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Introduction.

Let $G$ be a connected, compact Lie group and $K$ a connected closed

subgroup of $G$ of maximal rank. Then, $K$ contains a maximal torus $T$ of $G$ .
A. Borel and J. Siebenthal found all these subgroups $foI$ simple Lie groups in [1].

By $W(G)$ and $W(K)$ we shall denote their Weyl groups, $i.e.,$ $W(G)=N_{G}(T)/T$ ,

$W(K)=N_{K}(T)/T$ where $N_{G}(T)$ and $N_{K}(T)$ are the normalizers of $T$ in $G$ antl
$K$ respectively. It is well known that these Weyl groups don’t depend on the

choice of $T$. Hence $W(K)$ is a subgroup of $W(G)$. In this paper we shall determine

such pairs $(G;K)$ that $W(K)$ is especially a normal subgroup of $W(G)$ . It is

known that $(B_{n} ; D_{n}),$ $(C_{n} ; A_{1}\times A_{1}\times\cdots\times A_{1})$, $(G_{2} ; A_{2})$ and $(F_{4} ; D_{4})$ are such ex-
$-n--$amples. $(*)$ We shall show that there is no pair but these four classes if $G$ is a

simple Lie group.

In \S 1, we shall reduce our problem to find W.invariant sharp-systems

($\sec$ Definition). In \S 2, we shall give two theorems about W-invariant sharp-

systems. In \S 3, we shall decide all W-invariant sharp-systems for complex simple

Lie algebras.

The author wishes to express his hearty thanks to Prof. N. Iwahori for his

valuable suggestions and to Prof. T. Otsuki for his constant encouragement.

\S 1. Reformation of the problem.

Let $G$ be a connected compact Lie group with the center $Z$ . Since $G$ is

decomposed into semi-direct product of a semi-simple subgroup $G^{\prime}$ and $Z$ , the

Weyl group of $G$ is consist with the one of $G^{\prime}$ . On the other hand, we put
$K^{\prime}=K\cap G^{\prime}$ . Then $K=K^{\prime}\times Z$ (semi-direct), for a subgroup of $G$ of maximal rank

always contains the center $Z$ . Hence the Weyl group of $K$ is also consist with

the one of $K^{\prime}$ . Therefore we may assume that $G$ is semi-simple. Furthermore, we
may assume that $G$ is simple, for the Weyl group of a semi-simple Lie group is

decomposed into the direct product of the ones of simple subgroups.

Proposition 1. Let $G$ be a compact connected Lie group, and $K_{t}(i=1,2)$

$(*)$ For $(B_{n} ; C_{n})$ and $(G_{2} ; A_{2})$ , consider the index of subgroup; for $(C_{n} ; A_{1}\times\cdots\times A_{1})$ , recall

the method of construction of the pair by [1]; and for $(F_{4} ; D_{4})$ , see [3], $\overline{[4]}n-$
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connected closed subgroups of maximal rank. If $K_{1}$ is isomorphic to $K_{2}$ under an
inner automorphism of $G$ , then there is an automorphism $\sigma$ of $W(G)su\grave{c}h$ that
$\sigma(W(K_{2}))=W(K_{1})$ .

Proof. From the assumptions there is an clement $g$ in $G$ such that $K_{2}=$

$gK_{1}g^{-1}$ , so $gT_{1}g^{-1}$ and $T_{2}$ are maximal tori of $K_{2}$ where $T_{i}(i=1,2)$ are maximal
tori of $G$ contained in $K$ respectively. By the conjugacy of maximal tori of a
compact connected Lie group, there exists such $k\epsilon K_{2}$ that $kgT_{1}g^{-1}k^{-1}=T_{2}$ . Put
$h=kg$, then $h^{-1}N_{o}(T_{2})h=N_{o}(T_{1})$ and $h^{-1}T_{2}h=T_{1}$ , hence $h$ induces an iso-
morphism $\sigma$ from $N_{o}(T_{2})/T_{2}$ $poN_{o}(T_{1})/T_{1},$ $i$ . $e.$ , an automorphism of $W(G)$ .
Furthermore, since $h^{-1}K_{2}h=K_{1},$ $\sigma(N_{K_{2}}(T_{2})/T_{2})=N_{K_{1}}(T_{1})/T_{1}$ . (Q. E. D.)

