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Risumi. I The theory of Lie transformation groups was extended to a
theory of extended Lie transformation groups by extending the group parameters
(@) to functions (af(x)) of coordinates of the basc manifolds ([15]). The Lie’s

fundamental theorems were thereby simplified.

II. In this paper, a theory of further extended Lie transformation groups
will be established by extending the extended group parameters (a‘(x)) further

.. (m) . .
to the case (@t (%, %, %, -+, x!), where £=dx/d!, etc., t=the canonical parameter.

IntRODUCTION. 1. The transformation parameters hitherto considered had
been exclusively of the nature of the variable constants untill the present author
succeeded in extending all the branches enlisted below by extending respective

group parameters further to appropriate functions* of coordinates ([1]-1[131),

respective invariants being reiained :

: Lie’s higher sphere geometry - --..ccccoceiirieicitiiiiiiiiaiaiariiiciiiitirrcetsesesaess
3 | Parabolic Lie geom, Dual parabolic Lie geom.
R
-§ | Equiform Laguerre geom. Dual equiform Laguerre geom.
§
2? Dual conformal geom. Conformal geom. \
N
‘E Laguerre geom. I Dual Laguerre geom.
)

|

Sphere-geometrical  Sphere-geometrical Sphere-geometrical

.Euclidean geom. Non-Euclidean geom.  Dual Euclidean geom.

Projective-geome- Projective-geome - Projective-geometrical
3 trical Euclid. geom. trical Non-Euclid. geom. Dual Euclidean gcom.
§ Epuiform geom. Dual equiform geom.
% Equi-affine geom. Dual Equi-affine geom. |
3
_§ Affine geom. Dual affine geom.
) | |

Projective geometry.-.c:.:oneet Lie's line-sphere transf. -:-coocecesessaceses

(In 3 dimension)

*) A glimpse of an embryo of this idea is found in [45].
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Thereby the combined manifold (e.g.) { {x}, {@% (x),a}} }, (|, (x| #=0;5,m,p=1,2,
«+,m) of the base manifold {x} and the extended group manifold {a% (x),a\}
was considered. Hereby x are the local coordinates in the

base differentiable manifold classical space

and the global II-geodesic curves

d o - (st def )t m— m
—F =0, (!} (x)dxm=a, (x)dx™),
which exist in the
base differentiable manifold . classical space

owing to the fact that o' are written in invariant forms and behave as for meet
and join like straight lines, were considered. Further, the global 1II - geodesic
parallel coordinates &' such that dé'=w'=a'dt were introduced adopting at least
one system of o, (x) ¢ C?, (v=positive integer or oo or w™) such that | b, (x)| #0.

Thereafter the present author was in the situation to extend his extension
of group parameters lo functions of coordinates of the base manifolds to the
general case and led to extend the theory of Lie transformation groups by ex-
tending the group parameiers to functions of coordinates. The abstract theory
itself of the Lie groups remained however thereby unaltered, although the domain
of wvalidity is thus enlarged. Thereby the combined manifolds (M, G) were
considered, where M is the base manifold {#} and G the extended Lie trans-
formation group manifold {at (%)}, (¢=1.2, -, 7).

The famous Fundamental Theorems of Otto Schreier ([17],[18]) had till
that time enabled us 2o reduce the global theory of Lie groups to the case of the
vicinity of wuuit element. The present author introduced the global 11 - geodesic
parallel coordinates &', etc. not only in the base manifold M ® but also in the
transformation group space ({a'}, say). Thus they cenabled us to establish tke
theory of the extended Lie

groups transformation groups

in the large without taking the Otto Schreier’s Fundamental Theorems into
accourt.

The resulting theory of extended Lie transformation groups includes the
various extended geometries hitherto considered by the present author ([I]-.
[13]) as special cases, the parameter ¢ spoken of above being a special canonical

1) The cases of analytic functions.
2) Usually the Euclidean space En only is treated as the base manifold.
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parameter.

Dual to that the present author has obtained dé'=w), (¥)dx™, he rendered
usual notation

0 : 0
Xi=¢) (x)'a—x’j— Z,=af (a)w
in the differentiable manifold {x} in the group manifold {a}

into the form

98

where (&) . where (o)

9 )

are the 1I - geodesic parallel coordinates corresponding to
&1 (x). o (a).

Thus the fundamental thcorems of the extened Lie translormation groups were
made extremely simple as the following underlying formulas suggest:

-9 =
Fa= g o H=0 Zi= L (2 2)=0,
the structure constants C%,=0 the structure constants C =0,
d (o}, (x) dx™)=0, d (b; (a) da’)=0,
ak af =& O-f > af = (7f
M oak Tt oxd dat 08’

In Art. 19 of [158], E. Cartan’s theories in his “géométrie des groupes”
([18]) concerning “equipollence des vecteurs”, “parallélisme des vecteurs” and
“géodesique” were extended 1o the case, where the groups arve the extended ones
in the present author’s sense, the fact that E. Cartaw's geodesics are 11 - geodesics
in the present author’s sense being shown.

II. In the present paper, a theory of further extended Lie transformation
groups will be established by ezcﬂf)ending the extended group paramelers (a’(x))
further fo the case (@ (x,%,%,,%)). The results are mostly parallel and similar
lo those, which were recapilulated under 1 and contain the lalter.

§1. Otto Schreier’'s Two Fundamental Theorems.

1. Recapitulation of the Otto Schreier’'s Two Fundamental Theorems. The
study of the global Lie groups has hitherto been based on the following
principles.

First FuNDAMENTAL TureoreM or Otro Screier ([17],[18]). If U be an
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arbitrary vicinity of the unit element of a connected topological space G, then
every eclement of G is expressible * as the product of a finite number of elements
a', a?, --- ,a™ belonging to U. _

Cor. Connected 7-dimensional continuous group G may be covered by
at most enumerable open scts of the forms a'U,(r=1,2,.,m), where U is an
arbitrary vicinity of the unit element of G.

Seconp FUNDAMENTAL THEOREM OF Otro ScHrREIER ([17],[18]). If we
divide a connected r-dimensional continuous group into subsets by the equi-
valence relations of locally continuous isomorphism, then each subset contains
only one simply connected grotip, provided that we do not distinguish the
subsets, which are continuously isomorphic to one another. Every continuous
coset group of the simply connected group (belonging to the subset) formed with
its isolated invariant subgroup as modulus. And conversely, such a coset group
is a continuous group belonging to one and the same subset as its simply
connected group.

In the First Fundamental of Otto Schreier, the expressibility *
holds only but for local continuous isomorphism and by the continuous group,
locally continuously isomorphic subset only come into our consideration. Hence
we see that the study of connected continuous groups is admissible to that of the

vicinily of the unit element group germ (local group)

only.

§2. The Theory of Lie Groups in the Largec by Extending
the Group Parameters to Appropriate Functions of
Coordinates.

2. Differentiable Manifolds. In order to fix our notion, we will recapitu-
late a number of definitions of terms etc. under consideration.

Let R™ be an % -dimensional Cartesian space with the real coordinates (x).
We call the topological representation of an open subset U, of an % - dimensional
manifold M=V" on an open subset x(U.) of R™ a system of local coordinates
(or a local chart) of M. U, is called the domain of the chart (or the domain of
coordinate system). To each point P of U.CM, there correspond a point of R,
which is represented by (x) called the coordinates of P in the chart under
consideration.

DEFINITION. A differentiable manifold M of the class C*

(v=positive integer V=00 v=w (analyticity!))
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is an n-dimensional manifold ®, to which a system A (atlas) of charts satisfying
the following conditions are associated:
Al. M= U Ua.

As. PcUNU, (U, Us: two domains of charts of A), and (x) and (y) are
the local coordinates having U, and U, as the domains respectively, then

y'=y*(x) ‘ x=x%(y)
are functions of class C° such that
(‘)(yl’,,,’yn) . ‘ a(xls"'sx”),_,
AP A RRAE D AVAFSY | § | T2
0 (xty -+, %) 1 T(yh -5 m)
DeriniTiON. Two atlas A and B are said to be equivalent, when their

reunion is also an atlas of class Cv.

THEOREM. In order that two atlas A and B of onc and the same differen-
tiable manifold M may be equivalent, it is necessary and sullicient that A4, B
satisfy the axiom A.. ‘

DeriniTiON. Two equivalent atlas are said to define one and the same
structure of differentiable manifold of class C* on M.

DeriNiTION. A system of local coordinates of M is said to be compatible
with the structure of differentiable manifold (or to be admissible)) when thce
reunion with an atlas defining M as differentiable manifold is also an atlas of
the same class.

THEOREM. Lvery compact differentiable manifold can be covered by a
finite number of domains of the charts.

3. The Lie Groups as 7-Dimensional Differentiable Manifolds of class C?
At the end of Art. 1, we have seen that the study of connected continuous group
is reducible to that of the

vicinity of the unit element ‘ group germ (local group)

only.

Now we have succeeded in introducing global 11-geodesic parallel coordinates
(§) into differentiable manifolds and any point of a differentiable manifold may
be considered as the origin by virtue of the extended affine transformation group.

3) A topological space is said to be locally Euclidean at a point, il there exists a chart 21 on
a vicinity of P. A Hausdorf' space, which is locally Euclidean at each point, is called a
manifold.
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Thus we are led to the
THEOREM. The Lie group is a differentiable manifold of class C°.

In order to prove this theorem, we begin with the definition of the 7-
dimeénsional Lie group germ.

DerINITION. A set G of elements S;=S(a',a?:--,a") having points a=
(al, a2, --- , @”) belonging to a vicinity U, of the origin (0) of the 7-dimensional
Euclidean space as parameters, is called an » - dimensional Lie group germ, when
it is characterized by the following conditions:

(i) If we take a vicinity' Ui,cU, of the origin appropriately, then for

a=(a',a ---,a)e Uy, and b=(b', b% .- ,b") ¢ U;, the product
Se* Se=8S,, (e=(ct, ¢+, ") cUy)
is defined, where the composition function
=gt (a', a% -, a"; b, b?, -+, b), (#=1,2,-+,7)

are of class C3 ' |

(ii) For arbitrary ac¢ U, the relation

Si+So=Sy« Sa=3S..

i.e.

(3.1  ¢(a,at, - ,ar 30, ,0)=¢ (0, ,0;al, -, a)=al, (1=1,2,,7)
holds.

(iiiy If a@,b,cc U, for sufficiently small vicimty U, of the origin, then
the associative law

Sa *(Se* Se)=(Sa * Se) * Se
i.e.
3.2) gila;ob;o))=¢i(pla;d);c), (f=1,2,:,7)
holds.

