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Introduction. In a previous paper [4] we introduced the definition of the

generalized mixed-topology in a locally convex linear topological space and a

general method to construct a neighbourhood basis for each of various mixed

topologies.

Roughly speaking, the generalized mixed-topology associated with a locally

convex linear topology $\mu$ and a family $\mathfrak{U}$ of suitable subsets of a linear space $E$

is the finest locally convex linear topology which is identical with $\mu$ on each
member of $\mathfrak{U}$, and in $E$, it is generally finer than $\mu$ .

In the special case such that two locally convex linear topologies $\mu$ and $\tau$

are defined in $E$ and $\mathfrak{U}$ is a family of all the $\tau$-bounded subsets of $E$, it coincides

with the mixed-topology which was defined by A. Persson [5] by means of

abstracting a unique property of the mixed-topology defined by A. Wiweger [6],

who is the first to investigate systematically, in a normed space, the mixed

topology, however which was called first by A. Alexiewicz and Z. Semadeni.

In this paper, we shall develop at some length the theory of the generalized
mixed-topology and we shall show some applications and examples in dual linear

spaces.
Henceforth, by the mixed topology we mean the generalized mixed-topology

defined in [4].

In the former part of this paper, we shall describe preliminary definitions

and summarizations of the results in [4], and in addition to them we shall show

some properties of the mixed topology.

In the later, the suitable form of a neighbourhood for the mixed topology

in dual linear spaces will be researched, and we shall show examples of mixed

topologies in dual linear spaces and investigate properties of them.

\S 1. Preliminary definitions and notations.

A family $\mathfrak{A}$ of subsets of a lincar space over the real number field $R$ is

called primitive if $\mathfrak{U}$ satisfies the following conditions;

$(P_{1})$ $\dot{t}fA\epsilon \mathfrak{U}^{\lambda}\epsilon R,$ $\lambda\neq 0$, then $\lambda A\epsilon \mathfrak{A}$,
$(P_{2})$ if $A\epsilon \mathfrak{U},$ $\lambda\epsilon R,$ $|\lambda|\leq 1$ , then $\lambda A\subset A$,
$(P_{3})$ if $x\epsilon E$, then there exists $A\epsilon \mathfrak{U}$ such as $A3X$,
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and a family $\mathfrak{U}$ of subsets of $E$ is called neighbourhood basis at $0$ for a linear
Hausdorff topology $(LHT)$ if $U$ is primitive and satisfies the following conditions;

(0) if $x\epsilon E$, then there exists $\lambda\epsilon R,$ $\lambda\neq 0$ such that $\lambda x\epsilon U$ for every $U\epsilon U$,
(0) $\iota fU_{1}\epsilon U$ and $U_{2}\epsilon \mathfrak{U}$, then there exists $U_{3}\epsilon U$ such that $U_{S}\subset U_{1}\cap U_{2}$,
(03) if $U_{1}\epsilon \mathfrak{U}$, then there exists $U_{2}\epsilon \mathfrak{U}$ such that $U_{2}\supset U_{1}+U_{1}$ , where $U_{1}+U_{1}$

denotes the set { $x+y;x\epsilon U_{1}$ and $y\epsilon U_{1}$ },

$(H)$ $\dot{t}fx\epsilon E,$ $x\neq 0$, then there exists $U\epsilon U$ such as $x\overline{\epsilon}U$.
A linear Hausdorff topology satisfying the condition;

$(k)$ each member of $U$ is convex,

is called a locally convex linear Hausdorff topology.

We mean this by a locally convex topology (or LCT), and by a locally
convex space (LCS) we mean a linear space with a locally convex topology.

We denote the linear space of all continuous linear functionals on $E$ for a
locally convex topology $\tau$ by $(E, \tau)^{\prime}$ or simply by $E^{\prime}$, and we call $(E, \tau)^{\prime}$ the dual
space of $E$ with $\tau$, or simply the dual of $E$.

In this paper, whenever we speak of the dual space of $E$, we assume that
$E$ is a locally convex space.

Then, $E$ and $E^{\prime}$ are in duality by the natural bilinear functional such that
$<x,$ $x^{\prime}>=f(x)$ for all $X\epsilon E$ and all $x^{\acute{\prime}}\mathfrak{c}E^{\prime}$, that is, $E$ and $E^{\prime}$ satisfy the dual
conditions;

$(D_{1})$ for any $x\neq 0$ in $E$, there exists $x^{\prime}\epsilon E^{\prime}$ such $as<x,$ $x^{\prime}>\neq 0$,
$(D_{2})$ for any $x^{\prime}\neq 0$ in $E^{\prime}$, there exists $X\epsilon E$ such $as<x,$ $x^{\prime}>\neq 0$ .

and $E$ and $E^{\prime}$ are called the dual linear spaces (for the natural bilinear functional),
where the r\^oles of $E$ and $E^{\prime}$ are interchagable.

A family $\mathfrak{B}$ of subsets of an LCS $E(orE^{\prime})$ is called admissible for topolo-
gizing the dual space $E^{\prime}$ of $E$ (or $E$ resp.) if $\mathfrak{B}$ is a primitive family which satisfies
the condition $(k)$ and the following conditions;

$(a)$ if $B_{1}\epsilon \mathfrak{B}$ and $B_{2}\epsilon \mathfrak{B}$, then there exists $B_{3}\epsilon \mathfrak{B}$ such that $B_{3}\supset B_{1}\cup B_{2}$,

$(b)$ each member of $\mathfrak{B}$ is bounded for the weak topology $w(E, E^{\prime})$ (or $w^{\prime}(E^{\prime}$,
$E))$ which is defined as the weakest topology that makes the bilinear functional
continuous in each variable separately,

$(c)$ each member of $\mathfrak{B}$ is closed for $w(E, E^{\prime})$ (or $w^{\prime}(E^{l},$ $E)$ ).
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A primitive family $\mathfrak{U}$ is called k-primitive if $\mathfrak{U}$ satisfies the conditions $(k)$ ,

and is called K-primitive if $\mathfrak{U}$ satisfies the conditions $(k)$ and $(c)$ , and is called
H-primitive if $\mathfrak{U}$ satisfies the condition $(H)$ , we denote sometimes each of them

by $k(\mathfrak{U}),$ $K(\mathfrak{U})$ and $H(\mathfrak{U})$ respectively.

Remarks:

$(R_{1})$ The conditions $(P_{3})$ and $(a)$ imply that each finite set is containcd $ i/\iota$

at least one of members of $\mathfrak{B}$.
$(R_{2})$ The conditions $(P_{2})$ and $(k)$ are sufficient for the condition (03).

Asubfamily $\mathfrak{B}$ of aprimitive family $\mathfrak{U}$ is called coarser than $\mathfrak{U}$ (or equivalently
$\mathfrak{U}$ is finer than B) if $\mathfrak{B}$ is also primitive, and this is the case if and only if two

primitive families satisfy the condition;

$(Q_{t})$ for every $B\epsilon \mathfrak{B}$, there exists $A\epsilon \mathfrak{U}$ such that $A\subset B$.
A subfamily $\mathfrak{B}$ of a family $\mathfrak{U}$ is called a co-basc for $\mathfrak{U}$ if $\mathfrak{U}$ and $\mathfrak{B}$ satisfy

the conditidn;

$(Q_{2})$ for cvcry $A\epsilon \mathfrak{U}$ , there exists $B\epsilon \mathfrak{B}$ such that $B\supset A$ .
A co-base $\mathfrak{B}$ for $\mathfrak{A}$ is called the circled co-base for $\mathfrak{U}$ if $C(\mathfrak{U})$ , the family of

all the circled envelopes of members of $\mathfrak{U}$, coincidcs with $\mathfrak{B}$.
The convex co-base $\mathfrak{B}$ for $\mathfrak{U}$ is similarly defined as the co-base such that

$k(\mathfrak{U})$ , the family of all convex envelopes of members of $\mathfrak{U}$, coincides with B.