This proposition means that we may $determir!e$ the pairs $(G;K)$ up to
conjugacy for our problem. Therefore, for a given maximal torus $T$ of $G$ we
may find such pairs $(G;K)$ that $W(K)$ is a normal subgroup of $W(G)$ and $K$

contains $T$ .
From now, let $G$ be a connected compact semi-simple Lie group, $T$ a fixed

maximal torus of $G$ , and let $K$ be a closed subgroup of $G$ containing $T$ . Let $\mathfrak{g}_{0}$

be the Lie algebra of $G$ and $f_{0},$ $t_{0}$ subalgebras of $\mathfrak{g}_{0}$ corresponding to $K$ and $T$

respectively. By $\mathfrak{g},$
$i$ and $\mathfrak{h}$ we denote the complexifications of $\mathfrak{g}_{0},$

$f_{0}$ and $l_{0}$ . As
$\mathfrak{h}$ is a Cartan subalgebra of $\mathfrak{g}$ (cf [5], Expos\’e 23), let $\Delta$ denote the set of roots
of $\mathfrak{g}$ with respect to $\mathfrak{h}$ . For each root $\alpha$ we put

$\mathfrak{g}_{a}=$ { $X\epsilon \mathfrak{g};[H,$ $X]=\alpha(H)X$ for all $H\epsilon \mathfrak{h}$ }.

Now let $\eta$ denote the complex conjugation of $\mathfrak{g}$ with respect to $\mathfrak{g}_{0},$ $i.e.$ ,
$\eta(X)=X_{1}-iX_{2}$ whenever $X=X_{1}+iX_{2}(X_{1}, X_{2}\epsilon \mathfrak{g}_{0})$ , where the letter “ $i$ ’ is the
imaginary unit. Though the next lemma is well known, (for example, cf. [2],

p. 220) we shall give it with proof.

Lemma 1. 1) $\eta(f)=f$ ,
2) $\eta(\mathfrak{g}_{a})=\mathfrak{g}_{-a}$ .

Proof. 1) This is trivial.
2) Since $1_{0}$ is compact, we can consider as ad (1) $\subset O(n)$ , where $O(n)$ is the group
of all orthogonal matrices of degree $n$ . Hence $\alpha(H)$ is a pure-imaginary number
for any root $\alpha$ and any element $H$ in $1_{0}$ . For any element $X$ in $\mathfrak{g}_{\alpha}$ and any
element $H$ in $\mathfrak{h},$ $[H, X]=\alpha(H)X$ . Applying $\eta$ on the both sides, we have
$[\eta H, \eta X]=\overline{\alpha(H)}X$ where the bar on the right-hand side means the complex
conjugation. Since $H=H_{1}+iH_{2}(H_{1}, H_{2}\epsilon 1_{0})$ and $\overline{\alpha(H}$) $=\overline{\alpha(H_{1})+i\alpha(H_{2})}=-\alpha(H_{1})+$

$i\alpha(H_{2})=-\alpha(\eta H)$ , so we have $\eta(\mathfrak{g}_{a})\subset \mathfrak{g}_{-\alpha}$ . As $\eta^{2}=I,$ $\eta(\mathfrak{g}_{a})=\mathfrak{g}_{-\alpha}$ . ($Q$ E. D.)
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Deflnition. A subset $\Theta$ of $\Delta$ is called a sharp-system if the next two

conditions are satisfied,

1) $-\Theta=\Theta$ ,

2) $\Theta$ is additively closed, $i.e.$ , if $\alpha,$
$\beta$ are elements in $\Theta$ and $\alpha+\beta$ is a

root, then $\alpha+\beta$ is in $\Theta$ .
Theorem 1. Let $G$ be a connected, compact semi-simple Lie group and $T$ a

fxed maximal torus of G. Let $\mathfrak{g}_{0}$ be the Lie algebra of $G,$ $1_{0}$ the $St\ell balgebra$ of $\mathfrak{g}_{0}$

corresponding to $T$ , and let $\mathfrak{g},$
$\mathfrak{h}$ be their complexifications respectively. By $\Delta$ we

denote the set of roots of $\mathfrak{g}$ with respect to $\mathfrak{h}$ . Then, there exists a bijection

between the set of connected closed subgroups of $G$ containing $T$ and the set $of|$

sharp-systems of $\Delta$ .
Proof. Let $K$ be a connected closed subgronp of $G$ containing $T,$ $f_{0}$ its