LemMA. If @ and b be sufficiently near the origin, then

8(@‘(a;b),- "SD (a b)) 0( (a b "s§0 (a b)
d(at, a? - ,a’) 0, a(b b2, .-, b7) *0,

so that we can solve
c=¢i(a;b), (1=1,2,+,7)
with respect to a or b. In particular, S;=S;! such that
S;*Se=S4'S:=S

is determined for arbitrary S,.
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PROOF.MB%T;—I’—) and W and thus the fundamental determinants

%—— aud "%_((%))‘“ are continuous functions in the vicinity of the origin. If we

set b=0 resp. a=0, then by (3.1), we have

(B )=l F ==

‘and thus

2¢) 4o 200
@ % 76 "

in the vicinity of the origin
If, in particular, we solve S:+S,=S,, we have
’ S:=(Sz*Sa)* Sz =Sz +(Sa+Sz)
by the associative law. Comparing this with S.=S.+S, we obtain S,+S.=S,.
Thus S;=S;" exists.

Proor oF THE TueoreEm. 1. When a vicinity of the unit element of a
topological group G in a 7r-dimensional Lie group germ, the topological group
G is called an r-dimensional Lie group.

I1. A topological group G is an r-dimensional continuous group, when G
is provided with a vicinity of the unit element of G, which is homeomorphic
to an open hypersphere of the »-dimensional Euclidean space.

From I and II, we sce that the r-dimensional Lie group G is an 7-
dimensional continuous group, since for the Lie group germ, the existence of the
vicinity of the unit element of G, which is homeomorphic to an open hypersphere
of the r-dimensional Euclidean space, is preassumed.

Now

I11. an 7r-dimensional continuous group is a topological group, whose
group space is an r-dimensional manifold.

Hence the r-dimensional Lie group G is an r-dimensional manifold.

By the Cor. above, this 7-dimensional manifold is a differentiable manifold
of class C3, since, by the Cor. of the First Fundamental of Otto
Schreier, Axiom A; of Art. 2 is satisfied and by the Thcorem a_bovc,‘the Axiom
A, of Art, 2 is satisfied.

Hence the r-dimensional Lie group is an #-dimensional differentiable

manifold of class C8.
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§3. Doubly Extended Affine Geometry.

4. 1II - Geodesic Curves. Take

(4.1) o 4Tl (2, , - , %) da,
(l’ aes ;2’ JIA =1, 2, oee n),

o & a} (a, d-+-, 3) da,
(45 %03 19 h’ ee=1,2, ., N, (rgn)i

where £=dx/dl, etc., t being the so-called affine parameter ([38], [39]) and

mt
. . Ud
are assumed to bc linearly independent,

4.2) oz, % -, 51720 in M,

al
so that the condition that

o
bl

, n.) .
iaila,d,+,a)|? #0 in G

is satisfied. Since (4.1) is written in an invariant from,

ot

are global.
For the given
! . (m)
W, (x, X, ooy x),
we introduce
. (m)
.(.); (x, x’ ey x)
by the condition:
(4.3) o2; "’f.‘: 8;, &= O =0,

where 4 °’s are Kronecker deltas.

ai(a,d, -+, a)
L\ &y s @)y

Qi)

ﬁﬁ (a, ds"' ’ a)

1 e 1 21 2 e N2
‘Bl a, =0 <:© P,l “l‘—”/:,

We define the connection parameters ([43], p.11)

(m)

A2 , %)

nrv

(x’ x', ese
by the conditions of teleparallelism for

1
ay "

and £i:
(4. 4) d(ﬂ:‘— /1‘,'“‘ (,)"; dxv____o‘
4.4y A2+ 13, Q:dx =0,

which become
/1:, dx: = !)‘} (Iml’,,

A2, dxr = —a, dO3,

ny

(4.5)
(4.9

f

i

(D)

My la,d, -, a)

oy and fi:
da} — 13, & da* =0,
dii+ A 1 da=0,

Ahdar =3l dnd,

A dar = —aj dpj,
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by multipltication of (4.4), (4.4) with

A
2T

where

4.6)  da, ‘ do:

=dxv< d + x° 0 _|....+_xf____a

ax’ 'xv F;) X7 XY (m)

! . (m) (m)
fy, (x9 Xy e ,X), l

the M

being of class C? so that

an M ‘3591( 9_, & 9

n == ox’ X 0x°
(m+1)
xo 7 (m) .
T 5 )"" (x, %, - , x) X*
0x°
_ a0 , % 0
=—n - - oo
"‘( ox” + X Ox° +
(iu+01) 5 o
X
+‘_xT TS )p‘ (x7 ""ax)’

0x°

the last identity arising from (4.3).

We have further

l m)
c;it Zt = dt {w!(x, %, --,x).x"}
8 (i D e 0 4.
------ (x yra +x rT +
(m+1) . (m)
+ 2 )mt, (%, %, -+ X)
0x°
. (m)
+ o} (x, %+, x) 27,
l . )
(4.8) 7?7 O =0l (x4, e, 7) (B

. m)
+A;1w (x’ Xy ooy x) Xt xv}a

or

d ot d~ dx: d\:”
) 2
4.9) O T TR T + 2, T dr

Bis
do; | dp:
a 7 ('m‘f'sl) a
—da*l — _a.'_ LA T a )
da(aak"'a'k e T
oua
Gm) . n)
(447 (a’ ds ’ a)., \ 19411 (as Qy oty a)a

0
BB (ot o ot
G+
% Cm)
+-2 2 ) di(a,d, a)a"
@ da
(. ? 4 E D
= ““(aak g g T
@)
3 m)
+ Z"— 'Z’g‘,‘)"‘) ﬁfl (as d, Tty a)a
na®
2 D) .
dd't— Zt = dt {(1’3 (a, d, -+ ’a) ax}
_ d ( e 0 e 04,
= gt \ T T ot
m+1) a . ()
+ @ Gy )n,i (a,a, -, a)
na*
@)
+at(a, d, -, a)d,
2 )
- (;it ((;t =nai(a,d, - ,a) | d

@)
+ M (a, d, -, a) a" ak}s

. d ot _d*a da" da*
By ar " ae v ar ar
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From (4.8) and (4.9), we see that

. d _ . d ot _
(4.10) (i) 5 dt =0 (1) g5 55 =0
(11) d x +A1 dxlt dx" =o‘ (ll) l dah dak =0.

dt? "~ dt di dt2 Are dt dit

(4.8), (4.9) and (4.10) tell us that the global path (i) is transformed piece-
wise onto the local path (ii) by the inverse transformation of (4.1):
(4.11)  dxi=0} (x, £, - , %) ol. da'=p. (a, 6, -, a)a.

The differential equation {i) are integrated readily:

(4.12)  w'=a'dt=df, say, a*=e? dt=dy?, say,
(@*=const.), ’ (e*=const.),
9 dp—aipt =t J'_‘ll =@+ ci=1?
(4.13) fdt dt=alt+c=2, say, o di=eit+ci=y, say,
(ct=const.), (c*=const.),

the integration (4.13) being guided by the simple clear form of

at dt. ' e’ dt.
Thus we obtain
= Wt 1 p 2
@.14) &= [ at=at+e ‘ p= L dt=eit+o.

From (4.14), we see that the curves represented by (4.10), (i) or (4.14) behave
as for meet and join like straight lines.

We will call these curves non-locally line-elemented I1-geodesic 4 curves.

N.B. A glimpse of (4.10), (i);(m=0) for the group manifolds is found in

([19], p. 62).
 The (4.1) may be rewritten as follows:

(m) .
(4.15) dél=a’ (x, %, --- , x) dx, dpi=a}(a,d,--- ,(a)) da",

and (4.10), (i) as follows:

4) In the group manifolds, such curves of the case #=0 have been called geodesic curves
(E. Cartan, [19], p. 62). The present author has found that thc IT-geodesic curves of the
case m=0 are geodesics for at,
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dz El _ d2 y/~2 _
(4.16) =5 =0 an

Multiplying (4.12) with
2}, B

we see that the relations
)

(4' 17) detl =a* Qi (%, %, "'5(;)) —%ati=e1 ﬁi (a,d, -, a)

holds along the non-locally line-elemented 11-geodesic line-elements.
We will call the

(&) (%)
the non-local 11-geodesic parallel coordinates corresponding to
™. )
a (x,%,- ,(x; at(a, d, -, q)

referred to the non-local 11-geodesic coordinates

&t-axes. The (5 n* - axes. The (r%)
are global.

5. Double Extension of the Affine Transformation Group by Doubly Ex-
tendmg' the Group Parametgrs to Functions of Coordinates. In particular, the

(&) may stand for (x), (") may stand for (a),
so that we come to consider

(5'1) dz:l:ak(své’ "',(gsdfh’ | d77 -—(1’,,(7],7}, T )d77"
(1ab (€&, - B) 0 in M) (f a2 (0, 7, =+ » 1) 12#0in G)

in place of (4. 15) for the non-locally line-clemented II-geodesic line-elements
corresponding to
| ai (5,6, -, 53
In order that the non-locally line-elemented II-geodesic curves
am,  (45=0) r, (47=0)
may be transformed by (5.1) into the non-locally line-elemented 11-geodesic
curves

2 m)
' w, (77a Ty *** o7)e

a2, (2==0) \ win,  (GE=0)
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corresponding to
(e o (:_n)
a, (5,8, ,8),

we must have

L. @
@, (779 7y 00, 7)),

@
\ daf‘ (7, s "',v)dvﬂ:O

along the non-locally line-elemented 11-geodesic line-elements. For, from (5.1), we

(5.2) dal (&, ¢ ,E)d"" 0
obtain
6.9 T¥=d g B
+ab (g, €, - ,‘é";’%“‘;.".

Integrating (5. 1)“ along the

& - axis,

ai_ d . -..""’dv"
iz —7[‘“’,: (77a Ny ey 7))

. GR) d2 I3
+ak (9, %y 5 1) dtv""

7* - axis,

which is a non-locally line-elemented II-geodesic curve, we obtain

El =a)lz (ea é, b ,(gi Eh
—ferdal (6.}, . B/ di) dt
Now

o484 f 90 gt ( aer
(e

=const. (= —al, say)

- . @)
772=a; (77, My ooty 77) n*

).
_I"?P (d”/i (779 /P 77) / dt)dt'

[
[ f (% atan: )

=const. (= —a}, say)

@y da} .
ar= [ 40z 4y J' d!

by (5.2), the condition for that the repeated integral may be converted into the

double integral (i. c. that the intcgrand 1 is continuous) being evidently satisfied.

. Thus we have

(m)
(5°4) T-l=ah.(§s e, ’S) Eh+a3,
(ai=const., |a,| #+0in M).

P=ah(n, 9,0, ) pitad,

)
; (ad=const.,|a’| #0 in G).

We will call the transformation (5.4) doubly extended affine transformation.

From (5.1) and (5.4), we see that

. - (m)
(5.5)  daj (5,6 - ,8)5 =0
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along the non-locally line-elemented 11-geodesic line-elements.