We dcnote the topology defined by uniform convergene on members of an

admissible family $\mathfrak{B}$ of $E$ (or $\mathfrak{B}^{\prime}$ of $E^{\prime}$ ) by $\rho(E^{\prime}, \mathfrak{B}^{0})$ (or $\rho(E,$ $\mathfrak{B}^{\prime 0})$ ), where $\mathfrak{B}^{0}(\mathfrak{B}^{\prime 0})$

denotes the family of all the polar sets of members of $\mathfrak{B}(\mathfrak{B}^{\prime})$ and forms a

neighbourhood basis at $0$ for $\rho(E^{\prime}, \mathfrak{B}^{0})$ (or $\rho(E,$ $\mathfrak{B}^{\prime 0})$ ).

It is easily seen that if an admissible family $\mathfrak{B}$ in $E$ is a co-base for a family
$\mathfrak{U}$ (which needs not be admissible), then thc topology of uniform convergence

on $\mathfrak{U},$ $\rho(E^{\prime}, \mathfrak{U}^{0})$ , is identical with $\rho(E^{\prime}, \mathfrak{B}^{0})$ .
We say that a topology $\rho$ in $E$ is an admissible topology relative to the

dual linear spaces $(E, \tau)$ and $(E, \tau)^{\prime}$ if it satisfies the three conditions;

$(t_{1})$
$\rho$ is a locally convex topology in $E$,

$(t_{2})$ each member of $(E, \tau)^{\prime}$ is continuous for $\rho$ on $E$,
$(t_{3})$ there is an admissible family $\mathfrak{U}^{\prime}$ in $E^{\prime}$ such that $\rho$ coincides with

$\rho(E,\mathfrak{U}^{\prime 0})$ .
and this is the case if and only if $w(E, E^{\prime})\leq\rho\leq S(E, E^{\prime})$, where $S(E, E^{\prime})$ , is the

strong topology, that is, the uniform convergence topology on every bounded
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subsets of $E^{\prime}$, and the weak topology $w(E, E^{\prime})$ is the uniform convergence
topology on every finite subsets of $E$ ‘.

An admissible topology $\rho$ relative to the dual linear spaces $(E, \tau)$ and
$(E, \tau)^{\prime}$ is called compatible with the duality if the following condition is
satisfied;

$(t)$ $(E, \rho)^{\prime}=(E, \tau)^{\prime}$,

and this is the case if and only if $w(E, E^{\prime})\leq\rho\leq m(E, E^{\prime})$, where $m(E, E^{\prime})$ is
the Mackcy topology.

$(R_{\theta})$ It is known that the bounded subsets are the same for any compatible
topology.

\S 2. (Generalized) mixed-topology in an LCS E.

In this section, we recall briefly some of the results in [4].

(2.1) Let an LCT $\mu$ be defined in a linear space $E$, and let $U$ be a
neighbourhood basis at $0$ for $\mu$, and let $\mathfrak{U}$ be a primitive family which consists
of $\{A_{t}, \ell\epsilon I\}$ .

Taking an arbitrary subfamily $\mathfrak{U}_{J}$ of $\mathfrak{U}$, we set

(1) $U^{\alpha}=h\{\bigcup_{*I}(U_{\ell}\cap A)\}$

where $U_{\ell}\epsilon u_{j}\subset u$ and $k\{\cdots\}$ denotes the convex envelope of $\{\cdots\}$ , then the family
$u\alpha$ of all the sets (1) is also a neighbourhood basis at $0$ for a new locally convex
topology, which is called the (generalized) mixed topology determined by $\mu$ and
$\mathfrak{U}$ and is denoted by $\alpha(\mu, \mathfrak{U})$ or simply $\mu^{\alpha}$ .

(2.2) $\mu^{\alpha}$ is not weaker than $\mu$ . $i.e$ . $\mu\leq\mu^{\alpha}$ .
Henceforth, we assume that $\mu^{\alpha}=\alpha(\mu, k(\mathfrak{U})),$ $i$ . $e$ . $\mu^{\alpha}$ is the mixed topology

determined $\mu$ and a k-primitive family, and that $\tilde{\mathfrak{U}}$ is the family which contains
$k(\mathfrak{U})$ as the circled convex co-base, then:

(2.3) $\mu|\tilde{A}=\mu^{a}|\tilde{A}$ for every $\tilde{A}\epsilon\tilde{\mathfrak{U}}$

where $\mu|\tilde{A}.\mu^{a}|\tilde{A}$ denote the topologies induced on $\tilde{A}$ by $\mu$ and $\mu^{\alpha}$ respectively.

(2.4) Let $\mu$ and $\nu$ be two LCT $s$ in $E$, and let $\mu^{\alpha}$ and $\nu^{a}$ be two mixed
topologies determined by the same k-primitive family, then the following condi-
tions are equivalent;

(i) $\mu|\tilde{A}=\nu|\tilde{A}$ (ii) $\nu\leq\mu^{\alpha}$ and $\mu\leq\nu^{\alpha}$ (iii) $\mu^{a}=\nu^{\alpha}$

(2.5) In particular
$\alpha(\mu, k(\mathfrak{U}))=\alpha\{\alpha(\mu, k(\mathfrak{U})), k(\mathfrak{U})\}$ .
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(2.6) Let $f$ be a linear mapping from an LCS $E$ with LCT $\mu$ into another
LCS $F$ with an LCT $\mu^{\prime}$, then $f$ is $(\mu, \mu^{\prime})$ -continuous on every $\tilde{A}\epsilon\tilde{\mathfrak{U}}$ if and only if
$f$ is $(\mu^{\alpha}, \mu^{\prime})$ -continuous on $E$.

(2.7) It follows from (2.4) that $\alpha(f\rightarrow\ell, h(\mathfrak{A}))$ is the finest LCT in $E$ which is

identical with $\mu$ on each $\tilde{A}\epsilon\tilde{\mathfrak{U}}$ .
(2.8) In particular, if $kt\mathfrak{U}$) is a family of all the v-bounded circled $con\sqrt ex$

subsets of $E$, then $a(\mu, h(\mathfrak{U}))$ coincides with Persson’s mixed-topology, and
moreover if $k(\mathfrak{U})$ is a $\nu$ -neighbourhood basis at $0$ which is locally convex and
locally bounded then $a(\mu, k(\mathfrak{U}))$ coincides with Wiweger’s mixed-topology.

(2.9) Some important examples of k-primitive families in $E$ are;

i) the family of all the bounded (or totally bounded, compact) convex
circled subsets for an L H $T$ in $E$,

ii) the family of all the convex envelopes of symmetric finite subsets of $E$,
iii) and, of course, each admissible family in $E$,
iv) a convex neighbourhood basis at $0$ for every locally convex topology.

\S 3. In this section we shall show, in addition to [4], some properties of
the mixed topology.

Let two locally convex topologies $f^{\ell}$ and $\nu$ be defined in a linear space $E$,
and let $\mathfrak{U},$

$\mathfrak{B}$ be two primitive families in $E$, and let $\mathfrak{U},$ $ua\mathfrak{U}^{\beta},$ $\mathfrak{B},$
$\mathfrak{B}^{\alpha}$ and $\mathfrak{B}^{\beta}$ be a

neighbourhood basis at $0$ for $\mu,$
$\alpha(\mu, \mathfrak{U}),$ $\alpha(\mu, \mathfrak{B}),$

$\nu,$
$a(\nu, \mathfrak{U})$ and $a(\nu, \mathfrak{B})$ respectively.

Proposition 3. 1. If $ f^{\ell}\leq\nu$, then a $(f^{\ell,\mathfrak{U})\leq\alpha}(\nu, \mathfrak{A})$ .
Proof. For every $Uc\mathfrak{U}$, by $\mu\leq\nu$, there exists $V\epsilon \mathfrak{B}$ such that $V\subset U$, so for

each $C\epsilon I$, there exists $V_{\ell^{f}}\mathfrak{B}$ such that $VnA_{\ell}\subset U_{\ell\cap}A_{t}$ , hence for every $U^{a}\epsilon \mathfrak{U}^{\alpha}$ there
exists $V^{a}\epsilon \mathfrak{B}^{\alpha}$ such that

$V^{\alpha}=h$
$\{\bigcup_{\iota eI}(V_{\cap}A_{t})\}\subset k\{\bigcup_{t’ I}(U_{c\cap}A_{\ell})\}=U^{a}$.