Lie algebra, and $i$ the complexification of $f_{0}$ . Since $\mathfrak{h}$ is contained in $f$ , we have

a subset $\Theta$ of $\Delta$ such that $f=\mathfrak{h}+\sum_{\alpha\theta}\mathfrak{g}_{\alpha}$ . Now we shall $sho\tau s^{r}$ that $\Theta$ is a sharp-
system of $\Delta$ . For any root $\alpha$ in $\Theta,$

$\mathfrak{g}_{a}$ cf, so $\eta$ } $\mathfrak{g}_{a}$ ) $\subset\eta(f),$ $i$ . $e.,$
$\mathfrak{g}_{-a}\subset f$ by Lemma 1.

Hence, $-\alpha$ is contained in $\Theta$ . Obviously, $\Theta$ is additively closed as $f$ is a
subalgebra. These imply that $\Theta$ is a sharp-system of $\Delta$ . Thus we have a mapping
from the set of connected closed subgroups of $G$ containing $T$ to the set of

sharp-systems of $\Delta$ . Let $\Theta(i=1,2)$ be the sharp-systems corresponding to connected
closed subgroups $K_{\ell}$ containing $T$ . If $\Theta_{1}=\Theta_{2}$ , then $f_{1}\cap \mathfrak{g}_{0}=f_{2}\cap \mathfrak{g}_{0}$ wherc $f_{i}$ are the

complexifications of the Lie algebras of $K_{\ell}$ . Thus we obtain $K_{1}=K_{2}$ by the

connectedness of $K_{\ell}$ . This means that the mapping is an injection. Next, for any
sharp-system $\Theta$ , we put $f=\mathfrak{h}+_{\alpha}\frac{\nabla}{\epsilon\theta}\mathfrak{g}_{\alpha}$ and $f_{0}=f\cap \mathfrak{g}_{0}$ , then $f_{0}$ is a subalgebra of $\mathfrak{g}_{0}$

such that $f_{0}\supset t_{0}$ . Let $K$ denote an analytic subgroup of $G$ corresponding to $f_{0}$ ,

then $K\supset\prime l’$ , and $K$ is closed. (Q. E. D.)

Let $\mathfrak{g}$ be a complex semi-simple Lie algebra and $\mathfrak{h}$ a Cartan subalgebra.

Since the Killing form $\varphi(X, Y)=Tr(ad(X)ad(Y))$ is nondegenerate, $\overline{\varphi}$ is also
nondegenerate where $\overline{\varphi}$ is the restriction of $\varphi$ over $\mathfrak{h}$ . Let $\mathfrak{h}^{*}$ be the dual space
of $\mathfrak{h}$ , then, for each $\lambda\epsilon \mathfrak{h}^{*}$, there exists uniquely an element $ H_{\lambda}\epsilon$ {) such that
$\lambda(H)=\overline{\varphi}(H, H_{\lambda})$ for any $H$ in $\mathfrak{h}$ . In $\mathfrak{h}^{*}$ we shall define the inner product $(\lambda, \mu)$

$=\overline{\varphi}(H_{\lambda}, H_{\mu})$ . Obviously this inner product is also nondegenerate. Put $\mathfrak{h}_{0^{*}}=$

{ $\lambda\epsilon \mathfrak{h}^{*};$ $\lambda(H_{a})$ is real for each a $\epsilon\Delta$ }. Then, the inner product is strictly positive
definite over $\mathfrak{h}_{0}^{*}$ (cf. [2], p. 145). So, we can define the length of a root $\alpha$ by $||\alpha_{1}$

$=(\alpha, \alpha)^{1/2}$ . Now given any basis in the dual space of $\mathfrak{h}_{0}^{*}$, we can introduce a
lexicographic ordering in $\mathfrak{h}_{0}^{*}$ . Thus $\Delta$ becomes an ordered set. The maximal
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root with respect to this order is called a highest root of $\mathfrak{g}$ . Let $\rho$ be a highest
root, then $\Vert\rho\Vert\geqq\Vert\alpha\Vert$ for any root $\alpha$ .