The totality of the doubly extended affine transformations (5.4), whose
inverse transformation is

' , (m) =
(5°6) Ek=‘Qlk: (E&“'.E)E"'FQ'S, 7/"=ﬂ,; (;7, /700N ,7]) n + [7he
(2t=const., | 2%| #0), (Bu=const., | f4] #0),
(6.7 ai@i=3 > o\ R=3, w B=3 &> al f="%
Jorms a group (8, say) forms a group (3, say)

as will be proved as follows:

The combination of (5.4):

- . (m) - . (€D
ér=ay (‘59 &y 6) £+ ag, 77"=(1’{f(77, Ny 0005 ) YAl
. (m) . )
(@’ =const., 'a(&,¢&,---, &) #0) (w2 =const., | @# (n, 7, -+, %) " # 0)
with
[ H—gl (2 % @ eny s ~ =T = - 2
5.8) &'=al (g3, -, E)Etal, A=} (v, 7, o0y %) 4 GG,
- (Z'), — (Z"_)
(@, =const., l (5 &y 8)i £ 0) ((-t'é=COl'lSt., "-r/zr (7/5 L/ 74)' # 0)

is of the form:

-~ ~ . (m) ~ i)
(5.9) &=bi(5, 6, -, &) 58+, P=F (o d e ) 7 +Pn
~ ~ . (m) m) .
(b.’;=const., bl’ (55 5’ B} 6) l #0in M)a (ﬁf,=COHST., i 13: (7/1 7}1 "t 7/) 7 Oin G)’
where
~ . s (m) i -~ (ln)
(5 10) b;c ('§959"',E) [:(/9 7/» )
- . (m) (m) _ . @) A )
=a, (ag (Sa Ea"':s) E"+a )alc (ss§9"' s &), =a,ﬁ (“; (773 Ny s r/"+a;,---)a/,' (7}s 779"'97/)’
~ - . ~ — )
(6.11) bi=0d; (5,6, - ,5) as+a., Bi= B (0 1y =+, 1) e+ @,
. (m) — . m)
(5' 12) 5;;(5’ 5’ b sE) ﬁllt ()79 /A 7/)
- L (m) . _ ()
ai(ak( ’§""s‘$) Sk+a39 ".')- = t’} (/, s "'97/) 77v+a:;s "')-
We shall see that
-~ - o (m) ~ -— ()
(5'13) b,l,=b,‘,,($, 69 *er ,S)Gg’l'ﬁf, ﬁ$=13:l(7;’ 7;."9 b 97;)0'4;""?;
=const. =const.

owing to the summation with respect to

h, i ",
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for which it suffices to prove that
o . (m)
(5.14)  abdbi (5,6, -, 5)=0
on summation with respect to

h.

@)

aj d:é}, (m, 7y 000, 3)=0

For (5.8), the condition for that the

& - axes

7 - axes

may be non-locally line-elemented II-geodesic curves corresponding to

- (m)

dh (g’ Es C)

becomes

(5.15)  3dat (&, - , B=0.

i — = @)
’ “A%%"'ﬂ))

— gy = @
l 7dat (n, 7, -+, 7)=0.

We shall show that (5.14) follcws from (5.15). Indeed, (5.15) becomes

{ai (Es 'Ey o ,(5 Ek+a§} ddf,, (ga E.a b a(g))
= {ak (59 .5: o 9(2)) ‘Sk+a2} dEi (Ea é’ e ’(”é))
=0,

so that
(5.16) abdai (% -, 5
=a b (6,4, -, &)
= —at (53 é’ o ’("é)) db—h (53 E" ot ,(15 &k
= —ai’ (E: é, o0 :E)) db-li (53 és o 9“5 ek

- {Sk d02 (6, é, e :ﬂé)) } b-;r (5, é) o :(15
by the differential equation
. (m)
(6.17)  &*da}(g,¢, -+, 4)=0
for the non-locally line-elemented I1I-geo
. (m)
a% (5, S’ ) 6)-

Thus we have

(€3]

. an) — s
{aﬁ (”, /LN v) 77"+a'ﬁ{ da’"‘ (‘)7, 171N v)

. ) - ) )
={af(n, %, -+, n) p*+at} AB2 (9, %, -+, 7)
=0,

e @®
aﬁﬁﬁ(%ﬂ,'“ﬂ/)

- . )

=af dp} (9,9, -+, 7)
. @ - . )

=—al(n, 7,y 1) dABL (9,7, -+, ) 7
. ) ] om)

=—ai(n, g, 39)dBi(p, % - ;7) p*

. @

- {77' da’: (77, /7 77) }

- . )
ﬁ}' (7), /A v)

. (m)
nrdat (n, 75,y )=0

desic curves corresponding to

.
(g, 5, -, )
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6.18  @aié .5 atda) 5,7,
=A@} (6,6, BB, e s D)) = —yed{as (g, 7y e s ) B (1 Ty e s 1)
= —erd{at 6,6, DL (6, & - B} = —pdfaz (g -+ s L (7o 7))
= —gedbL (8,8, -, B)=0 = — 7B (1, 7y e 5 M)=0

by the differential equation

(6.19)  &db} (e, &, ,5=0

I )

9dpi (7, 7+ s 7)=0
for the non-locally line-elemented II-geodesic curves corresponding to

bi: (ss é9 *tt E)° ﬂi (7/a 7}, MR 7])'

(m) ' (m)

The (5.18) shows us that (5.14) follows from (5. 15).
We will call the group

— |

S | (1]
the doubly extended affine group.
The most general doubly extended affine group

contains the extended affine group
® \‘ F

as a snbgroup, which contains in turn the ordinary affine gronp as a subgroup.

The geometry under the doubly extended affine group will be called the
doubly extended affine geometry.

6. Doubly Extended Equi-affine Group. The totality of the elements of
the doubly extended affine group such that

(6.1) a4 (6,4, 8)|=1

forms a subgroup of . We will call it the doubly extended equi-affine group.
It contains the extended equi-affine group ([13]) as a subgroup.
The general n-volnme
(6.2) 1§ &'+ di8t E2+dys? - Ertdnl | = 1d1E1 dol? oo dnl™ |

ts an invariant under the doubly extended equi-affine group.
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7. Parameter of Curves under the Doubly Extended Equi-affine Group.
Denoting the derivatives with respect to

t by dashes, l s by dots,

we introduce an invariant parameter s of curves under the doubly extended
equi-affine group by the demand

. (n) ) n(n+1)/2
(7.1) 1000 =;55...51=15'5"...5|,(g: )=1:
&t éx & (g)x

&n én gn ces £
which tells us that ds"™+P/2 represents #! times the generalized % - volume of
(n+1) consecutive points, when (§!) are ordinary parallel coordinates.
From (7.1), we obtain
(7.2) ds="d& d% ... dn& | 2/nintD
= | (v, dx") d (v, dx+) d*w] dx¥) -« d"~Y o] dx¥)|H/ntD

2/n(nkl1)

= |& &N e | dt
¢

8. Other Procedures.

I. A second i II. A third

procedure is to start with the fact that there exist in every differentiable
manifolds M= U U.

II - geodesic ’ non-locally line-clemented II - geodesic

curves. For them, (4.1), ((4.12), (4.17)), (5.4) and become respectively to

8.1)  wi=w!(x)dxx, W =0l (%, % -, 7) dxn,
8.2 H=amoiw=a, B 0L (5, 5, e, B =t
(8.3)  &=a!(x) x+al, §'=a! (%, %, -+ , %) 20+,
(8.4) da (x) x*=0, da, (x, %, - ,(};)) £¢=0,
bprovided that (x?) themselves are
II - geodesic ; doubly extended 11 - geodesic

parallel coordinates corresponding to
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(m)

a; (%), ([13]). i al (%, &, -, %)

If we utilize such special coordinates (x%), then (4.1),((4.12),(4.17)), (5.4)
and become respectively to

(8.5) w'=dt'=a (x,a,0,--,0)dx",
(8.6) 9% B (5,0,0, -, 0=,
8.7 Z=a}(§, ,0, -+, 0)ds",

(8.8) g=d (x,a,0,--,0) x*+ai,
(8.9) da. (%, a, 0, -+ , 0) dx» =0,
(8.10) dal(x,,0, - 0) x#=0.

The resulting theory is nothing other than the author’s extended affine
geometry ([13]) but for that the n parameters a* arise in addition.

9. Realization of the Doubly Extended Affine Geometry in the Differentiable
Manifolds. Our results of Art. 4-8 show us that the author’s doubly extended
affine geometry is realized in the differentiable manifolds.

§4. Extension of the Domain of Validity of the Theory of Lie Groups
to that of the Theory of the Doubly Extended Lie Groups.

10. The Fundamental Pfaffians for thc Lie Group (Germ). Thc ordinary
theory of the fundamental Extended Pfaffians for the Lie group germs applics
still when the clcments @, (I=1,2,-,7r;7=1,2,.--,7n) of the Lie group germs are
doubly extended to the case a'(x,x, ,(;3, which are appropriate functions of
coordinates (#) of the base manifold and of their derivatives (%), (%), -+, ((;3. ® Such a
theory will be exposed in the following lines, writing a* in place of a(x, %, ,(;)).

We assume morcover the coordinates (x?) to be doubly extended II-gcode-
sic parallel coordinates (£7), which are global. Then we may omit fhe term “germ”
without taking the Otto Schreier's Fundamental Theorems into account.

We have assumed in Art. 3 that the composition functions

(10- 1) Ci=90i (als az -, aré b, b, -+, br)a (i= 2., 7‘)
are such that
(10.2) ¢t e C8,

We form the matrix

5) Cf. for the case m=0.
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i (g)=(9¢ (@b P10 .
(10.3) a(@)=(25EY), =127
Since
(10.4) |2 0)[ = ]d;| =1,

we introduce the inverse (@) by the conditions
(10.5) af (a) 5 (@)= % <= of(a) Bt (a) =3,
where &) are Kronecker deltas.
DEeriniTION. We call
(10.6) o' (a,da) & 8 (a) da’, a'=a' (%, %, -+ ,(:;3, w'cAWV (C?)
the fundamental extended Pfaffians (1 -forms), where AMDC(C? is a Lie algebra
having o'(a,da) as base.
Multiplying (10.6) with a}(a), we obtain
(10.7) ' da’=u} (a\o’.
THEOGREM. The necessary and sufficieut condition for that the d:’/j’erentz'al
Sform |
(10.8) = X gi.u,(@dairA --- Adavec A(CY)

<<ty
may be invariant :

(10.9) @

t-

&ijonip (@) Aa N - A\ ddlr =0

i1<...<[p
Jor all the transformations
(10- 10) ﬂ-i-=$0i (kl, kza “tty ’kr 5 ala ac: ttt ar)a (i= 15 2’ ttty 7’)

(m)

. . L (m) .
with parameters (k' (x, %, -+, x), ++ , k" (%, %, «+ , %)) belonging to a vicinity of the
origin (O) is that for

(10.11) =2 Py, 0t Ao Aoin

i <...<I:p

the coefficients hy,...., are all constants.