Remark 3. 1. In particular, if $\mu\leq\nu$ and $\mu|\tilde{A}=v|\tilde{A}$ for every $\tilde{A}\mathfrak{c}\tilde{\mathfrak{A}}$, then
$\alpha(f^{\ell}, h(\mathfrak{A}))=\alpha(\nu, k(\mathfrak{A}))$ by (2.4).

Proposition 3. 2. If $\mathfrak{A}$ and $\mathfrak{B}$ satisfy the condition $(Q_{2})$, then $\alpha(l^{p}, \mathfrak{B})\leq\alpha(\mu, \mathfrak{U})$ .
Proof. For each $A_{\ell^{(}}\mathfrak{A}=\{A_{\ell}, \ell rI\}$ , lei $B_{f\ell}$ denote one $B_{J^{\Gamma}}\mathfrak{B}=\{B_{f},jcJ\}$ such

that $B_{f}\supset A$ , and take $U,\epsilon \mathfrak{U}$ such that $U\subset U_{f\ell}$ , then for every $U^{\beta}\epsilon U^{P}$ there exists
$U^{a_{\Gamma}}U^{\alpha}$ such that

$U^{a}=k\{\bigcup_{*I}(U_{\ell\cap}A_{\ell})\}\subset k\{\bigcup_{Il}(U_{f\ell\cap}B_{jc}1\}\subset k$ $\{ \bigcup_{feJ}(U_{J\cap}B_{f})\}=U^{\rho}$ .
In the special case such that $\mathfrak{B}$ is a subfamily of a family $\mathfrak{U}$, by rephrasing
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Prop. 3.2 we have a corollary.

Corollary. If $\mathfrak{B}$ is a co-base for $\mathfrak{U}$, then a $(_{l}’\iota.\mathfrak{B})\leq\alpha(\mu, \mathfrak{A})$ .
Proposition 3. 3. If $\mu\leq\nu$ , then $ f^{p}\leq a(_{l}’\ell, \mathfrak{B})\leq\nu$ .
Proof. The former inequality is evident by (2.2), so we shall prove the

later. Let $U^{\nu}$ be a neighbourhood basis at $0$ for $a(\mu, \mathfrak{B})$ . For any $U^{v_{(}}U^{v}$ , which is
decided correspondingly to a subfarnily $\mathfrak{U}_{f}$ of $\mathfrak{U}$ , by hypothesis there exists a
subfamily $\mathfrak{B}_{j}$ of $\mathfrak{B}$ such that

$\mathfrak{B}_{J}=$ { $V_{t}r\mathfrak{B};V_{t}\subset U_{\ell}$ for each $U\mathfrak{U}_{I}$ }

and moreover there exists $V\epsilon \mathfrak{B}$ such that $ V\subset\cap V\backslash \iota$ here $V_{t}\epsilon \mathfrak{B}_{f}$ , consequently there
exists $V_{f}\mathfrak{B}$ such that

$V=k$ $\{ \bigcup_{Il}(V_{\cap}V_{\ell})\}\subset k\{\bigcup_{I}(U_{\ell\cap}V_{t})\}=U^{\nu}$

$\tau vhereU\epsilon \mathfrak{U}_{f}$ and $V_{t^{\{}}\mathfrak{B}=\{V_{\ell}, \iota\epsilon I\}$ .
Corollary. $\alpha(\mu, \mathfrak{U})=\mu$ .
In prop. 3.3 setting $\mu=\prime y$ sve obtain this.

Proposition 3. 4. If $\mu\geq v$ , then $\mu=\alpha(\mu, \mathfrak{B})$ .
Proof. By $\mu\geq\iota$) $t1_{1}erc$ exists $W_{\ell}U$ such that $U_{\ell}\cap W,\subset U_{\ell\cap}V$, for each $rcI$

$\iota vhere\cdot V_{\ell^{\prime}}\mathfrak{B},$ $l^{\gamma_{\dot{t}}}\mathfrak{U}_{f}$ and there exists $U\mathfrak{U}su(:h$ that $U\subset U_{\ell}\cap W_{t}$ for any $nI$. So, for
any subfamily $1l_{j}$ of 11, that is, for any $U^{\nu_{k}}\mathfrak{U}^{\nu}$ , we have $U\mathfrak{U}$ such that

$U\subset U_{\ell\cap}W_{\ell}\subset k\{\bigcup_{I}(U_{\cap}W_{r})\}\subset k\{\bigcup_{I}(lI_{\ell 1\urcorner}l^{\gamma},)\}=U^{k}$

where $U_{t^{\prime}}\mathfrak{U}_{f}$ . $V_{l}\prime \mathfrak{B}$ ,
that is, $\alpha(f^{l}, \mathfrak{B})\leq\mu$ , svhile by $(^{\prime)\underline{\prime)}},),$ $\mu<\alpha(|t\ell, \mathfrak{B})$ .
Hence $4p\ell=\alpha(/^{\prime}, \mathfrak{B})$ .

Corollary 1. If $f^{\prime\mu}//l_{l}\ell j’\alpha([t, \mathfrak{B})/\alpha(-)u)$ .
In fact, by Prop. $r’$

$\subset\downarrow\cdot(/t, \mathfrak{V})_{\backslash }^{\prime}\nu$ , and changing the $r\hat{u}le:s$ of $’\ell$ and $v$ in
Prop. 3.4 we obtain $\iota_{J=}’\iota(d\backslash \backslash )|)$ .
So, we see $\iota 1_{1}atfl^{\prime}\backslash \cdot\alpha(\mu, \mathfrak{V})_{\sim^{\backslash }}^{\prime}\subset c(\iota’, u)=v$ if $ f^{\prime\prime}\cdot$

)$/$

Corollary 2. If for $Cl\prime ry\Lambda_{l}k(\backslash )|)$ there $r.\iota\cdot f\sigma/st\gamma_{(}\downarrow 1$ such thaf $ U\subset\Lambda$ , or for
$cn\ell ryU\prime \mathfrak{U}$ there exisls Ack $(^{\backslash }fl)$ such $/hn/U\subset\Lambda$ , $th>ff^{\prime--tl}(ft, h(^{\backslash }\lambda))$ .

In fact, taking $A$ $rk(^{\backslash }J1)$ in tlie place of $V_{t}$ in the proof of 1‘rop. 3.4, we
similarly obtain $f^{1=\alpha}(f^{\prime,k}(^{\backslash })|))$ .

In the second case, of course $U$ is k-primitive family, so, by Prop. ,3. 2
$\alpha$ $(_{\text{E}}’\ell, k(?1)\leq\alpha(\mu \mathfrak{U})=f^{\ell}$ , while $f^{p}\leq\alpha(f^{\ell,k}(\mathfrak{A}))$ , hence $’\iota=\alpha(fl, k(\backslash )$ {)).

Proposition 3. 5. If $\mathfrak{P}$ is the $f(/mily$ of all the symmetric lin $e$ segments,
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$\{\lambda x+(1-\lambda)(-x);0\leq\lambda\leq 1, xrE\}$ , then for any primitive family $\mathfrak{B}$

$\alpha(\mu, \mathfrak{B})\leq a(\mu,$ $\mathfrak{P}^{1}$

that is, $\mathfrak{P}$ is the finest prjmjtjve family of which mixed topclogies associated with

$f^{\prime,a}(t^{\ell}, \mathfrak{P})$ , is the finest of all the mixed topol0gies determined $\iota vith$ lhe same LCT $!^{\prime}$

and primitive families.

Proof. It is obvious that $\mathfrak{P}$ satisfies the conditions $(P_{1}),$ $(P_{2})$ and $(P_{3})$ . Let
$\mathfrak{B}$ be an arbitrary primitive family, then for $an\iota\prime P_{\ell^{1}}\{\dagger$, there exists $B(\mathfrak{B}$ such that
$B\supset P$ by $(P\circ)$ and $(P_{3})$ .