For each root $\alpha$ , the linear transformation $S_{\alpha}$ of $\mathfrak{h}_{0}^{*}$ is defined by

$S_{\alpha}(\lambda)=\lambda-\frac{2(\lambda,\alpha)}{(\alpha,\alpha)}\alpha$ ,

$i.e.,$ $S_{a}$ is the reflection with respect to the hyperplane $\{\lambda\epsilon \mathfrak{h}_{0}^{*} ; (\lambda, \alpha)=0\}$ . The
Weyl group $W=W(\mathfrak{g})$ of 9 is generated by $S_{a},$ $\alpha\epsilon\Delta$ . If we identify the Weyl group
$W(G)$ with $W$ (cf. [5], Expos\’e 23), then $W(K)$ can be identified with $W(i)$ .

For any subset $\Sigma$ of $\Delta$ , let $W_{\Sigma}$ be the group generated by S., $\alpha\epsilon\Sigma$ .
If $K$ is a connected closed subgroup containing $T$ and $\Theta$ is the sharp-

system corresponding to $K$ by Theorem 1, then $W(f)$ is considered as $W_{\theta}$ .
Therefore we may determine the sharp.systems $\Theta$ such that $W_{\theta}$ are normal
subgroups of $W$ . But $W_{\theta}$ is normal in $W$ if and only if $\Theta$ is W-invariant, $i$ . $e.$ ,
$ w(\Theta)\subset\Theta$ for any element $w\epsilon W$ . Thus we obtain the next Theorem.

Theorem 2. Let $G$ and $T$ be as Theorem 1. Let $K$ be a connected closed
subgroup of $G$ containing $T$ , then $W(K)$ is a normal subgroup of $W(G)$ if and only
if $\Theta$ is W-invariant where $\Theta$ is the sharp-system corresp0ndjng to $K$ by Theorem 1.

\S 2. W-invariant sharp-systems.

By Theorem 2, our problem was reduced to find all W-invariant sharp-
systems of the root system of a complex semi-simple Lie algebra with respect to
a given Cartan subalgebra. In this section, we shall study about W-invariant
sharp-systems.

Proposition 2. If $\mathfrak{g}$ is simple, then two roots with same length can be

transformed each other by an element of the Weyl group.

Proof. Since any root is transformed into a simple root by an element
of the Weyl group, we may assume that the roots are both simple. Let $\alpha,$

$\beta$ be

simple roots with same length. If $\beta=a$ or $\beta=-\alpha$ , then we can choose identity
or $S_{\alpha}$ respectively, as an element of the Weyl group. If $\beta\neq\pm\alpha$ , $(\alpha , \beta)\neq 0$ , then

S. $(\beta)=\alpha+\beta$ , so $ S_{\beta}S_{\alpha}(\beta)=\alpha$ . At last, if $(\alpha, \beta)=0$ , then we can choose a sequence of

simple roots $\gamma_{1}=\alpha,$ $\gamma_{2},$ $\cdots,$
$\gamma_{k}=\beta$ such that $(\gamma\ell, \gamma_{t+1})\neq 0$ . Then it is easily proved that

$\Vert\gamma_{\ell}\Vert=\Vert\gamma_{\ell+1}\Vert$ from the Dynkin diagram. From the result proved already, $\gamma\iota$ is
transformed into $\gamma+1$ . So we can prove the proposition for $\alpha$ and $\beta$ by the

induction with respect to $k$ . (Q. E. D.)

For any root $\alpha$ , put $W(\alpha)=\{w(\alpha);w\epsilon W\}$ .
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Theorem 3. Let $\mathfrak{g}$ be a simple Lie algebra, $\mathfrak{h}$ a Cartan subalgebra of $\mathfrak{g}$ ,
and let $\Delta$ denote the system of roots of $\mathfrak{g}$ with respect to $\mathfrak{h}$ . If $\rho$ is a highest
root, then $W(\rho)$ is a W-invariant sharp-system.