Proor. We will begin with the proof for that are invariant for
(10.10). Apply the transformation (10.10) to (¥0.7); then we have

da'=c (d) o/,
1. e.

(10.12) 99"_’0‘_*25“) da'=at(p(k; a))

on one hand and
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10.13)  ablp (k;a))=( Dot (wé/;; a);c) ‘):o( ¢t (k ;asgj(a;c)) )M

— (09" (k3 b)0¢ (a; c)\ _ 3¢t (k; a)
( ob oc )c:) dal a;(a)

on the other hand, where b'=¢*(a;c). Apply the inverse of

(ago‘ (k: a))

aa'
to Then it results that
dat=a, (a) .
Thus we have
o' =B (a) da‘ =i (a) a} (@) Bt =5} T =5.
Secondly, in order thaﬁ ® may be invariant, the relation

By, (@) =Ry, (¢ (R 5 @)
must hold for all values of k. If we take a—0, since ¢! (k;0)=Fk! we must have

Bijousip (0)= hipens , (R).
Hence hi,...;, must all be constants. Q. E.D.

Tueorem. For the fundamental extended Pfaffians of r-dimensional
doubly extended Lie group (germ), it holds that

(10. 14) dot=—1 Ci o/ Ao,
where the r® constant coefficients C:. obey the rules
C‘k'_—cltcj’
10.15 '
aom) ci=0,
(10. 16) C/; Chu+CY, Cl+ C}, Cy=0.

Proor. Since o' are invariant, de' must also be invariant, since the
operator d and coordinate transformation are commutative. Hence, by the last
Theorem, we must have constants Ci, such that

do'=Ci o N\ oF.

If we set (10.15):

Ch=-Ci, (i>k), Cj=0,

we have
(10.17) dw’=-~-;— Ci iAo, €A (C?), do'cA (cy,

(10.18) d(dw')=0.
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Therefore
d(dw’)=—;- Ct, duwf Aot —% Ci o* Ndo?
=Clde* Ao/ = Ct, CE, 0P Ao? Aw?=0.

Hence
“?j clik"'c?k Cllu'l' C’:t Ct‘sj:"o’ (iaj9 k=1’ 2, “tty 7’).

DeriniTioN. The 7 constants C), are called the structure constants of the

7 - dimensional doubly extended'Lic group (germ).

If we develop ¢*(a(x,%, -, %);b(% %, %)), by virtue of (3.1), then we

obtain
(10.19) o (a;b)=a'+b+di, a’ ak+ ¢,

where ¢ is an infinitesimal of an order higher than the second in the vicinity of
the origin. From (10;19), it results that

o (@)= 0+ di, @b+ e,

B ()= di a*+ &,
where <2 and 3 are infinitesimals. Hence

w'(a,da)=da'—d., a*da’'+¢,; da’,
where &, is an infinitesimal. Hence it results that
do'=—d},;da* Nda’'+deyNda’=C}, 0! Ao
Comparing the coefficients of da*Ada’, we obtain
(10.20) Ci=di,—di,

N.B. (i) In order to deduce (10.16) in terms of 4 directly, we utilize
(3.2) having written out the terms of the third degree in (10.19) ([20]).

(ii) As for the class C” in the ordinary case, L. Pontrjagin ([20]) has taken
v=3. L. van der Waerden ([21]) has assumed, that (1) ¢*(a;d) is once differen-
tiable, (2) ¢, (a;b) satisfies the Lipschitz’s condition for & and (3) its converse.
G. Birkhoff ([22]) has assumed the existence of the total differential of ¢*(a;b)
and its continuity in the origin. P.A.Smith ([23]) has proved that when for
¢t (a;b)=a'+bi+¢*(a;b), the condition ‘(/i'i—(”:i'b)“—’ 0, (@0, b—0), where (|a|=a"+
--++a"), is satisfied, the Lie group (germ) may be rendered into an analytic Lie
group (germ).

In our case, we have assumed “g¢fe C2.” This condition is fully utilized in
(10.18). But, it will be seen that the result of Art. 10 holds good also for ¢'e C?,
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if we notice the following fact. Indeed, if ¢'c C%, then we have w'eA (C!), do'cA (CV).
Thus the first [Theorem| of Art. 8 is still applicable, so that (10.17) holds.
Consequently we see that dofeA (C'), so that d(dw?) exists and the fact d(do')=0
is a consequence of w'A (C?). Hence it suffices to deduce d(do’)=0 from dw'eA
(CY) in another way. For this purpose we utilize the generalized Stoke’s theorem.
When o"e¢A(C?), (v = 1) is an homogeneous expression of 7-th degree and Cr!
be an algebraic complex composed of curved simplex of x-th class (z = 2), then
the relation

"= dw”
40T+l o+l
holds. Thus for an arbitrary 3 - dimensional curved simplex C? we have
(C? d (do') )=(4C?, dw')=(4 (4C?), 0)=0,
where '
[ o=(cron.
cr
Hence we have
d (do)=0.
(ili) The name “fundamental extended Pfaffians” arises fom the following
theorem.
Tureorem. When r fundamental extended Pfaffians are invariant for
at—at=¢' (a), (2=1,2, -, 7),

which maps the points of a vicinity U of the origin into a vicinily of the origin .

(10.21) o' (a,da)=w'(@,da), (1=1,2,:,7),
the ¢ (a) coincides with the composition function ¢*(k;a):
(10.22) g@)=¢'(k;a), (F=1,2,-,7)
for
(10.23) HHO0)=F, (1=1,2,-,7),

that is to say, the doubly extended Lie group (germ) is determined uniquely by
given fundamental extended Pfaffians.

Proor. Consider the simultaneous extended total differential equations
(10.24) ot—wi=0, (f=1,2,.,7),
putting
o'=pY (@) da’.

These are completely integrable. For,
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d (0t —wi)= 3 Ci (0’ Ao* — ! Ao¥)
i<k

=,:‘7,,Cj" {0 A\ (0% — o)+ (0! — 0/) A w*}

=0, (mod. w'—o!, -, 0" —0"),
and since

| 85 (@) %0,
the solutions such that
d‘:fi (kl, e, k" ; al, e, a")’

(10. 25) (=1,2,---,7)
K=ft (k! gk ;0, eeeee ,0),

exist on one hand. @‘=¢!(a) are solutions of (10.14) for the initial conditions
so that, by the uniqueness of the solution, we have
Sbt (a)=ﬂ (k > a), (=1,2,--, f).
On the other hand
d‘=¢t (k" BT k" s als AAREY ar)
are also the solutions of [(10.24) for the same initial conditions by the First
above. Therefore we must have
(10- 26) §0t (k ’ a)=fi (k ’ a)=¢'i (a)’ (i= ls 2, "ty 1’).

11. Abstract Lie Ring. In order to make the structure of the exfended
Lie groups clear, we give the definition of the abstract Lie ring.

DEeFINITION. A vector space R of rank » with
real ! complex

coefficients is called an abstract Lie ring, when the following conditions (i) and
(ii) are satisfied:
(i) For A,Bc¢R, a commutator product (A, B)e R is defined uniquely;

(ii) (AL A1+ 22Aq, B)=4, (A4, B)+2: (42, B),
(11.1) (A, B)= "'(B) A)’
(11.2) ((4, B, O)+((B, C), A)+((C, A), B)=0.

TueoreM. For given basis E E,,---,E. of a vector space, there exists
r-dimensional abstract Lie ring R having the structure constants of an r-
dimensional (doubly extended) Lie group (germ) G -as coefficients of

(11.3) (E;, Ej)=C¥, E..

Proor. Since E,, E, - ,E, form a basis of a vector space, we may set

Then from and (11.2), we obtain
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fj="c}‘i,
ChLCL+Ch CL+Cr Cly=0.
Conversely, if (11.4) holds for certain #* constants Cj, we can determine
the basis E|, E;, -+, E, so that the commutator product of them is and
introduce the definition

(11.4)

(a* Ei, p7 Ey)=a* B/ (Ey, Ey),

then and (11.2) hold. Hence the

N.B. When a property of a doubly extended Lie group (germ) is given,
we shall express it in terms of the corresponding abstract Lie ring.

12. Coordinate Transformation.

DeriniTioN. When the relations
{ Eipla;b))=1¢"(g(a);&()),

g @(a@;d))=¢(gla@:;g®)) (i=12,-,7)

hold for a certain one-to-one transformation

(12.1)

t=gi(gl, .-, a7, O=g? 0,...’()!
(12.2) [a=g@dl B
a=g’ (@', -, a, O=g" (09 -+, 0), (=1, 2, ,7),
g2 O

between certain vicinities U, U of respective origin of two 7-dimensional doubly
extended Lie group (germ) G and G hold, G and G are said to be isomorphic
to each other. Thereby ¢ (a;b) and ¢ (a;)) are respective composition functions
in G and G.

The [12.2] may also be expressed as follows:
If Sa-S;,=Sp, then 517(0)' S;(b)—:g;,(,.),
If ‘§E ¢ §3=§E’ then Sq(&)' Sg(?;)= 9(¢)s

(Sas RN € §n" §b’ seel (-;)°

When gt and 3¢ are, in particular, analytic functions, G and G are said to

(12.3)

be analytically isomorphic.

If we transform the doubly extended parameters (a!,---,a") of an 7-
dimensional doubly extended Lie group (germ) G into (%, -, @) by g%+ ,87¢C!
such that

a—i=gi(a19 ...,a'r)’ 0=gl (0,"',0), (i=1,2,"',7'),
(12.4) a(gt---,8")
@)

then it results that
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Sa_":sa,
which is a special case G=G of the above definition for isomorphism. Thus a
treatment of the isomorphism consequences a transformation of the doubly ex-
tended parameters.
If G and G be isomorphic to each other, then introducing
ogt
a*

dat=dg' (a)= =S, da*

and

0pt @3¢\ _ 08" (00 (a:c)\ (_og' (@)
( oc )joaab T ¢ ) \" o )

4

obtained by differentiation of
¢'(@;0)=0'(8(a); 2lc)=g"(p(as0)),

into

dat= (.2___3—‘ (@; 5)) ! (3, da)
ac? o
and solving the resulting equations with respect to da*, we obtain

do=(24259) (05 0

Comparing this with the fundamental extended Pfaffians «’(a,da), we
obtain

(12.5) o' (a, da)=h: & (, da),
where
_( agt@
(12.6) hy=(P0 )
&=0

Thus the fundamental extended Pfaffians undergo a linear transformation with
constant coefficients.

We introduce this into
dmi=% 1 of A\t

Then it results that

d( }(T)-’)=—%« G R B wP A
Til= | ht -1 7t = agl (C)
Set !hj!— ‘hJI ’ (h! (__a?;_) )'

e=0
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Then we have
dw' = Cl, T b 1, &° A .
Comparing this with
d&i=% Cho @ A
we see that
(12.7) - Cio=(hi h% h}) Cla.