By Prop. 3.2 $\alpha(\mu, \mathfrak{B})\leq\alpha(\mu, \mathfrak{P})$ .
Proposition 3. 6. The family $\Phi$ of all the weakly closed convex envelopes of

symmetric finite subsets of $E$ is the finest admissible family of which mixed

top0logy associated with $f^{p}$ is the finest of all the mixed topologies determiiied with

$/p$ and admissible families.

Proof. It is easily verified that $\Phi$ is an admissible family.

Let $\mathfrak{B}$ be an arbitrary admissible family, for $e\backslash ery\iota^{-t}I$) there exists $Br\mathfrak{B}$ such

that $ B\supset\varphi$ by $(R_{1})$ and convexity of $B$. So $\alpha(\mu, \mathfrak{B})\leq\alpha(\mu, l’)$ .

Theorem 3. 1. Let $\mu^{\alpha}$ be the mixed top0logy determined by a locally convex
topology $f^{\ell}$ and a primilive family $\mathfrak{A}$ in $E$.

Then, the bonnded subsets in $E$ are $fl/$ ( same for $f^{\ell}$ and $f^{\prime^{\sigma}}$ .
Proof. If a subset $B$ of $E$ is $/l$-bounded, then for each subfamily $\mathfrak{U}_{0}$ of $\mathfrak{U}$ ,

there exists $IJ_{0}$ such as $U_{0}\subset\cap U$ where $U\ell \mathfrak{U}_{0}$ and $\lambda_{0^{\prime}}R,$ $\lambda_{0}tO$ such as $A0B\subset l^{\gamma_{0}}$,

then $\lambda_{0}B\cap A\subset U\cap A$ for each $lI_{\ell}\mathfrak{A}_{0}$ .
So $\bigcup_{l}(\lambda_{0}B\cap A_{\ell})\subset\bigcup_{teI}(U_{\cap},A_{t})\iota vherr$

$U_{t^{(}}1\mathfrak{l}_{0},$ $A_{c^{(}}^{\backslash }JI$ .

Since the union of all members of $\backslash $) $1$ covers $E$, we have a $\lambda_{0^{t}}R,$ $\lambda_{0^{-}}\forall 0$ such

that

$\grave{\prime_{\backslash }}B=\lambda_{0}B_{\cap}\bigcup_{cI}A,=\bigcup_{I}(\grave{J_{\backslash }}\bigcup_{rI}(U_{\cap}A_{t})\subset k\{ \bigcup_{rrI}(ll_{n}A_{t})\}-l^{T^{\alpha}}$ for each $U^{t\prime}\ell 11^{\alpha}$ .
Hence $B$ is $f^{\prime^{\alpha}}$-boundecl.

Convirsely $;\{B$ is $f^{p^{\sigma}}$-bounded, then by (2.2) $B$ is $’/-|$)$ounclerI$ .

\S 4. A neighbourhood basis at $0$ for an admissible mixed-topology in dual

linear spaces $E$ and $E^{\prime}$ .
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Though a family $\mathfrak{U}^{0}$ of all polar sets of members of a primitive family $\mathfrak{U}$ is
not necessarily primitive, however the following lemmas hold:

Lemma 4. 1. If $\mathfrak{U}$ is an H-primilive family in $E$, then $\mathfrak{U}^{0}$ is K-H-primitive
family in the dual $E^{\prime}$ of $E$.

Proof. For any $\lambda\epsilon R,$ $\lambda\neq 0,$ $\lambda A^{0}=(A/\lambda)^{0}c\mathfrak{U}^{0}$ because $A/\lambda c\mathfrak{U}$, and for $|\lambda|\leq 1,$ $\lambda\epsilon R$,
$\lambda A^{0}\subset A^{0}$ follows from $A\supset\lambda A$ . $l$-Ience the conditions $(P_{1})$ and $(P_{2})$ are satisfied.

Suppose that there exists an $x^{\prime}\epsilon E^{\prime}$ which is not contained in any $A^{0_{\xi}}\mathfrak{U}^{0}$ , that
is, $x^{\prime}\overline{\epsilon}\cup A^{0}$ where $Ac\mathfrak{U}$.

But the union of all $A^{0_{\epsilon}}\Re_{0},$
$\cup A^{0}=(\cap A)^{0}=\{0\}^{0}\supset E^{\prime}$ because that $\mathfrak{U}$ is H-

primitive, so $x^{\prime}\overline{\epsilon}E^{\prime}$ . This is a contradiction to $x^{\prime}\epsilon E^{\prime}$, hence $\mathfrak{U}^{0}$ satisfies the condition
$(P_{3})$ .

The intersection of all $A^{0}\epsilon \mathfrak{U}^{0},$ $\cap A^{0}=(\cup A)^{0}=E^{0}=\{0\}$ .
This implies that $\mathfrak{U}^{0}$ satisfies the condition $(H)$ .
It is $\backslash vell$ known that $\mathfrak{U}^{0}$ satisfies the conditions $(k)$ and $(c)$ .
Lemma 4. 2. If a K-H-primilive family $\mathfrak{N}$ is the weakly closed convex $co-$

base for an H-primitive family $\mathfrak{M}$ , then $\mathfrak{N}^{0}$ and $\mathfrak{M}^{0}$ are the same K-H-primitive
family.

Proof. Since $\mathfrak{N}$ is a subfamily of a family $\mathfrak{M},$ $\mathfrak{N}^{0}\subset \mathfrak{M}^{0}$, on the other hand
if $M^{0_{\xi}}\mathfrak{M}^{0}$ then $M^{0}=M^{000}=\{K(M\cup 0)\}^{0}=\{K(M)\}^{0}\epsilon \mathfrak{N}^{0}$, so $\mathfrak{M}^{0}\subset \mathfrak{N}^{0}$ . Hence $\mathfrak{N}^{0}=\mathfrak{M}^{0}$ .

Lemma 4. 3. If $\mathfrak{U}$ is a K-H-primitive family in $E^{\prime}$, then there exists an H-
primitive family $\mathfrak{M}$ in $E$ such that $\mathfrak{M}^{0}=\mathfrak{U}$ .

Proof. By Lemma 4.1, $\mathfrak{U}^{0}$ in $E$ is a K-H-primitive family, and $A^{00}=K$

$(A\cup 0)$, since $A\epsilon \mathfrak{U}$ is weakly closed, convex and containing of $0,$ $K(A\cup 0)=A$ ,
hence $\mathfrak{U}^{00}=\mathfrak{U}$ .

Let $\mathfrak{M}$ be the family containing $\mathfrak{U}^{0}$ as the weakly closed convex co-base.
Then $\mathfrak{M}$ is an H-primitive family such that $\mathfrak{M}^{0}=\mathfrak{A}$ . In fact, if $M\epsilon \mathfrak{M},$ $\lambda\epsilon R,$ $\lambda\neq 0$,
then there $exis\iota sA^{0}$ such that $K(M)=A^{0}$ and $K(\lambda M)=\lambda K(M)=\lambda A^{0}\epsilon \mathfrak{U}^{0}$ so $\lambda M\epsilon \mathfrak{M}$,
and moreover for $|\lambda|\leq 1,$ $K(\lambda M)=\lambda A^{0}\subset A^{0}=K(M)$ so $\lambda M\subset M$, hence DJt satisfies
$(P_{1})$ and $(P_{2})$ .