Proof. Since W-invariance is trivial, we may only show that it is a sharp-
system. If $a$ is an element in $W(\rho)$ , then there is such element $w$ in $W$ that
$\alpha=w(\rho)$ . IIence, $-\alpha=S_{\alpha}(\alpha)=S_{\alpha}w(\rho)\epsilon W(\rho)$ . Next, we shall assume that $\alpha+\beta$

is a root for $\alpha$ and $\beta$ in $W(\rho)$ . Since $\Vert\alpha\Vert=\Vert\beta\Vert,$ $\alpha\hat{\beta}=60^{o},$ $90^{o}$ , or 120o. If $\alpha\hat{\beta}=60^{o}$

or $\mathfrak{X}^{o}$ , then $\Vert\alpha+\beta|_{!}>\Vert\alpha\Vert=\Vert\rho\Vert$ which contradicts to the choice of $\rho$ . Therefore
$\hat{\alpha}\beta=120^{o}$ , hencc $\alpha+\beta$ has the same length as $\alpha$ . By Proposition 2, $\alpha+\beta$ is
contained in $W(\alpha)=W(\rho)$ . This means that $W(\rho)$ is a sharp-system. (Q. E. D.)

Next, we shall show that any non-trivial W-invariant sharp-systems are only
of this type.

Theorem 4. Let assumptions be as Theorem 3, then any non-empty W-
invariant sharp-system is equal to $W(\rho)$ or $\Delta$ , where $\rho$ is a highest root.

Proof. Let $\Theta$ be a W-invariant sharp-system. For any root $\alpha$ in $\Theta,$ $W(a)$

is contained in $\Theta$ . Furthermore, if $W(\alpha)$ is consist with $\Theta$ , then $\alpha$ must have the
same length as $\rho$ . In fact, if $\Vert\alpha\Vert<\Vert\rho\Vert$ , then there are two simple roots $\alpha,$ $\alpha_{f}$

such that $(\alpha_{i}, \alpha_{j})\neq 0$ and $\Vert\alpha_{\ell}\Vert<\Vert\alpha_{f}\Vert$ . So $\Vert\alpha\Vert=\Vert\alpha_{i}\Vert$ , hence $W(\alpha_{\ell})=W(\alpha)=\Theta,$ $i.e.$ ,
$W(\alpha_{\ell})$ is a sharp-system. On the other hand, since $\frac{2(\alpha_{\ell},a_{j})}{(\alpha_{f},\alpha_{f})}=-1,$ $\alpha_{j}=S_{\alpha_{f}}(\alpha_{l})-\alpha_{\ell}$ .
Since $W(\alpha_{i})$ is a sharp-system, so the right-hand side of this equality is
contained in $W(\alpha_{i})$ . Hence $\alpha_{f}\in W(\alpha_{i})$ and $\Vert\alpha_{\ell}\Vert=\Vert a_{f}\Vert$ , which contradicts the
inequality $\Vert\alpha_{i}\Vert<\Vert\alpha_{f}\Vert$ . Next, if $ W(a)\neq\Theta$ , then we can select an element $\beta$ in
$\Theta-W(a)$ . Then $W(\alpha)$ and $W(\beta)$ are obviously disjoint, moreover $\Vert\alpha|||\neq\Vert\beta_{1}|$

by Proposition 2. So $ W(\alpha)\cup W(\beta)=\Delta$ , for, if not, there is a root such that its
length is different from ones of $\alpha$ and $\beta$ , which is impossible in a simple Lie
algebra. Hence $\Theta=\Delta$ , which completes the proof. (Q. E. D.)

\S 3. $W(\rho)$ in simple Lie algebras.

In this section, we shall decide the $W(\rho)$ for complex simple Lie algebras.
Throughout this section, we shall use the following notations.

gl $(n, C)$ ; The set of all compl.ex matrices of degree $n$ .
@l $(n, C)$ ; The set of all complex matrices of degree $n$ with trace $0$ .
$D(h_{1}, h_{2},\cdots, h_{n})$ : The diagonal matrix with diagonal elements $h_{1},$ $h_{2},$

$\cdots,$
$h_{n}$ .

$A$ : The transposed matrix of $A$ .
$t_{n}$ : The identity matrix of degree $n$ .
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$K=($ $01\ldots:...::::..:$ $I_{n}:00\ldots.I_{n}0:.\cdot:.:::....\cdot.\cdot.\cdot.\cdot.\cdot.\cdot]$

Type $A_{n},$ $D_{n}$ , and $E_{\ell}(i=6,7,.8)$

$J=[\cdot\cdot-I_{n}::0\ldots.::...\cdot:.$ $I_{n}0$ $]$

Since all roots are as long as the highest root $\rho$ in these cases, we always
have $ W(\rho)=\Delta$ from Proposition 2.