Taking this result with the converse, we shall prove the following theorem.

TueoreM. The necessary and sufficient condition for that two r-dimensional
(doubly extended) Lie group (germs) G and G may te isomorphic to each other,
is that the structure constants of G and G are transformed by matrix (12.7),
where (K) is a matrix of constants such that | b} x 0 and () its reciprocal matrix.

Proor. Setting
(12.8) ¢t (a, da)=h: o’ (@, da),

we see
d}-':—;— ;k F)J N Ek

as in the case of dw’ above. Hence
ot (a-’ dd)—m‘ (a9 da)=0, (i"—"ls 25 ) f)
is completely integrable as in the case of [10.24] and the solution is given by

a,=g'(a', -, a", 0=g'(0,0, -, 0), (1=1,2, -, 7).
Since these are one and the same integral, we must have

(12.9) gi(gt(a))=a', g'(gla)=ai, (1=1,2,-%,7),
o' (g (a), dg(a))=6"(a, da),
ai (g(a): dg (a) )=wl (as da)’ (i= 19 2’ “tty 7’).

Now the composition functions ¢(@;8) of G make !, -,  invariant
for ¢ (5;@) and consequently it makes also their linear combinations By e s 07
invariant. Hence, for the transformation
| a—gt ()57 (2(k);2(a) g (7 (2(R);2(a))), (=1,2,,7)

we obtain
o (a, da)—j (@, da) = (@, dG)—rw, (a, da)

together with

0-2* (0)=0-7! (2 (k); =2 (B) ~g* (B (B) =K', (i=1,2,",7)
in particular.
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Now by the concerning we must have
g (p(2(k);g (a))=9¢'(k;a), (i=1,2,-,7)
i.e. .
o' (8(k); 8(a))=E" (¢ (k;a)), (i=1,2,-,7)
by (Z9)

A similar result will be obtained when we interchange the situations of G
and G.
Taking these two results together, we arrive at (12.1).
If hereby ¢, ¢'e C3, then o', @' §’eA (C?) and we see that
g, g% C2 Q.E.D.
Restating the last in terms of the abstract Lie ring, we obtain
the following theorem.

THEOREM. In order that two r-dimensional (doubly extended) Lie group
(s) (germs) G and G may be isomorphic to each other, it is necessary and sufficient
that the corresponding abstract Lie rings R and R become ving-isomorphic by an
appropriate linear transformation between their bases, that is to say, that to AeR
there corresponds f(A)=A ¢ R uniquely and that the relations

{ S A+ pA)=2f (A1) + 1f (As),
S((4, B))=(f(A),f(B))

hold, the linear transformations being
f(El)=h{Eh (i’j=19 2, e, 7).

13. Inner Automorphic Transformations.
DeriniTiON. The isomorphism G—G of the type
(13.1) Se2+S;=5:S.5;',  (Se ¢ G)

is called an inner automorphism of G.

The transformation

ai=g'(a), (i=1,2,---,7)

transforms a vicinity of the origin into a vicinity of the orgin is one-to-one manner
and since g' C3, the first theorem of Art. 12 applies, so that we have

(13.2) o' (@, da)=h, o*(a,da) (i=1,2,..-,7),
where the matrix (4} (b)) is obtained as follows. Since from (13.1) follows ;
SE Sb=Sb Sa,

the relation
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SDi(a-;b)=§0t(b;a)a (i=1’2""3r)

holds and consequently

ma () () ()
We set
(13.4) o (a)=( 2213 9)) oF (a) Bt (@)=

according to [10.3) and [10.5] and multiply [13.3] with B, then it results that
— \
nyo)=(-2eL) =y ) 2 0 -
a=0

Next, for
Sz=8,5;S7'=(S4Ss) Sa (SaSe) ™Y,
we have

& (3, d7)=h (d) @’ (@, da)=h;(d) hi (b) »* (a, da),
whence follows:

(13.5) ki (¢ (b5 d))="hi (b) hj (d).

Thus, if we set
H(S,) 4L (R4 (b)),
from we obtain
(13.6) H(Sy - Sq)=H (Ss) - H(Su).

This tells us that the set
(13.7) { (hi (b)) ; beUs}

forms a group (germ), which is homomorphic to the r-dimensional doubly ex-
tended Lie group (germ) G.

DeriniTiON. We call the adjoint doubly extended group of G.
N.B. The adjoint doubly extended group is a doubly extended Lie group
(germ).

14. Ecxistence Conditions and Canonical Parameter.

DeomnitioN. An r-dimensional group (germ) iis said to have a canonical
parameter, when the following two conditions are satisfied: (i) it is a doubly
extended analytic Lie group (germ) i.e. ¢'(@;d) are analytic functions of a and
b; (i) for sufficiently small real values of s and ¢, the relation
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(14.1) at(s+1)=¢'(a's, - ,a's;a't, -, at).  (i=1,2,.-,7)
holds in ac U, i.e.
(14.2) S.:at=alt,|t| <c, (i=1,2, -, 7)

forms a one-dimensional doubly extended subgroup (germ). The (14.2) is called
a one-paramelric doubly extended subgroup (germ).

THEOREM 1°. It is possible to make any (doubly) extended Lie group (germ)
G have a canonical parameter by an appropriate change of parameter, retaining
the structure constants.

This theorem implies also,'that there exist an analytie (doubly extended)
Lie group (germ) G having the structure constants in common with an arbitrary
given doubly ekxtended Lie group (germ) G, and the G and the G being
isomorphic to each other.

This theorem is an immediate consequence of the following exnstence
theorem having a stronger content.

THEOREM 2°, If 3 constants
(14.3) Chn (67, k=12, .. 7)
have the properties (10.15) axnd (10. 16), there exists an r-dimensional (doubly ex-
tended) Lie group (germ) G having the canonical parameter and the (14.3) as
structure constants.

For, if we form an 7-dimensional doubly extended Lie group (germ) of
canonical parameter having the structure constants G}, of the given 7-dimensional
Lie group (germ) as structure constants, the G and the G are isomorphic to each
other by the first theorem of Art. 12,

N.B. The Theorem 2° shows us the complete correspondence between an
r-dimensional Lie group (germ) and an abstract Lie ring of rank ». Thus taking
the first theorem of Art. 12 together, we have the

THEOREM 3°. There exists an r-dimensional doubly extended Lie group
(germ) corresponding to an arbitrary given abstract Lie ring of rank r. Con-
sequently a class of mutually isomorphic r-dimensional doubly extended Lie group
(s) (germs) and a class of mutually ring-isomorphic doubly extended abstract Lie
ring of rank r have one-lo-one correspondence.

Let us now prove Theorem 3° in three steps I, II and III.

I. If analytic functions &%(a) such that for constants Cj. the relations

(14. 4) dw‘:%— Ct, o A,
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(14.5) { w'=bi(a)da’), (i=1,2,---,7),

0;=0;(0, -+, 0),

hold, then there exists an r-dimensional analytic (doubly extended) Lie group
(germ) G, for whose composition function ¢ the relation

(14.6) B ar=([255] )

holds, so that the C! become the structure constants for this G.
Proor. (i) The simultaneous extended total differential equations
(14.7) ot—wt=0, (1=1,2,-.-,7)
for 2r independent variables al,---,a7;at,---,a” formed after as in the
case of are completely integrable.
Taking their solutions such that
Fi=ot (B, . BT al, -, @), 1=1,2,+,7),
14.8 (oot horson otan
we define the product
So+Se=S., (c'=¢'(a;b)), (=1,2, - ,7)

for sufficiently small vicinity of the origin. Let us examine if a (doubly ex-
tended) Lie group (germ) G is fomed.

(ii) By [14.8), we have

@ (k;0)= ’ (i=1’2, "'ar)'
It is further seen that
g0¢(0;0)=ai, (i=1,2’ "',7’)

from the fact that both sides are solutions of for the initial conditions
¢*(0;0)=0.

(iii) Since under the two transformations

a'=at=9¢'(l;a)»a'=¢' (k;¢ (5 a)) (1=1,2,.,7)
the Pfaffians o!, :--, " are invariants,
ai=¢'(k;0(l;a)), (F=1,2,,7)
are solutions of and satisfy
ot (k;9(150))=¢" (k3 1), (#=1,2,-,7)

Hence by the uniqueness of the solution, they coincide with ¢'(¢(k;1);a)
taking the same values in @=0: '

ot ks;o(lsa))=¢*(p(k;1); a) (f=1,2, -, 7).
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Finally, comparing

(dfil —(04(2)) (85 (@) (dql)
diir) da

deduced from [(14.7) with
5100 (k: a)
da'="50— do!

deduced from [14.8), we see that g‘=Fk! on putting a=0, so that we obtain
Q.E.D.

II. Since the solutions b} (a) such that hold, are determinable
not uniquely, we shall solve the problem under an additional demand (14.11)
below.

If we introduce into [(14.4), then it results that

( gz% d"l>/\d"k= ;C b U3 bf dat A\ da*.

Comparing the coefficients of da*Ada’, k<l), we are led to solve
1 3
(14.9) _g%-%=c;q Bobs, (5,1, k=1,2,,7)
(These equations were Maurer-Cartan differential equations in the classical case).
Let us prove:

There exist analytic functions b%(a!,-:-, a") satisfying the doubly extended
Maurer-Cartan differential equations such that

(14.10) bj (o,'“ ,0)=5;, (i’j=1, 29 ey 7),
(14.11) bi(a) a’=a'.
Proor. ® Before all we shall solve the simultaneous ordinary differential

equations of the first order (in the doubly extended sense)

(14. 12) %J;;{:ai-‘-c;d al’f‘g, (i’ l=19 2: B f)

. . (m) . (m) . ele .
having a!(x,x,:-,x),-+,a" (%, %,++,x) as parameters, under the initial condition

(14.13) =0, in ¢=0.

Their solutions

6) Substantially due to F. Schur. Another substantial solution will be found in : J. H. White-
head, Note on Maurer’s equations. Jour. London Math. Soc., 7 (1932) in the classical case.
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(14~14) fi (ala v ,ar;t)
are analytic functions of a!,-:-,a” and {. Setting
i(aly -, an)=r;(al, ., a5 ),

we see that (14.9) holds. For it, we set

13 1
(14.15) (=L _corem Goki=12,,0)

Since

fe=1=0,l=Ft=0  for 1=0,

we have Fi,=0 for {=0.

If we could show

(14. 16) 4£?k=c;, a* Fi, (6B 1=1,2, - ,7)

by virtue of F}, (0)=0, it would follow that
. FlikEO,
so that (14.9) holds.  Hence we shall examine (14.16).