It follows from $\mathfrak{U}^{0}\subset \mathfrak{M}$ that $\mathfrak{M}$ satisfies $(P_{8})$ and $(H)$ .
Lemma 4.4. If $\mathfrak{U}$ is a primitive family of which members are weakly

bounded, then $\mathfrak{U}^{0}$ is a K-H-primitive family satisfying the condition (0)

Proof. It is similarly verified for $\mathfrak{U}^{0}$ to satisfy $(P_{1}),$ $(P_{2}),$ $(k),$ $(c)$ and $(H)$ . We
shall show that (0) is satisfied, consequently so is $(P_{3})$ . Since each $A\epsilon \mathfrak{U}$ is weakly
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bounded, for any $A\epsilon \mathfrak{U}$, there exists $\lambda\epsilon R,$ $\lambda\neq 0$ such that $A\subset\lambda\varphi^{0}$ for every $\varphi\epsilon\Psi$, the

family of all the finite subsets of $E^{\prime}$ , that is, for any $\varphi\epsilon\Psi$, there exists $\lambda\epsilon R,$ $\lambda\neq 0$

such that $\lambda A^{0}\supset K(\varphi)\supset\varphi$ for every $A^{0}\epsilon \mathfrak{U}^{0}$.
Lemma 4. 5. Let $\mathfrak{S}$ be a family of subsets of $E$.
If the family $\mathfrak{S}^{0}$ is a neighbourhood basis at $0$ for a locally convex topology

which is consistent with the structure of the dual $E^{\prime}$ of $E$, then the family $\mathfrak{S}$

contains an admissible family $\mathfrak{T}$ relative to $E$ and $E^{\prime}$ as the weakly closed

convex circled co-base such that $\mathfrak{T}^{0}=\mathfrak{S}^{0}$.
Proof. The family $\mathfrak{S}^{00}$ of all bipolar sets of members of $\mathfrak{S}$ is, by Lemma

4. 1, a K-H-primitive family, and satisfies the conditions $(a)$ and $(b)$ . In fact $(a)$

follows from the fact that $S_{3}^{0}\subset S_{1}^{0}\cap S_{2}^{0}$ implies $S_{s}^{r}\supset S_{1}^{\infty}\cup S_{2}^{00}$, and for $(b)$, let $\Psi$ be the

family of all the finite subsets of $E^{\prime}$ , then for any $\varphi\epsilon\Psi$, there exists $\lambda\neq 0$ such

that $\lambda\varphi\subset S^{0}$ for every $S^{0}\epsilon \mathfrak{S}^{0}$, dually for any $S^{00}\epsilon \mathfrak{S}^{00}$ there exists $\lambda\neq 0$ such that $\psi^{0}\supset$

$\lambda S^{00}$ for every $\varphi^{0}\epsilon\Psi^{0}$, a neighbourhood basis at $0$ for weak topology, so $\mathfrak{S}^{00}$

satisfies $(b)$ .
Since $(S^{00})^{0}=S^{000}=S^{0}$, take $\mathfrak{S}^{00}$ as the family $\mathfrak{T}$ , then $\mathfrak{T}^{0}=\mathfrak{S}^{0}$ and for any $S^{e}\mathfrak{S}$,

the weakly closed convex circled envelope $KC(S)$ of $S$ belongs to $\mathfrak{T}$, because that

$KC(S)=S^{00}$ .
Henceforth, in this section, we assume that whenever we speak of a

neighbourhood it is weakly closed.

Proposition 4. 1. Let $\mathfrak{U}^{\alpha}$ be a neighbourhood basis at $0$ for the mixed

topology $\alpha(\mu, \mathfrak{U})$ determined by an admissible topology $\mu$ and a K-H-primilive

family $\mathfrak{U}$ in the dual $E^{\prime}$ of $E$.
Then there exists an admissible family $\mathfrak{S}$ in $E$ such that $\mathfrak{U}^{a}=\mathfrak{S}^{0}$, aud

moreover there exist an admissible family $\mathfrak{B}$ and a K-H-primitve family $\mathfrak{M}$ in $E$

such that for each $S\epsilon \mathfrak{S}$

$S=\bigcap_{*I}(B_{\ell}\cup M,)$

where $M_{\ell}\epsilon \mathfrak{M}=\{M ; c\epsilon I\}$ and $B_{\ell}\epsilon \mathfrak{B}_{f}\subset \mathfrak{B}$.
Proof. For each $U^{\alpha}\epsilon U^{\alpha}$, taking a subfamily $U_{f}$ of $U$ according to $U^{a}$ we

have
$U^{\alpha}=K$

$\{ \bigcup_{\ell eI}(U\cap A_{t})\}=\{\bigcup_{I}(U_{\ell}\cap A_{\ell})\}^{00}=\{\bigcap_{\epsilon I}(U_{t}^{0}\cup A^{0})\}^{0}$

where $U_{\ell}\epsilon U_{f},$ A $\epsilon \mathfrak{U}=\{A,, c\epsilon I\}$ .
Let $\mathfrak{S}$ be the family of all the sets such as

$S=\bigcap_{\iota\cdot I}(U_{t}^{0}\cup A^{0},),$
$U^{0_{\epsilon}}u_{j}^{0}\subset u^{0}$,
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then $u0=\mathfrak{S}^{0}$ and the family $\mathfrak{S}$ is an admissible family in $E$ because that
$(U^{a})^{0}=\{\bigcup_{\iota eI}(U_{\ell\cap}A_{\ell})\}^{000}=\bigcup_{I}(U_{\ell\cup}A)\}^{0}=\bigcap_{\ell eI}(U_{t}nA)^{0}=\bigcap_{eI}(U_{t}^{0}\cup A_{\ell}^{0})=S$

that is, $(U^{a})^{0}=\mathfrak{S}$ and $(\mathfrak{U}^{\alpha})^{0}$ is an admissible family in $E$ by Lemma 4.5.
Take $\mathfrak{U}^{0}=\{U^{0} ; U\epsilon \mathfrak{U}\}$ as the admissible family $\mathfrak{B}$, and take $\mathfrak{A}^{0}$ as the H-

primitive family $\mathfrak{M}$ by Lemma 4.3, then for $S\epsilon \mathfrak{S}$

$S=\cap(B_{t}\cup M_{t}),$ $M_{\ell}\epsilon \mathfrak{M}=\{M_{\ell}, \ell\epsilon I\},$$B_{\ell}\epsilon \mathfrak{B}_{f}=\mathfrak{U}_{f}^{0}\ell eI$

Conversely the following proposition holds.
Proposition 4.2. Let $\mathfrak{B}$ be a family containing an admissible family in $E$

as a co-base and let $\mathfrak{M}$ be an H-primitive family in $E$.
If $\mathfrak{S}$ is the family of all the sels such as

$S=\bigcap_{I}(B\cup M_{\ell})$

where $M,\epsilon \mathfrak{M}=\{M_{\ell}, \ell\epsilon I\},$ $B\epsilon \mathfrak{B}_{f}$ , a subfamily of $\mathfrak{B}$, then lhe unzform convergence
lopolOgy on $\mathfrak{S},$ $p(E^{\prime}, \mathfrak{S}^{0})$ is the mixed topology determined by lhe untform convergence
lopology on $\mathfrak{B},$ $\rho(E^{\prime}, \mathfrak{B}^{0})$ and the K-H-primilive family $\mathfrak{M}^{0}$ in $E^{\prime}$ .

Proof. This follosvs only from the computation as following; if $S\epsilon \mathfrak{S}$, then

$S^{0}=\{\bigcap_{It}(B\cup M_{t})\}^{0}=\{\bigcap_{\prime I}(B\cup M,)\}^{000}=K[\{\bigcap_{teI}(B_{\ell}\cup M_{\ell}))\}^{0}]=K\{\bigcup_{I}(B_{t}^{0}\cup M_{t}^{0})\}$

where $B^{0}\epsilon \mathfrak{B}_{f}^{0}\subset \mathfrak{B}^{0},$ $a$ . neighbourhood basis at $0$ for $p(E^{\prime}, \mathfrak{B}^{0})$ and $M^{0_{\xi}}\mathfrak{M}^{0},$ $JJl^{0}$ is a $K$-H-
primitive family by Lemma 4. 1.

Noticing that the set $\cap(B_{\ell}\cup M_{t})$ in Prop. 4. 1 is closed, convex, circled and
bounded relative to the weak topology, indeed, in the proof of Prop. 4. 1
$\cap(U^{0}\cup A_{r}^{0})=\cap(U_{t\cap}A,)^{0}=\cap(U_{n}A_{t})^{000}=\cap K(U_{t\cap}A_{t})^{0}=\cap K(U_{\ell}^{0}\cup A^{0})$ , we may give the
following definition.