Type $B_{n}$

$\mathfrak{g}=\{A\epsilon \mathfrak{g}I(2n+1, C);AK+KA=0\}$ is a Lie algebra of type $B_{n}$ ,
and

$\mathfrak{h}=\{H=D (0, h_{1}, \cdots, h_{n},-h_{1}, \cdots , -h_{n})\epsilon \mathfrak{g}\}$ is a Cartan subalgebra of $\mathfrak{g}$ .
Let $\lambda_{\ell}$ ($i=1,2,$ $\cdots$ , n) be the linear forms on $\mathfrak{h}$ defined by $\lambda_{\ell}(H)=h$ where
$H=D(O, h_{1}, \cdots, h_{n},-h_{1}, \cdots, -h_{n})$ . So the root system $\Delta$ of $\mathfrak{g}$ with respect to $\mathfrak{h}$ is
expressed as $fo!lows$ ;

$\Delta=\{\pm\lambda_{\ell}, \pm\lambda_{\ell}\pm\lambda_{k} : i\neq k\}$

Put $\alpha_{\ell}=\lambda-\lambda_{\ell+1}(1\leqq i\leqq n-1),$ $\alpha_{\hslash}=\lambda_{n}$ , then $\Pi=\{\alpha_{1}, \cdots, a_{\hslash}\}$ is a simple root system
and the highest root is

$\rho=\alpha_{1}+2\alpha_{2}+2a,+\cdots+2\alpha_{\hslash}=\lambda_{1}+\lambda_{2}$ .
The Weyl group $W$ consists of all permutations of $\lambda_{\ell^{\prime}}s$ and changes of signature
of $\lambda_{\ell}^{\prime}s$ . Hence $W(\rho)=\{\pm\lambda_{\ell}\pm\lambda_{j}, i\neq j\}$ . The subalgebra corresponding to this
sharp-system is of type $D_{n}$ .

Type $C_{\hslash}$

$\mathfrak{g}=8_{p}(n, C)=\{A\epsilon \mathfrak{g}I(2n, C);Af+JA=0\}$ is a Lie algebra of type $C_{\hslash}$ , in other
words, $\mathfrak{g}$ consists of all complex matrices of degree $2n$ such that

$A=[\ldots XZ$ $:::::.:.-lY.X]$

,

$Y=Y$ , ${}^{t}Z=Z$ .

$\mathfrak{h}=\{H=D(h_{1}, \cdots, h_{n}, -h_{1}, \cdots, -h,,)\epsilon \mathfrak{g}\}$ is a Cartan subalgcbra of $\mathfrak{g}$ .
Let $\lambda_{\ell}$ be the linear forms on $\mathfrak{h}$ defined by $\lambda_{i}(H)=h$ , where $H=D(h_{1},$ $\cdots,$

$h_{n}$ .
$-h_{1},$ $\cdots$

$,$

$-h_{n}$), then the root system is
$\Delta=\{\pm\lambda\pm\lambda_{k}\}$

Put $\alpha_{\ell}=\lambda_{\ell}-\lambda_{\ell+1}(1\leqq i\leqq n-1),$ $\alpha_{\hslash}=2\lambda_{n}$ , then, $\Pi=\{a_{1}, \ldots, a_{n}\}$ is a simple root system
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and the highest root is
$\rho=2\alpha_{1}+\cdots+2\alpha_{n-1}+a_{n}=2\lambda_{1}$ .

The Weyl group of $\mathfrak{g}$ is the same as the Weyl group of type $B_{n}$ . Hence,
$W(\rho)=\{2\lambda_{i} ; 1\leqq i\leqq n\}$ . The corresponding subalgebra is of type $A_{1,-}\underline{\times A_{1}}\times_{n_{-}}\cdots\times A_{1}--$

,

Type $G_{2}$

The root system can be expressed as follows;
$\Delta=\{\pm(\lambda_{\ell}-\lambda_{f}), \pm(\lambda_{\ell}+\lambda_{f}-2\lambda_{k}):1\leqq i,j, k\leqq 3\}$