0

i
e = 0 (34— Ch "Dt (04— C, @ D)= Cio f7 (34— CL @ )

—C‘quf (ag—cgz alf;:)

y 4
=Cif1-Chuf3+Ch ar(ILL L2
=C::kff_ qug'i-czvq ng azf{f':_*‘cj)q ng a:fgff'

If we introduce

AL ——Fr-Cnfify

obtained from (14.15) into the last equation, then it follows that

t
Pl —Cyy 0 Flu—Cl, CLS1f1 0+ Cy CLI1S1 0"+ C CLI1SE @

61

Replacing the indices (,p,q9) by (y, x,9), (%, p,¥) respectively and utilizing

(10.15) and (10.16), we obtain

b —C4, a' F&—(C2, Cyut C4, Ci+ CL Ch) f1f4 0= —C}, &' Fi.
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‘ In a similar way, for
(14.17) G (t)=rf%(a;t) a’—ta,
we have G*(0)=0. For [14.17), we examine

(14.18) & ¢y e 0.

We see that G*(!)=0 and in particular, G{1)=0. Now

dGt

| ' TE =(d5+C%, a? f9) a’—a'
\

=C}, a? a’ fi=C%, a? (f9 a’~1tav),
since C},=0,C},=—C:,,(p>g), so that (14.18) is regitimate. ® That (14.10) holds,
" follows from the fact that the solution of (14. 12) for a'=...=a"=0 becomes
Si=ait.
III. Lastly, we shall prove that when (14.11) holds, the (doubly extended)
Lie group (germ) obtained under I is of the canonical parameter.

By [14.6), for the G obtained under I the relation b4 (a)=p%(a) holds for
the 8 (a) in [10.5) Hence by (14.11), we have

(14.19) a} (@) a’=at
also.

Next we shall prove that

(14.20) at=ai(s+1), (=12, -,7)
for
(14.21) ai=ats, b=bit, (i=1,2,-,7).
Consider

c=¢t(as, at)=c'(t)
fixing s for a while. Then for [14.21} we have

dct _ogi (azb) b _ dpt
(14.22) aF = dE b

Now we introduce

1

(14.23) aj (aot) a{,=—t— a; (aot) ait=ai,

7) The reason why we considered (14.12) consists in that when conversely and (14.11)
hold, it is scen that f% (£)=1tb} (1) satisfies (14.12). Cf. Pontrjagin, (201, p. 253.




A THEORY OF DOUBLY EXTENDED LIE TRANSFORMATION GROUPS. 63

obtained from [14.19), into [14.22), it results that

et _ 09° 41 (b) @,

at oy
Utilizing herein, we obtain
(14.24) g —ai @ at.

The solution of such that ¢¥(0)=cis for t=0 is, by [14.23] and (3.1):
¢ (t)y=aj(s+1).
Thus (14.20) is proved.

N.B. It is easily seen that conversely the [14.19] holds for the canonical
parameter.

15. Reciprocal Isomorphism.

TueoreMm. If two r-dimensional (doubly‘extended) Lie group(s) (germs) G
and G be reciprocally isomorphic, then their structure constants C}, and C3; are
related to each other by

(15- 1) C;k=_c;fu (isjak=1, 29 °tc f).
Proor. Consider the Pfaffians
(15.2) w" (a,da)=p; (a)da’,
where
(15.3) o (a)=( 2213 9)
=0
(15.4) ay (a) B7* (a)=0}, ot (a) B (a)=0].

Then as in the case of the Third of Art. 10, the transformation under
which ", -+, ®'" are invariant, is

(15.5) ai—at=gpi(az k), (=12 --,7)
The do™ is expressible in the form
(15.6) dw"=C} o No™.

We consider the expansion.analogous to those in Art. 10:
ayf (b)=dj+dj, b+,
o (B)= 34— iy B,
" (b, db)=db'—d}, b* db’ + <} db’,
whence we have
(15.7) Cii=di,—dj=—Cj
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quite as in the case of [10. 20).

Consider the totality G* of
To def S, (Se€ G).
Then we have
To To=(S» Sa),

so that G and G* become reciprocally isomorphic.

If we set
(15.8) ToTo=T., c‘'=¢"(a;d) (f=1,2, -0, 7),
then it follows that
(15.9) 9" (a; b)=¢'(b; a).

Hence the

§5. Doubly Extended Lie Transformation Group.

16. The Lie Transformation Group (Germ). Let G be an 7-dimensional
Lie group (germ); let Dy be a vicinity of a point (%) of an n-dimensional
Euclidean space E* taken merely auxiliarily.
(i) Let
(16.1) x'i=fi(x .., 2% 54l -0, @), (1=1,2, -, m),
be a one-to-one transformation T, mapping a vicinity D,c D, of (%) into Dy ;
x'e Dy, ft(x;a)e C?, (I=1,2, ..., m),
(i) x'i=ft(x;0)=xt, (£=1,2,---, n)
is the wunit transformation.
(iii) If So+Sy=S; in" G, i.e. if fot ¢ we have

(16.2) Fi(f(x;a);b)=1(x;c),
‘where '
(16.3) =gt (a;b), (k=1,2, - 7),

and the G is called the parameter group (germ) of T={T,}.
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When the functions f*(x;a) of (16.1) are regular analytic functions of x
and @ for the analytic Lic group (germ) G, the T is called the analylic Lie
transformation group (germ). T={T.} is called the Lie’s transformalion group

(germ).
When, in particular, #=r and in D,
fix;a)=¢'(a;x), (=12, 7,)
T={T.} is called a regular representation of the transformation group (germ).
fi(x;0)=x" is ¢*(0;x)=x"
holds also as follows:
16.2) fi(f(x;b);a)=¢'(a;¢ (b;2))=¢'(pla;b);x)=S" *;¢(a;b))

17. Doubly Extended Lie Transformation Group in the Large. The element

(17.1) x=(x1, x:.’, ey XM l a=(a', a::a e, a’)
of the
base manifold M l Lie group space G

admits of being made global by the principle stated in Art. 5, so that we have
(17.2)  xi=8, (=1,2,--,m), i a'=yt, (I=1,2,-,7),
where the
gt | 7t
are non-locally line-elemented 1I-geodesic parallel coordinates in the global
base manifold M. ‘ Lie group space G.
Hcreafter, we assume the

x! al

themselves to be the global ones:

£ t
SLa 7

and doubly extend the Lie transformation group to the case that a' are functions
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of %, &, e, %2
(17.3) a=a (%, %, -, %).
Thus we obtain a doubly extended Lie transformation group G.
A concrete example will be found in the case, where
a=(a, (&, - B)  (r=n)
in the sense of the right-hand side of Art. 5.

If we interpret

(m)

. X oeo . (m) m)

afi (x 8 (axx’!x’ 2 x) ) =a§ rx, Xy o0y x) as a} (xs .x, %y x), (r: nz),
(m) (m,

then, for the gemeral a'(x,%,---,x), we obtain a(x,Z,---, xi correspondingly and

the results for the right-hand side of Art. 5 applies to the case of gemeral a'(x, %,
(m)
ey X).

In the following articles, the following Fundamental will be
established.

FuNDAMENTAL THEOREM. For the doubly extended Lie Transformation
groups, the theory (Art. 18-21) of the ordinary Lie transformation groups applies.

18. Some Theorems on Simultaneous Extended Pfaffian Differential Equa-
tions. Before all I will give three known existence theorems.

ExisTeNcE THEOREM oF IMprLiciT Funcrtions. If for # functions
Si(xY e am L, e 97, (§=1,2, -+, ;) of class C” in a vicinity (a!, -, a™, b, ..., b7)
of (m+n) variables such that

fi(al,...,am’ bl,,,.’bn)=0 (i=13 2,"',”)a
the condition
a(fls i ,fn) #0
a (yls M) yn)
be satisfied, then there exists one and only one system of # functions
gi(xl,..,’xm), (i=19 2)'”:")
of the class C® defined in the vicinity of (a!, a3 ---, @™) such that
fi (&L -+, 2™, g1, cee , g")=0, (i:l’ 2’...,”)’
bi=gt(al,---, a™), (f=1,2, .-, m).
ExisTENCE THEOREM OF THE INVERSE FuncTions. If for # functions
yi=fi (xls *tty x”)’ (‘.=1’ 2) ** ”)
of the class C® defined in the vicinity of a point (@, -.-, @"), the conditions
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bl=fi (al, ""an)’ (E=1,2,---, m),
a(f’ ’fn :\:0

are satisfied, then there exists one and only one systew of # functions
xi=g (Y, 9", (E=L2,-,n)
of class C? defined in the vicinity of the point (d', -+, ") such that
y=sf(g,-,g", (i=L2,n),
at=gt (b, .-, b, (¢=1.2,:.-, m\
EXISTENCE THEOREM OF THE SOLUTIONS OF # SIMULTANEOUS ORDINARY DiF-

FERENTIAL EQUATIONs OF THE FIrsT ORrRDER. For the (#—1) simultancous ordinary
differential equations

By = filyty o an), (=12, 1= 1),

where £t (1, x°, -+, x7), (¢=1,2, ---,#—1) are functions of the class C? defined in
the vicinity of a point (a!,---, @), there exists one and only one system of (n—1)
functions g¢ (x!, .-+, 2™, (=1, 2, .- ,#—1) such that

ogt ,

i" =ft (gl3 e sg"—l" xn)’

xi =gi (xl’ ey x‘n—l’an).
If fi,({=1,2,.--,n—1) are functions of class C® of » parameters (2!, .-, 4") defined
in the vicinity of (4}, .-+, 2}), then the (#—1) solutions g are also functions of the
class Cv of 41, ... A",

DeriniTioN. The 7z functions
(18.1) xi=fi(ul, -+, n%), (1=1,2,---,n)
of the class C* defined in the vicinity of a point (uf,-,#) of an s-dimensional

space are called the solution of the » equations

(18-2) 0:":0, (k=1,2,"'ar)s
where
. (m
(18.3) 05"11<S<l @, (&l e X5 A, By e x))dx‘h--dx‘p, (p=pe; k=1,2, - ,7),
<ty

when are transformed into 0 by the transformation (18.1), that is to say,
when for each

1§j1<j2< ...... <jp§s;k=1,2’...’r,

the relation
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I L N B
holds.
When, in particular, (18.2) is
(18.5) w'=0,
where
(18.6) p—p (x,x,,---,(;;dxf, @=1,2, e 735=1,2, -, ),

the is called a system of simultancous extended total differential equations
and its solution ft(u!,..-, ") is defined by the condition that it satisfies the
differential equation:

(18.7) g (f(w)if ), f) =0, k=12, )

When, in particular, [(18.6) are of the forms

m)
(18.8) aﬂ:dxt__ci (x, x', Xy ,(x)dx"--l-l‘v, (r+s=n;i=1,2’ ---’r;k=1’2, ...’s)’
the condition for that
{ xt:ft(ul"",ue)a (i=13 23"'9”)’

18.9 . . .
( ) xi=u-7, (]=r+1’...,n)

may be the solution of is that [18.9] satisfies the simultancous cxtended
linear partial differential equations

") "
(18.10) af ( )= Ci (x1, 2%, ---,x’;u‘,-~,us;f1,---,(u;x',--',(x)),
E=L,2, -7 k=12, ,5)

When !, :--,®w"cC® are not linearly independent ones among themn and
form simultanecous extended total differential equations, their solutions coincide
with those of !'=0,:+,w=0. Thus it suffices to treat thc casc of 7 linearly
independent ones only.