Diflnitionn. We say that lhe family of all lhe sels such as $S_{f}=\cap(B\cap M)$

where $B_{\ell}\epsilon \mathfrak{B}_{f}\subset \mathfrak{B},$ $M_{C}\mathfrak{M}=\{M_{\ell}, \ell rI\}$ is the mixed admissible family $assoc_{i}aled$ with $\mathfrak{B}$

and $\backslash JJ1,$ $tf\mathfrak{B}$ is an admissible family and $\mathfrak{M}$ is a K-H-primilive family in dual
linear spaces $E$ and $E^{\prime}$ , and sometimes we denote it $(\mathfrak{B}\circ 9Jl)$ .

\S 5. Properties of mixed topologies in dual linear spaces.

Throughout this section and the next, we assume that a locally convex
topology $\tau$ is defined in $E$ as the initial topology, and that svhenever we speak
of a topology, its neighbourhood is weakly closed.

Theorem 5. 1. If a lopology $\ell$ is admissible relalive $lo$ the $\subset 1nal$ linear
spaces $E$ and $(E, \tau)^{\prime}a;\iota d$ a family $\mathfrak{U}$ is K-H-primilive, then the mixd lopol0gy
$\alpha(\mu, \mathfrak{U})$ is also admissible relalive to $E$ and $(E, \tau)^{\prime}$ .
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Proof. Since $\alpha(\mu, \mathfrak{U})$ is a locally convex topology which is not weaker than
$\ell l$, so the conditions $(t_{1})$ and $(t_{2})$ are satisfied and by Prop. 4.1 $(t_{8})$ is also satisfied.

Corollary 1. The mixed top0logy $\alpha(\mu, \mathfrak{A})$ in lhe precedjng lheorem is nol

weaker than the weak lopology and is nol stronger lhan lhe strong lopology.

Corollary 2. Lel $\alpha(\sigma, \mathfrak{U})$ be lhe mixed topology determined by the strong

topology 9 and a K-H-prim itive family $\mathfrak{A}$ .
Then $\alpha(\sigma\cdot, \mathfrak{A})=\sigma\cdot i.e$ . the slrong lopology is invariant to be mixed.

In fact, by cor. 1. $\alpha(\sigma\backslash .\mathfrak{U})\leq\sigma\cdot$, while by $t2.2$) $\alpha(\sigma\cdot.\mathfrak{U})\geq 9$ therefore $\alpha(\sigma\cdot, \mathfrak{U})=\sigma$ .

In the next place, we shall show an approximation theorem concerned
with the mixed topology in more general case.

Theorem 5. 2. $Le_{\nu}^{\tau}E$ and $F$ be two locally convex spaces in dualily, and let
$\alpha(w, \mathfrak{A})$ be the mixed lopology determined by lhe $\iota$veak lopology $w(E, F)$ and a K-

H-primitive family $\mathfrak{U}$ in E. If $g$ is any linear funclional which is a $(w, \mathfrak{U})$-conlinuous

on $E$, then for each $\epsilon\epsilon R,$ $\epsilon>0$ lhere exists an $f\epsilon F$ such $tl\iota at$

$|g(x)-<x,f>|\leq\epsilon$

for all $x$ in $E$.
Proof. This is an immediate consequence from (2.6) and a result of

Grothendieck’s, however we shall give a proof for the convenience of the reader
and for developing of arguments.

Let $Q$ be the canonical map of $F$ into the algebraic dual E$, the linear
space of all the linear functionals on $E$, defined by, for each $f\epsilon F,$ $Q(f)(x)=<x,f>$

for all $x$ in $E$.
Then $Q(F)$ is a linear subspace of E$ and $w(E, Q(F))$ coincides with

$w(E, F)$ .
By (2.6) $g$ is $\alpha(w, \mathfrak{A})$ -continuous on $E$ if and only if $g$ is $w(E, F)-(equiva-$

lently $w(E, Q(F))$ -continuous on every A $\epsilon \mathfrak{U}i$ . $e$ . for each $\epsilon>0$, there exists $U\mathfrak{U}_{a}$,

a neighbourhood basis at $0$ for $w(E, Q(F))$, such that
$ g/\epsilon\epsilon(A\cap U)^{0}\subset E\$ $

for every $A\epsilon \mathfrak{U}$ .
Let $\Psi$ be the family of all the finite subsets of $Q(F)$ in E$, then $\mathfrak{U}_{\omega}=\Psi^{0}$

and there is $\psi r\Psi$ such that
$(A\cap U)^{0}=(A\cap U)^{000}=K(A^{0}\cup U^{0})=K(A^{0}\cup K(\varphi))\subset A^{0}+K(\varphi)$

where $K(\varphi)$ is a weakly compact subsets of $Q(F)$ and $A^{0}$ is weakly closed,

so $A^{0}+K(\psi)$ is weakly closed.
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Hence, for each $\epsilon>0$, there exist $K(\psi)$ in $Q(F)$ such that g/\’e\mbox{\boldmath $\epsilon$} $A^{0}+K(\phi)$ for
every $A^{0}\epsilon \mathfrak{U}^{0}$, that is, for each $\epsilon>0$, there exists a $Q(f)\epsilon Q(F)$ such that

$Q(f)-g\epsilon\epsilon A^{0}$ for every $A^{0}\epsilon \mathfrak{U}^{0}$,

since the union of all members of $\mathfrak{U}$ covers $E$ and $Q(f)(x)=<x,f>$ for all $x$ in
$E$, for each $\epsilon>0$, there exists an $f\epsilon F$ such that

$|g(x)-<x,f>|\leq\epsilon$ for all $x\epsilon E$.
Theorem 5.3. Let $E$ and $F$ be two locally convex spaces in dualily, and lel

$\omega^{\alpha}$ be lhe mixed topology determined by lhe weak top0logy $\omega(E, F)$ and an admissi-
ble family $\mathfrak{U}$ in $E$ relative to aand F. Then;

i) the dual $(E, w^{\alpha})^{\prime}$ is complele relative to $\rho$, lhe lop0l0gy of uniform con-
vergence on members of $\mathfrak{U}$,

ii) the canonical image $Q(F)$ in lhe algebraic dual E$ is dense in the dual
$(E, \omega^{\alpha})^{\prime}$ relalive $ lo\rho$,

iii) $F$ is $\rho$-complete if and only if $Q(F)=(E, \omega)^{\prime}=(E, w^{\alpha})^{\prime}$ .
Proof. At first, we shall verify that the family $\mathfrak{U}$ is admissible relative to

$E$ and $(E, w^{\alpha})^{\prime}$ , that is, $\mathfrak{U}^{0}$ in $ E\#$ is a neighbourhood basis at $0$ for a locally convex
topology in $(E, w^{\alpha})^{\prime}$ .

If $x^{\prime}\epsilon(E, w^{a})^{\prime}$, that is, for $\epsilon>0$ , there exists $U_{e}\epsilon \mathfrak{U}_{\omega}$ such that $x^{\prime}\epsilon\epsilon(A\cap U_{e})^{0}$ for
every $A\epsilon \mathfrak{U}$, then there exists $\lambda>0$ such that $\lambda/\epsilon(A\cap U_{\epsilon})\supset A$ because that $A\epsilon \mathfrak{U}$ is
circled and $w(E, F)$ -bouuded, so $\epsilon(A\cap U_{\epsilon})^{0}\subset\lambda A^{0}$ for every $A^{0}\epsilon \mathfrak{U}^{0}$, hence $\mathfrak{U}^{0}$ satisfies
the condition (0), and the other conditions are obviously satisfied.

Part i) and ii) are consequences from Theorem 5.2 and the fact that $\rho$ is
an admissible topology in $(E, w^{\alpha})^{\prime}$ by Lemma 4.5 and the above.