Put $\alpha_{1}=\lambda_{1}-\lambda_{2},$ $\alpha_{2}=-\lambda_{1}+2\lambda_{2}-\lambda_{3}$ , then $\Pi=\{a_{1}, \alpha_{2}\}$ is a simple root system and the
highest root is

$\rho=3\alpha_{1}+2\alpha_{2}=\lambda_{1}+\lambda_{2}-2\lambda_{\theta}$ .
Hence $W(\rho)\subset\{\pm(\lambda_{\ell}+\lambda_{f}-2\lambda_{k})\}$ . As $W$ contains thc Weyl group of typc $A_{2}$ ,
$W(\rho)=\{\pm(\lambda+\lambda_{f}-2\lambda_{k})\}$ . Thus we can know that the Weyl group of type $A_{2}$ is
a normal subgroup of the Weyl group of type $G_{2}$ , for the corresponding sub-
algebra to $W(\rho)$ is of type $A_{2}$ .

Type $F_{4}$

The root system can be expressed as follows;

$\Delta=\{\pm\tilde{\Lambda}\pm\lambda_{j}(0\leqq i<j\leqq 3), \frac{1}{2}(\pm\lambda_{0}\pm\lambda_{1}\pm\lambda_{2}\pm\lambda_{3})\}$

where $\lambda_{0},$ $\lambda_{1},$ $\lambda_{2},$ $\lambda_{S}$ are an orthonormal basis of a Euclidean space of dimension 4.

Put $\alpha_{1}=\lambda_{1}-\lambda_{2},$ $a_{2}=\lambda*-\lambda_{3},$ $\alpha_{3}=\lambda_{\theta},$ $\alpha_{4}=\frac{1}{2}(\lambda_{0}-\lambda_{1}-\lambda_{2}-\lambda_{s})$ , then $I1=\{\alpha_{1}, \alpha_{2}, \alpha_{\theta}, \alpha\}$ is a

simple root system and the highest root is
$\rho=2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+3\alpha_{4}=\lambda_{0}+\lambda_{1}$ .

Since the length of root is invariant under the operations of Weyl group, $W(\rho)$

$\subset\{\pm\lambda_{i}\pm\lambda_{f}\}$ . On the other hand, since $W$ contains the Weyl group of type $B_{4}$

as subgroup (cf. [4]), $W(\rho)=\{\lambda\pm\lambda_{j}(i\neq j)\}$ . The subalgebra corresponding to $W(\rho)$

is of type $D$ .
Thus we can reach the next Theorem.

Theorem 5. Let $G$ be a connected, compact simple Lie group, and $K$ a
connected, closed subgroup of $G$ of maximal rank. Let $W(G)$ and $W(K)$ denote
their Weyl groups. Then $W(K)$ is a normal subgroup of $W(G)$ if and only if
$(G;K)$ belongs to next four classes; $(B_{n} ; D_{n}),$ $(C_{\hslash} ; A_{\underline{1}}\times\cdots\underline{\times A}_{1})\backslash n(G_{2} ; A_{2})$ and $(F_{4} ; D_{4})$ .

Department of Mathematics
Yokohama Municipal University.



128 HIROSHI ASANO

REFERENCES

[1] A. Borel et J. Siebenthal; Les sous-groupes ferm\’es connexes de rang maximum des groupes
de Lie clos. Comm. Math. Helv. Vol. 23 (1949-1950), pp. 200-221.

[2] S. Hclgason; Differential geometry and symmetric spaces. Academic Press, 1962.

[3] N. Iwahori; On the structurc of a Hcckc ring of a Chevalley group over a field. Jour.
Fac. Sci., Univ. Tokyo, Vol. 10 (1964), pp. 215-236.

[4] T. Kondo; The characters of the Weyl group of type $F_{4}$ . Jour. Fac. Sci., Univ. Tokyo,
Vol. 11 (1965), pp. 145-153.

[5] Seminairc Sophus Lie, Theorie dcs algebrcs de Lie, Topologie des groupcs de Lie.
Ecole Norm. Sup., Paris, 1955.

(Received November 20, 1965)


	Introduction.
	\S 1. Reformation of the ...
	Theorem 1. ...
	Theorem 2. ...

	\S 2. W-invariant sharp-systems.
	Theorem 3. ...
	Theorem 4. ...

	\S 3. $W(\rho)$ in simple ...
	Theorem 5. ...

	REFERENCES