The condition for that ©'=0,:,0"=0 are linearly indepcndent, is that
rank of ai(x, %, ,x), (z—l 2, ,r;5=1,2,-.-,m) is 7 in cvery point of D

In the case r=n, demands that .

af’ P v =12 .
0u’° —0 (]—'1)29 ”,k 19 Z’ ,S),

1.e. that
Sfi=const.

In the general case, where
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(m)

(18, 11) | a%(x, x,...,(x)!”‘] ] ,\ZO’
we form

(18.12) A=B (5, %y e D) 0y (G f=1,2, 0,7,
where

b’il ?='7;'9 (i9j’k=1’29"’ar)a
we have

(18.13)  wi=dxi—C!(x, %, ---

(m)
’

x)dx/, ((=1,2, -, 7;j=r+1, ., m),
which is of the same form as (18.8).
Taking (18.12) together with its inverse transformation
(m)

o =a] (xax.a ey X) 0, (2',_1':1, 2,0, 7),

we see that the equations w'=0,i=1,2,:--,7) and w{=0,(#=1,2,:,7) have solu-
tions in common.

From this consideration, we introduce the following definition.

Derinition. When, for a subset I of a Grassmann algebra A composed of
extended differential forms, the two conditions

(I) I forms an ideal, i.e.
(i) abcI— bl (ii) ackR(ring),bcR—>a-b=l,b-acl,
(Iy I»0—>I>dy
are satisfied, we say that I 7s a differential ideal.
The differential ideal composed of 7 arbitrary homogeneous extended
differential forms 61, 62, .--,07cA is
(01, e O = (@) Ot oo+ 0 07 50 Ay i=1,2, 00, 7)
and the least minimal extended differential ideal is
(18.14) (00, 02, oo, 07 5 dOY, d12, -+, A7),
For, if we differentiate the element
a=@o N+ et 07+ Py AV <o 4 AOT
of (18.14), we obtain
da=do, A0 + - +de, A0+ (o 4+ dp)AAD 4 -+ (o + ddr) AADT,

when ¢; are all homogeneous extended differential forms. And similarly for

general ¢q.
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DEerFINtTION.  When two systems ot homogeneous extended differential

equations

(18.15) 1=0, 6*=0,..-, A?7=0
and

(18.16) §'=0, §=0,.-, §?=0

composed of homogeneous extended differential rorms 61,62 ...,...,6? and
6%, 8, -+ , 6 respectively, have solutions in common, we say that (18.15) and (18. 16)

are equivalent.
THEOREM. A sufficient condifion for that (18.15) and (18.16) are equivalent
ts that

(18.17) @, 62, ... ,07;d0r, do?, .., dOP)=(@", B2, --- , @7 ; d@*, dG?, --- , dGP)
and in particular that
(18.18) (6 g3, -+ , 67)=(8", B*, -+ , GP).
Proor. For variable transformation
(18.19) xi=ft(u', u?, -, um), (=12, ---, m),
we have

. . 0x
(i) dxt+——>dxi= T3 dul,

. L m .
(ii) a(x, %, -, x)dxuANdx3N - Adx!» > (a (x, x,---(xs dx Adxi: A\--- Adx'n)

DG, P —— _
=a(x, x', ceey x) dxll/\dxiz/\..-/\dxin

ox (u) 7 ,..) y 9 (xtla ) xl")

- -~ du.’ “oe In
di’ ’ <], 0 (72T uj-n) 1IN Adu ’

=q (x (20),

(iii)) Generally, (' +0®) = (' +wt)=0'+ a2
Hence we obtain /

(18.20) (W A=t Aw?

and generally

(18.21) (drr)=d.

In order to prove it suffices to treat the case

. (m)
m=a(x, X, -, x) 0, o't =dxi Adx2 A .- Adxtr,

A m)
?=h(x, X, -, x) '?, 0" =dxh ANdxh N\ ANdx’s
only.
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(' Aw?) =(abo’* Aw'*)=(ab) (v'TAw'?)
—abF Nt =(@a") Ab@?) =t A,
Thus is proved.
In order to prove it suffices to treat the case
Wr=a (%, & - , ) AR NAE A AT
only.
In the case

i (m)
W=a(x, %, -+, %),

we have \
—— ([ da da
(@za)= (dew 98 giiy...t é,n 98_jz)=da,
du (@)= a“ —du'+ ﬁdal+---+ am 9% dui=da,
ut
so that

m’-‘-‘-dna_.
(dzo)={(dza) XA ANdx"} =(d<a) - (AN ---Adx )=du(3) dx'N--- N\dx),
d. (w)=d.{(a) dx'A--ANdx}=d. (@AN(dxA--- Adx")+ad. (dxI N\ Ndx7).

Now
do @A Adx)=d, (AN Adx")=d. [dz () A+ Adz (7))
=d, (d.(*)A - Ad. (Z7))=0.
Hence
(d-w)=d. @).
Thus is proved.

If the transformation (18.19) transforms 01, 62, --- ,0? into O, then, by [18.20),
and the [18.21), the elements of the differential ideal produccd by 7,63 ..., 07 are
transformed into 0. Hence, if (18.17) or (18.18) holds, the two systems (18. 15) and
(18.16) become equivalent. Q. E. D.

When extended Pfaffians !, w2, -+, " are linearly independent, so that
(18.11) is satisfied, we could take the extended Pfaffian differential equations

w3=0, w3=0, o ,(Dz=0,

18.22 { =
( ) C‘)s:dxi—c;(xa X, ,(xi dx), (i=1, 2,"',7;j=f+1,'°',ﬂ),

which are equivalent to
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(18.20) '=0, &?=0, ... ,w"=0,

DermnitioN.  That the extended total differential equations (19. 20) satisfying
(18.11) is completely integrable means that r functions f* (x!, 82, --- , x?), (1=1,2,,7)
of the class C* defined in the vicinity of a point (x}, ---, 27) such that

{ xi:-fl (cl’ sy €Tty e U, (i=l’ 2, rir+s=n)

(18.24) -

are solutions of (18.23), where ¢!, ¢?, -+, c" are parameters, and
[ 4
(18.25) xl=fl(x, x% -, &7, X5FL .ol a7HE), (t=1,2,-.-,7)
is satisfied:

N.B. (i) In the case r=n, wc can consider[18.20) to be always comple-
tely integrable. (ii) In the case r=n—1, (18.22) is of the form

dx!

du
so that by the existence theorem of solutions of the ordinary differential equati-
ons, becomes always completely integrable.

Next, let us express the above conditions of complete integrability in
another form [18.32)

By for
(18. 26) yi':f[ (x19 xi" ‘ty xn), (i= 1’ 2’ Tty r)’
we obtain

=c:; (xl’,,,,xn-l, u)’ (i=1, 2: "'sn—l)»

(18.27) (gH)(:gnj)
Hence we can solve (18.26) in the form

(18.28) XI=FE(yy oee, y7, x7H ool | xTH), (1=1,2, - ,7),
where

| F\F? ... FrcCv.
Furthermore, by [18.25), the conditions
(18.29) K=FL(Y e, a7, 20, e a0 ™), (§=1,2, -, 7)
are ‘satisfied.

If we replace (18.23) by the equivalent ones (18.22), since (18.26) are their
solutions, by (18.10), they satisfy

Dyt ‘ om (m)
y =C;(yl, ...’yr;xr""l’...,x'r“}'!;x’ -..x;y’ .--,Jl).

axr+1
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Hence, by (18.26) and [18.28}, we see that

0% _0’ (i=1,2’"'97;].:132""’5)’

oyt
which may be rewritten as follows
(')F‘ aF ;_ . es [ - P
ax,-.H (‘)y‘ C (1”1:25 » 737 1; 2) ,S).

This contains independent variables
(]_8.3()) yl, ’yr ; xr+1, ey xr+s’
which have values in the vicinity of (¥}, %3, -+, %7), we may rewrite it as follows
XL, X2, e KTy e, X7,
so that, by (18.22), we sec

aF R +0F

(18.31) dFi=

[y 0

dFic (w}, -+, wf)=(mt, - sy M),

a(Fl,...’ a(fl fr) —
( 0 cx?, ey X7) )(10)( a(x, -, x7) )(:ro) ‘U)’
dF!, dF®, - ,dF" are linearly independent, so that

(18.32) (AF, -+, dF")=(w}, +++, 0",

which is the desired condition of complete integrability.

Now, since

Dermnrrion. That the function F(x!, 2%, ---,%") ¢ C® is a first integral of
the simultaneous extended total differential equations (18.23) means that

(18.33) dF c (o}, -, o).
In the case the relation
dF (f(u), -, ™ ())=0
i.e.
(18.34) - F(f (), -+, f" (1) )=const.
holds for arbitrary solutions
xi=fi(u), (2=1,2, -, )

of (18.23).
The following theorem follows at once.
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TueorEM. If F'(x),---,F%(x) are first integrals of (18.23), then
(18.35) D (%1, -, x7) Lo (F1 (%), -, F¥ (x))
1s also a first integral of (18.23), where
Py 9 eCr
is an arbitrary function. Conversely, if (18.23) be completely integrable, then any

first integral of (18.23), is expressible as a Junction of first integrals F1, ... Fr of
(18. 23). : ‘

Proor. The first half holds good, becausev‘for the @ in (18.35), we have

=09 OF , ., dop " (f— i
ap= 37 o dxi= 3y’ dFJe (o', w? -, 0"), ({=1,2, ey =12, -0 JR).

