F)=
(E,w*Y. By (2.2),(E, w)C(E,w"), while (E,w?)=Q (F)c(E,w), hence Q (F)=(E,w)
=(E, wey. :

Let N and B be tu;o admissible families in E which satisfy the
condition (Qs); for every AeN there exists BeB such as BDA. i.e. p (N)<p (BY).

If F is p(N%)-complete then F is p (B°) -complete.

In fact, F is p(%°)-complete if and only if (E,w')=(E, a (w,%)), while, by
Prop. 3.2 a(w,B)<a (w,N), and by (2.2)

(E, w)C|E, a (w,B) ) C(E, a(w,N))
hence (E, w)=(E, a (w,®)Y, by iii), F is p (B%-complete.

Theorem 5.4. Let the dual E' of E with t be complete relative to an ad-
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missible topology p, and let W be the admissible family in E for p. Then;

i) each mixed topology a(w,B) determined by the weak topology w(E,E’)
and an admissible family B in E satisfying the condition (Qs) is compalible
topology to the duality between E and E'.

ii) the mixed admissible family in E' for a(w,B) is the w(E’, E)-closed
convex circled co-base for the family of all the p (B°)-compact subsets in E’.

Proof. For i), by the Cor. of Th. 5.3, F is p (B°) -complete, and by iii) of
Th. 5.3 (E,w)=(E,a(w,®B)), and it is obvious that (E,z)=(E,w), thus the
condition (,) is satisfied, and by theorem 5.1, a(w,®B) is an admissible topology.
Hence the part i) holds.

For ii), let & be the mixed admissible family in E’ for «(w,3B). By Prop.
4.1 if Se®, then S is written as following;

S=n (K(p) UU)

cel

where ¢.e¥,, ¥, is a subfamily of the family ¥ of all the symmetric finite subsets
of E', U,ell=2".

Since there exists K (¢)eK(¥) such that SCK(p)U U, for every U.ell, Se& is
p (BY) -totally bounded, conversely if a subset M of E’ is p(B)?-totally bounded,
then M has this property, so M is contained in, at least, one Se®, and since p-
totally bounded subsets in p-complete linear space is p-compact, & is a co-base
for the family of all the p-compact subsets of E’, moreover each S in & is
w (E', E)-closed, convex and circled, hence ii) holds.

Theorem 5.5. Let E and F be two locally convex spaces in duality, and let w=
be the mixed topology determined by the weak topology w (E,F) and a primilive
family W in E, then a subset M of E ts weakly bounded if and only if M is
we-bounded, i.e. the bounded sets of E are the same for any mixed topology
determined by the weak topology.

Proof. This is the particular case such that g in Theorem 3.1 is considered
as the weak topology.

Theorem 5.6. Let E and F be two locally convex spaces in duality and let
w=* be the mixed lopology delermined by the weak lopology w (E, F) and an admi-
ssible family W in E.

If F is p(A°) -complete, then for any subset M of E, the closed convex en-
velope of M is the same for w(E,F) and w-.

Proof. Let w-K(M) and w+-K(M) denote the closed convex envelopes
of M relative to w(E,F) and w= respectively.
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By Eidelhzit separation theorem, w-K (M) and w*-K(M) are N {x;f(x)<sup
{f(»;yeM}} for all fe(E,w) and for all f¢(E, w) respectively. By i) of theorem
5.3 (E, w)=(E,w") if F i3 p (A®) -complete, so we obtain w-K(M)=w=-K(M).

Theorem 5.7. Let w= be the mixed topology determined by the weak topology
w (E,E') and a k-primilive family W in E.

If a locally convex topology v in E possesses the property (F);
(F) if feE*% is w(E, E’')-continuous on each A€, then f is v-continuous on E,
then w<v, i.e. w* is the coarsest topology which possesses the property (F).

Proof. At first, we shall prove a lemma in more general case.

Lemma. Let f be a liner mapping from a locally convex space (X, p) tnto a
locally convex space (Y, '), and let W be a k-primitive family in X. Then, the
Jollowing properties are equivalent ;

1) &f the restriction of f to each AeN is iy, ') -continuous, then f is (v, o)
-continuous on X,

i) p*<v, where p* is the mixed topology determined by p and N.

In fact, since fis (p*, ¢) -continuous on X if the restriction of f to each
AU is (p, ¢') -continuous by (2.6), so f is (v, #) -continuous on X if p*<y, hence ii)
implies 1).