For iii), $F$ is $\rho$-complete if and only if $Q(F)$ is $\rho$-complete. By ii), $Q(F)=$
$(E, w^{\alpha})^{\prime}$. By (2.2), $(E, w)^{\prime}\subset(E, w^{a})^{\prime}$, while $(E, w^{\alpha})^{\prime}=Q(F)\subset(E, w)^{\prime}$ , hence $Q(F)=(E, w)^{\prime}$

$=(E, w^{\alpha})^{\prime}$ .
Corollary. Lel $\mathfrak{A}$ and $\mathfrak{B}$ be lwo admissible families in $E$ which salisfy the

condition $(Q_{2})$ ; for every $A\epsilon \mathfrak{U}$ there exists $B\epsilon \mathfrak{B}$ such as $B\supset A$ . $\iota.e$ . $\rho(\mathfrak{U}^{0})\leq\rho(\mathfrak{B}^{0})$ .
If $F$ is $\rho(\mathfrak{U}^{0})$ -complele then $F$ is $\rho(\mathfrak{B}^{0})$ -complete.

In fact, $F$ is $\rho(\mathfrak{U}^{0})$ -complete if and only if $(E, w^{\prime})=(E, \alpha(w,\mathfrak{U}))^{\prime}$ , while, by
Prop. 3.2 $\alpha(w, \mathfrak{B})\leq\alpha(w, \mathfrak{U})$, and by (2.2)

$(E, w)^{\prime}\subset\}E,$ $\alpha(w,\mathfrak{B}))^{\prime}\subset(E, \alpha(w,\mathfrak{U}))^{\prime}$

hence $(E, w)^{\prime}=(E, \alpha(w, \mathfrak{B}))^{\prime}$, by iii), $F$ is $\rho(\mathfrak{B}^{0})$-complete.

Theorem 5.4. Let lhe dual $E^{\prime}$ of $E$ wilh $\tau$ be complele relative $lo$ an ad-
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missible topology $\rho$, and let $\mathfrak{U}$ be lhe admissible family in $E$ for $\rho$ . Then;

i) each mixed top0logy $\alpha(w, \mathfrak{B})$ delermined by lhe weak topology $w(E, E^{l})$

and an admissible family $\mathfrak{B}$ in $E$ salisfying the condition $(Q_{2})$ is compatible
topology to the duality between $E$ and $E^{\prime}$ .

ii) the mixed admissible family in $E^{\prime}$ for $a(w, \mathfrak{B})$ is lhe $w(E^{\prime}, E)$ -closed
convex circled co-base for the family of all lhe $\rho(\mathfrak{B}^{0})$ -compact subsets in $E^{\prime}$ .

Proof. For i), by the Cor. of Th. 5.3, $F$ is $\rho(\mathfrak{B}^{0})$ -complete, and by iii) of
Th. 5.3 $(E, w)^{\prime}=(E, \alpha(w, \mathfrak{B}))^{\prime}$, and it is obvious that $(E, \tau)^{\prime}=(E, w)^{\prime}$ , thus $th\rho$

condition $(l_{4})$ is satisfied, and by theorem 5. 1, $\alpha(w, \mathfrak{B})$ is an admissible topology.
Hence the part i) holds.

For ii), let $\mathfrak{S}$ be the mixed admissible family in $E^{\prime}$ for $\alpha(w, \mathfrak{B})$ . By Prop.
4. 1 if $S\epsilon \mathfrak{S}$, then $S$ is written as following;

$S=\bigcap_{I}(K(\varphi)\cup U)$

where $\varphi\epsilon\Psi_{j},$ $\Psi_{f}$ is a subfamiiy of the family $\Psi$ of all the symmetric finite subsets
of $E^{\prime},$ $U_{\ell}\epsilon \mathfrak{U}=\mathfrak{B}^{0}$.

Since there exists $K(\varphi)\epsilon K(\Psi)$ such that $S\subset K(\varphi)\cup U_{\ell}$ for every $U\epsilon U,$ $S\epsilon \mathfrak{S}$ is
$\rho(\mathfrak{B}^{0})$ -totally bounded, conversely if a subset $M$ of $E^{\prime}$ is $\rho(\mathfrak{B})^{0}$ -totally bounded,
then $M$ has this property, so $M$ is contained in, at least, one $S\epsilon \mathfrak{S}$, and since $\rho-$

totally bounded subsets in $\rho$-complete linear space is $\rho$-compact, $\mathfrak{S}$ is a co-base
for the family of all the $\rho$-compact subsets of $E^{\prime}$ , moreover each $S$ in $\mathfrak{S}$ is
$w(E^{\prime}, E)$ -closed, convex and circled, hence ii) holds.

Theorem 5. 5. Let $E$ and $F$ be two locally convex spaces in dualily, and let $w^{a}$

be lhe mixed topology delermined by lhe weak topolOgy $w(E, F)$ and a primitive
family $\mathfrak{U}$ in $E$, then a subsel $M$ of $E$ is weakly bounded if and only if $M$ is
$w^{\alpha}$-bounded, ’. $e$ . the bounded sets of $E$ are lhe same for any mixed lopology
delermined by the weak topology.

Proof. This is the particular case such that $\mu$ in Theorem 3. 1 is considered
as the weak topology.

Theorem 5.6. Lel $E$ and $F$ be lwo locally convex spaces in dualily and $kl$

$w^{\alpha}$ be lhe mixed topology delermined by lhe weak lopology $w(E, F)$ and an admi-
ssible family $\mathfrak{U}$ in $E$.

If $F$ is $\rho(\mathfrak{U}^{0})$ -complete, lhen for any subsel $M$ of $E$, the closed convex en-
velope of $M$ is lhe same for $w(E, F)$ and $w^{\alpha}$.

Proof. Let w-K $(M)$ and $w^{\alpha_{-}}K(M)$ denote the closed convex envelopes
of $M$ relative to $w(E,F)$ and $w^{\alpha}$ respectively.
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By $Eide!h^{\circ}it$ separation theorcm, w-K $(M)$ and $w^{\alpha_{-}}K(M)$ are $\cap\{x;f(x)\leq\sup$

$\{f(y);y(M\}\}$ for all $f\epsilon(E, w)^{\prime}$ and for all $f\epsilon(E, w)^{\prime}$ respectivcly. By iii) of theorem
5.3 $(E, w)^{\prime}=(E, w^{a})^{\prime}$ if $F$ is $\rho(\mathfrak{U}^{0})$ -complete, so we obtain rv-K $(M)=w^{\alpha_{-}}K(M)$ .

Theorem 5. 7. Lel $w^{\alpha}$ be lhe mixed lopology delermined by the rveak lop0logy
$w(E, E^{\prime})$ and a k-primjtjve family $\mathfrak{U}$ in $E$.

If a locally convex topol0gy $\nu$ in $E$ possesses the properly $(F)$ ;
$(F)$ if $ f\epsilon E\#$ is $w(E, E^{\prime})$ -conlinuous on each $A\epsilon \mathfrak{U}$, then $f$ is v-continuous on $E$,

lhen $w^{\gamma}\leq\nu,$ $i.e$ . $w^{\alpha}$ is lhe coarsest lopology which possesses the properly $(F)$ .
Proof. At first, we shall prove a lemma in more general case.

Lemma. Let $f$ be a liner mapping from a locally convex space (X, $\mu$) inlo a
locally convex space $(Y, \mu^{\prime})$, and lel $\mathfrak{U}$ be a k-primilive family in X Then, the
following properties are equivalenl;

i) if the restriclion of $flo$ each $A\epsilon \mathfrak{U}$ is { $\mu,$
$\mu^{\prime}$ ) -continuous, then $f$ is $(\nu, \mu^{\prime})$

-continuous on $X$,

ii) $\mu^{\alpha}\leq\nu$, where $\mu^{\alpha}$ is the mixed topology delermined by $\mu$ and $\mathfrak{U}$ .
In fact, since $f$ is $(\mu^{a}, \mu^{\prime})$ -continuous on $X$ if the restriction of $f$ to each

$A\epsilon \mathfrak{U}$ is $(u, \mu^{\prime})$ -continuous by (2.6), so $f$ is $(\nu, \mu^{\prime})$ -continuous on $X$ if $\mu^{\alpha}\leq\nu$, hence ii)

implies i).

Conversely, if i) holds, then since the restriction to each $A\epsilon^{f}\mathfrak{U}$ of the identical
mapping 1 from (X, $\mu$) onto (X, $\mu^{\alpha}$) is $(\mu, \mu^{\alpha})$ -continuous by (2.3), so $I$ is $(v, \mu^{a})$

-continuous on $X$, that is, for every $U^{a}\epsilon \mathfrak{U}^{\alpha}$, there exists $ v_{\epsilon}u\nu$ such that $V=I(V)$

$\subset U^{\alpha}$, this means $\mu^{\alpha}\leq\nu$, hence i) implies ii).

In this lemma, consider the particular case such that $Y=R$, and $\mu=w(E,E^{\prime})$,
then since $w^{\alpha}$ has certainly the property $(F)$, we obtain immediately the theorem.

\S 6. Various mixed topologies in dual linear spaces.

[1] Let $rv^{\prime_{\alpha}}$ be the mixed topology determined by the weak topology
$w^{\prime}(E^{\prime}, E)$ and the family $\mathfrak{N}$ of all the $w^{\prime}(E^{\prime}, E)$ -closed convex circled equicontin-
uous sets in the dual $E^{\prime}$ of $E$ with $\tau$ .

Then:
1) the admissible family $\mathfrak{S}$ in $E$ for $w^{\prime_{a}}$ is the mixed admissible family

associated with the family $\Phi$ of all the $w(E, E^{\prime})$ -closed convex envelopes of
symmetric finite subsets of $E$ and $U_{\tau}$, a neighbourhood basis at $0$ for $\tau$ .

2) so, $w^{\alpha^{\prime}}$ is identical with the topology of the uniform convergence on
every $\tau$-totally bounded subsets of $E$,



GENERALIZED MIXED-TOPOLOGIES IN DUAL LINEAR SPACES. 143

3) therefore, if $E$ is $\tau$-complete, then each member of $\mathfrak{S}$ is $\tau\cdot compact$,

4) the completion of $E$ is isomorphic to $(E^{\prime}, w^{\prime_{\alpha}})^{\prime}$ ,
5) $w^{\prime_{a}}$ is the finest locally convex topology which is identical with $w^{\prime}(E^{\prime}, E)$

on every equicontinuous set of $E^{\prime}$ , and on $E^{\prime},$ $w^{\prime}(E^{\prime}, E)<w^{\prime_{\alpha}}$ .
6) finally, we conclude that $w^{\prime_{\alpha}}$ coincides with the almost-weak*-topology

in [2] (III. \S 1. p. 44.).

In fact, i), by Th. 5. 1 $w^{\prime_{\alpha}}$ is an admissible topology to $E^{\prime}$ , and by Prop.

4. 1 and $\mathfrak{U}_{w}^{0}=\Phi,$ $\mathfrak{N}^{0}=\mathfrak{U}_{r}$ ([1], \S 2, IV), i) holds.
2) It is similarly proved as ii) of Th. 5.4 for $\mathfrak{S}$ to consist of’ $\tau$-totally

bounded subsets, because of $\rho(\mathfrak{N}^{0})=\tau$ , and $\mathfrak{S}$ is the $w(E, E^{\prime})$-closed convex circled
co-base for the family of all the $\tau$-totally bounded subsets of $E$.

3) It follows from 2) and to be completc.
4) Interchanging the r\^oles of $E$ and $F$ in Theorem 5.3 and noticing that

$\rho(\mathfrak{N}^{0})=\tau$, we obtain thc conclusion. 5) See [4] (th. 3). 6) Lct $\alpha^{*}$ denote the almost-

weak* topology in $E^{\prime}$ described in [2]. It is known that $V$ is $\alpha^{*}$-neighbourhood
at $0$ in $E^{\prime}$ if and only if there exists a finite subset $\varphi$ of $E$ such that $\varphi^{0}\cap U^{0}\subset V$

for each $U\epsilon \mathfrak{U}_{r}$ .
Therefore, there exists a subfamily $u_{0}$ of $\mathfrak{U}_{\omega^{\prime}}$ such that

$\bigcup_{I}(U_{\ell}^{\prime}\cap U_{t}^{0})\subset V$ where $U^{\prime}c\mathfrak{U}_{0},$ $U^{0_{\epsilon}},u_{\tau}^{0}$ ,

since $V$ is defined to be weakly closed convex and circled, there exists $U^{\alpha}\epsilon \mathfrak{U}^{\alpha}$, a
$\iota v^{\prime_{\alpha}}$-neighbourhood basis at $0$ , such that

$U^{a}=K$ $\{$

$\bigcup_{\iota\cdot I}(U_{t}^{\prime}\cap U^{0})\subset V$

so $\alpha^{*}\leq w^{\prime_{a}}$ .
On the other hand, it is known that if $fE^{\prime}f$ which is $\iota v^{\prime}(E^{\prime}, E)$ -continuous

on each $U^{0}\epsilon 1t_{r}^{0}$ is $\alpha^{*}$-continuous on $E^{\prime}$ .
By Theorem 5.7 (interchanging the r\^oles $E$ and $E^{\prime}$ ), we have the relation

$w^{\prime_{\alpha}}\leq\alpha^{*}$ . Hence $\iota 0^{\prime_{\alpha}}=\alpha^{*}$ .
[2] Let $w^{\alpha}$ be the mixd topology determined by thc weak topology

$w(E, E^{\prime})$ and the family $\Phi$ of all the $w(E, E^{\prime})$ -closed convex envelopes of

symmetric finite subsets in $E$.
Then:

1) the admissible family $\mathfrak{S}$ in $E^{\prime}$ for $w^{a}$ is the mixed admissible family

associated with the family $\Psi$ of all the $w^{\prime}(E^{\prime}, E)$ -closed convex envelopes of

symmetric finite subsets in $E^{\prime}$ and $U_{\omega}^{\prime}$ , a neighbourhood basis at $0$ for $w^{\prime}$

$(E‘, E)$ ,

2) so $w^{\alpha}$ is identical with the topology of the uniform convergence on

every $w^{\prime}(E^{\prime}, E)$ -totally bounded subsets of $E^{\prime}$ ,
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3) in this case, $w^{\alpha}$ is the finest mixed topology among the mixed topologies
determined by the weak topology and every admissible family in $E$.

4) If $(E, w)^{\prime}=(E, w^{a})^{\prime}$, then $w^{\alpha}$ coincides with the Mackey topology.
5) $\tau\leq w^{a}$ and on every $K(\varphi)\epsilon\Phi,$ $w(E, E^{\prime}),$ $\tau$ and $w^{\alpha}$ are identical.
6) If $\mu$ is a locally convex topology such that $w\leq\mu\leq w^{\alpha}$ , then the bounded

sets of $E$ are the same for $w(E, E^{\prime})$ and for $\mu$ .
In fact, the parts 1) and 2) are similarly verified as 1) and 2) in [1],
3) is a particular case of Proposition 3.6.

For 4), let $m(E, E^{\prime})$ be the Mackey topology. Sinee weakly compact sets
are weakly totally bounded, $m(E, E^{\prime})\leq w^{\alpha}$, while $(E, w)^{\prime}=(E, w^{\alpha})^{\prime}$ implies that $ w^{\alpha}\leq$

$m(E, E)^{\prime}$, hence $m(E, E^{\prime})=w^{\alpha}$ .
For 5), $\tau\leq w^{a}$ follows from 4) and by (2.3) the rest holds.

For 6), by Theorem 5.5 and 3) in the above, 6) is true.

[3] Taking the family $\mathfrak{B}$ of all the $\tau$-bounded subsets of $E$ in the place
of $\Phi$ in [2], we have the mixed topology $w^{r}$ such that;

1). $w^{r}$ is identical with the uniform convergence topology on every strongly
totally-bounded subsets of $E^{\prime}$ ,

2). $w^{r}\leq w^{\alpha}$ in [2],
3). $(E, \tau)^{\prime}$ is strongly complete if and only if $(E, \tau)^{\prime}=(E, w^{r})^{\prime}$,
4). $w^{r}$ is the finest locally convex topology which is identical with $w(E, E^{\prime})$

on every $\tau$-bounded subsets of $E,$ $i.e$ . in this case $w^{r}$ coincides with Persson’s
mixed-iopology associated with $w(E, E^{\prime})$ .
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