Conversely, if i) holds, then since the restriction to each Ae¥ of the identical
mapping I from (X, ) onto (X, p%) is (g, #*)-continuous by (2.3), so I is (v, 1)
-continuous on X, that is, for every U<ells, there exists Vell' such that V=I(V)
c U+, this means p*<v, hence i) implies ii).

In this lemma, consider the particular case such that Y=R, and pg=w (E,E’),
then since w* has certainly the property (F), we obtain immediately the theorem.

§ 6. Various mixed topologies in dual linear spaces.

[1) Let 2'* be the mixed topology determined by the weak topology
w' (E', E) and the family R of all the w'(E’, E) -closed convex circled equicontin-
uous sets in the dual E’ of E with .

Then :

1) the admissible family & in E for w’s is the mixed admissible family
associated with the family @ of all the w(E, E’)-closed convex envelopes of
symmetric finite subsets of E and U., a neighbourhood basis at 0 for .

2) so, w¥ is identical with the topology of the uniform convergence on
every r-totally bounded subsets of E,
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3) therefore, if E is r-complete, then cach member of & is r-compact,

4) the completion of E is isomorphic to (E', w'*,

5) w'= is the finest locally convex topology which is identical with w’(E’, E)
on every equicontinuous set of E’, and on E’,w' (E', E)<w'e.

6) finally, we conclude that w'« coincides with the almost-weak*-topology
in [2] (II1.§ 1.p.44.).

In fact, i), by Th. 5.1 @'« is an admissible topology to E’, and by Prop.
4.1 and ,=0,N°=1U, ([1], §2, IV), i) holds.

2) It is similarly proved as ii) of Th. 5.4 for & to consist of z-totally
bounded subsets, because of p (R)=r, and & is the w (E, E’)-closed convex circled
co-base for the family of all the z-totally bounded subsets of E.

3) It follows from 2) and to be complete.

4) Interchanging the rdles of E and F in Theorem 5.3 and noticing that
p (MY)=r, we obtain the conclusion. 5) See (th. 3). 6) Let a* denote the almost-
weak* topology in E’ described in [2]. It is known that V is e*-neighbourhood

at 0 in E’ if and only if there exists a finite subset ¢ of E such that ¢°NU°CV
for each U cll..

Therefore, there exists a subfamily Uy of U., such that

U (U'.NnU%CV where U’.l,, Ulkll,

cel
since V is defined to be weakly closed convex and circled, there exists U<ells, a

w'*-neighbourhood basis at 0, such that
U=K{UuU'.nU)cV

cel

so a*Lw'e,

On the other hand, it is known that if f¢E'# which is @' (E’, E) -continuous
on each U%I is a*-continuous on E’.

By (interchanging the roles E and E’), we have the relation
w<ea*. Hence w'*=a*.

Let w* be the mixd topology determined by thc weak topology
w(E,E') and the family ® of all the w(E,E')-closed convex envelopes of
symmetric finite subsets in E.

Then :

1) the admissible family & in E’ for w* is the mixed admissible family
associated with the family ¥ of all the w'(E’, E)-closed convex envelopes of
symmetric finite subsets in E’ and W,, a neighbourhood basis at 0 for w’ (E', E),

2) so w= is identical with the topology of the uniform convergence on
every w' (E’, E)-totally bounded subsets of E’,
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3) in this case, w* is the finest mixed topology among the mixed topologies
determined by the weak topology and every admissible family in E.

4) If (E,wy=(E,w"), then w= coincides with the Mackey topology.

5) r<w= and on every K(¢p)e®,w (E, E'),r and w= are identical.

6) If pis a locally convex topology such that w<u<w=, then the bounded
sets of E are the same for w(E, E’) and for .

In fact, the parts 1) and 2) are similarly verified as 1) and 2) in
3) is a particular case of Proposition 3.6.

For 4), let m(E, E’) be the Mackey topology. Sinee weakly compact sets
are weakly totally bounded, m (E, E’)<we, while (E, w)=(E, w*) implies that w=<
m (E,EY, hence m (E, E')=w=.

For 5), z<w= follows from 4) and by (2.3) the rest holds.

For 6), by [Theorem 5.5 and 3) in the above, 6) is true.

Taking the family B of all the r-bounded subsets of E in the place
of @ in [27 we have the mixed topology w’ such that;

1). wr is identical with the uniform convergence topology on every strongly
totally-bounded subsets of E’,

2. w<w* in

3). (E,) is strongly complete if and only if (E,z)=(E, wrY, ,

4). wr is the finest locally convex topology which is identical with w (E, E')
on every rz-bounded subsets of E, i.e. in this case w’ coincides with Persson’s
mixed-iopology associated with w (E, E’). ‘
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