The remaining half may be proved as follows.
Taking F, ..., F7, ™, ... %" as independent variables and setting
. ? (x)=¢(F1’ Tty FT’ x'.‘", ) xn) )

for the first integral @ (x), we have

_ 0P dp r cee N =(dF1 ... 7Y (4= e _ 0+ A= oee
dw——a—_F_‘ dFt+ax*r+de +j( (wl’ ,w)—(dpl’ ’dF )’(1—1’2) ’r,]—l’z’ ’s)’

so that we must have

) .
Tx‘,iog =0, (.7:1’2,"'93))

that is, @ (x) is expressible in the form
P (x)=¢ (FY, - ,F". Q.E.D
N.B. expresses that, when is completely integrable, there
exist » independent first integrals F1, F2, ..., F~(i.e. 7 first integrals F F2 ... Fr,
such that dF',dF?, ... dFT are linearly independent). Considering the converse,
we have

THFOREM. In order that the linearly independent simultaneous extended
total differential equations (18.23) may be completely integrable, it is necessary
and sufficient that, therve r independent first integrals F',F% ... Fr exist, that is,
that the following expressibility holds good :

(18.36) (@l + , @")=(dF}, --. , dF7),

PrROOF FOR THF suFFICIENCY. Since dFY, -.-,dFT are linearly independent,
we have
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_O(FY, - FT
d (xls Tt x'r)
Solving
(18.37) yr=Ft(x!, o, 27, (=12 -,7)

convcrscly; let us have

(18.38) 2= (Y, -, y%, 2, e 27, (§=1,2, -0, 7).
Herewith we form 7 first integrals

(18.39) @t (x1y oo, ™) =T (F! (x), -+, F7(x), 25%, -+, X3),
for which there exist the relations

(18. 40) (D, e, D7) _ WY, - U I(FY, -, F7)

(@, &) Oy, ,y) O (xl’.'" ) %0,

and the conditions
(18.41) & (x', x, -, &7, x5+, -, 2x0)
=T (F (2, e, &7, AGHL, oo, &), oo, F7 (21, 000, 27, 2571, o0, 20), (=12, -, 7)
=x!
are satisfied. Hence, if we solve
(18.42) =0 (2, +-e , x7) (F=1,2,--,7)
we have

tee £ (ol ... pr x7¥l ... n
(18.43) { x f (c’ ’c’x ? ’x )’

c =fi(cl$ ey LTy x;+l’ ""x'o')a (’.=132""9r)

and thus the condition

a(fls i ’fr) _ a (¢l9 ) @r) -1
a(c, - ,cn) —( a(x', -, x7) ) =0

is satisfied,

We consider (cl,---,c") as parameters taking the values in the vicinity of
(23, -+, x7). Utilizing (18.43) and taking s#=r+s, we set

t=ft(cl, ... eyl ... s F = 0o
(18.44) {x S s @ suty ), (212,00 7)
x"+l=uf’ (]=1’ 2’ ey S),
and from we have
(18.45) DE(fr(C;u), o f7(C5 u), ul, - ,uf)=ct, (=12, -, 7.

Hence, considering ¢!, -+, ¢", u!, .-, #* as independent variables in place of
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oPt _ odt of obi : b= e
P :‘)xf aik ourtE =0, (j=1,2,+,7r;k=1,2,-,5).

Consequently, [18.44) satisfies

d0i=" Gur=0, (i=1,2,,7; k=12, ),
out

if we consider ¢!, :--,¢" as parameters. Thus are solutions of
dPr=0, --- , dor=0,
These are equivalent to
dF1=0,...  dFr=0
by virtue of and (18.41), so that they are also equivalent' to
ot =0, -+, =0

by Thus (18.23) has become completely integrable owing to (18.43) and
(18.44). Q.E.D. ,
N.B. Let us prove that there exists only one solution of the form [18.25

If for (¢, ---,¢") arbitrarily taken in the vicinity of (xl, -.-,#%), solutions
such that

x,'=g7 ((:1, “.‘ R c?‘; 7l1, LETIN ns), (i:—‘l, 2, ..y T),
{ xitr=qJ (j=13 2,'"’8)

satisfy
Ci=gt(cY, €2« , €73 5, oo, 4T), (=1,2, -, 7),
they are also solutions of
ddr=0, ... ,dd =0
and consequently
(18.46) D (gl (csn)y -, 87(Cs5 )5l v, u%)

do not depend upon .-, %*. If, in particular,

wut=xj+ (f=1,2, -+ ,),
then the value of becomes ¢!. Now, since the f in have Dbeen
obtained by solving we must have

Silesu)=gilcsn), (1=1,2,.--,7),

what shows us the uniqueness of the said solution.
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TueEoOREM. The necessary and sufficient condition for that the simultaneous
extended total differential equations (18.23) may be completely integrable, is that

(18.47) do'e(@!y -, 07), (=12, 1),
that is that (', ---, w") forms a differential ideal.
Proor. Necessity. The above tells us the necessity of the existence
of F!(x), -+, Fr(x) such that :
(18.48) (!, «+-, @)=(dF?, -+, dF7),
in which case we have

(¢
9

(18. 49) wi=at (%, %, s R)AFI (&),  (G=1,2,,7)
" by and so that
 dot=dat (2, % -, ADFI (&)  (dFY, -, dF)=(0), - , o),
whence the necessity follows.
Sufficiency. As in G. Frobenius, [42].

19. Some Theorems on Extended Linear Partial Differential Equations of
the First Order. Consider s linearly independent extended ® linear partial
differential equations of the first order

(19.1) Ci(x, %, -, 0-Y =0

%7 5 (z'=1,2,---,s;j=1,2,---,n),

. (m) . e .. .
where C/(x, %, -, x)¢C® in the vicinity D, of a point (xp) of M.

(19.1) is said to be completely integrable, when it has n—s independent solutions
in the vicinity of (xo).

Solving # linearly independent 1—forms
. (m)
(19.2) ot=al(x, %, -, x)dxl,  ({,j=1,2,-+,n)

inversedly, we have

(m)
(19. 3) dxi=b§ (xa x, 0, X) @, (2, j= L2-..., n),
where
. m) . m)
(19.4) a; (%, %, -+, x) b} (x, %, --- , x)=0}

5 . (m) . . (m) ~g
&ai(x, x, -, x) b (%, X,ee- , X)=0%

Then, for an arbitrary f(x)e C®, we have

. L.
8) “Extended” in the sense that ¥, X, ,x enter.
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(19.5) df=df= g;: dxi= g; B tx, £, -, B 0 =(X, f) o,
where
(m
(19. 6) Xjf= b} (x, i, “tty xi‘aﬁ{iﬂ (’.9 j= 1, 2, "ty ”)'

THEOREM. Simultaneous extended total differential eqnations
(19.7) w1=9, 0*=0, ., 0"=0

are completely integrable when and only when the simultaneous extended Ilinear
bartial differential equations

(19.8) Xesrf =0, Xo4of =0, -+, Xrpaf =0,  (n=r+s)

are complelely integrable. Thereby and have the first integrals in
common. '

DEFINITION.
| (19.7)

is called the adjoint extended
partial ’ total
differential equations of

Proor or THF THEOREM. By that

dfe (o, -, o)
and that
Xe1 /=0, , Xnf=0
are equivalent. Hence that is completely integrable means that
(@ -, ") =(dSY, -, df7),
i.e. that  independent solutions f, ..., f such that
dfte(@h -, %), (§=1,2 -,7)

exist, what is nothing other than that there exist » independent solutions of
(19.8). Q. E,D.

Next, we seek for the concrete condition expressing the last condition.

Set
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(m
(19.9) d(01=‘;“ C;k (x, Xy oo ,x; 0! A\ ¥, (i;ja k=1, 2, 9n)>
. (m (m)
(19. 10) C;; (x, Xy ooy x))—_‘ —'Cl:j (x’ xa °T x)-
Differentiating

df=df=(X‘f) w‘» (i= 1’ 2’ **cy n)’
we have
0=d(df)=d@df)=(X.f) doi+d (Xif )\t
=iCux 4 D XS 0 Ak + XidS Aot
= 5Ch (5, £ -, B (Xef) 0! Ao+ X (X3f) 09 Aot
= (Cla (%, %, -, £) (XeS )+ (X Xe— X XS } 0 Nk,

that is, for all pairs (4, k), we have

(19.11) (Cla (%, %, - , %) Xe+(Xy Xe— Xi X3)} f=0
for all f.
After Jacobi, we set
(19.12) (X, Xi)=X; X — Xi X;.

This means that for the differential operator

i}

. (m)
(19.13) Xi=b| (%, %, --- , X) 2

(i:j= 15 2) *tty ")’
we have

) m 5 . m
(19.14)  (X), Xa)=b} (, %, - ,x)@;f(bﬁ (%, %, -, "}“a‘;t”)

. ™) 5 . m 5
""bi (x, X, e00y x)-a'x—r<b§ (xa Xy oony x)'a_'xf)

. m) Apt . m) Jht
={b} (%, %, - » %) gz'; —bi(x, %, ...,x).g%_}%‘_

= (X B (5, 3, o D)= (X B 15, %, 31 b

Thus [19.11) is nothing other than the relation
(19.15) (X Xe)=—Cls (%, %, - DXy G k=12, 7).

By virtue of this relation, we obtain the

79

TueOREM 2°. The necessary and sufficient condition for that the simulta-
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neous extended

total differential equations (19.7) linear partial differential equations
(19.8)
may become completely integrable is that
(19.16) (g, H=0,  (=L,2, -, 735, k=r+1, -, n)
holds in
[19.9). (19.15).

DerinrrioN. It is said that the extended differential operators

. (m) a . . . .
(19-17} Xi':b‘é(x,x,'“,x)wg (2=1,Z, ""s;f=132,"'9")

form a complete sysiem, when for X; the relation

(m)

(19. 18) (X.h X’C)= _Cjk (xa x) e X) X
holds. Thus we obtain the

THEOREM 3°. The necessary and sufjicient condition for that the linearly
independent simultaneous extended linear partial differential equations

le=0’ (z=1’2, ...,s)
is complelely integrable, is that X, -, X, form a complete system. When
. (m) .
f‘ (Xy Xy +ee , %), (f=1,2,.-+, 1

are r=m—s) indecpendent solutions, the gemerul solution is expressible tn the
form

(m) (m)

(m) . .
(19- 19) F(x’ Xy oery x)=(1)(fl (x, Xy oo x): v ,fr (X %y o0y x) )'
If, in particular,
. (m)
|61 (x, %, o« y 20 % O
4,J=1,2,...,8
is a point (o) of M, for an arbitrarily given ¢ (x°+1, ..., xm; 5 e g5 oee Sxgtl Ll gn),
there exists one und only one solution I such that
(19‘20) Iv‘(x(l)’ cer xg, x8+1’ NP 1 xllj’ ey xz’ x'b"l'l’ TN xn ; x‘i’ see jg’ ﬁﬁ'l’ ey iu.’ TN xé,

(m) (m) ()]

re g Xy x'+ls Ty x“)

s+1 noe gitl it aestl Xt (m)s' 1 o
=@ (5FL e, x5 AP s tre s XM XSTL L % ,...,x'-r’...,xu)_

Proor. It suffices to treat the last part only. We have
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. (m) .
bi(x, %, -, x)=0], (i=s+1,---,n;]=1,2,---,n).
Completing the matrix B to a square matrix, let the reciprocal matrix be A.
Taking [(19.2) and [19.3] into account, by virtue of Theorem 1° we see that

(19.21) @H=0, v, 0"=0

is completely integrable. Since

|ajt(x9xs° ‘ * 0

]
WJ=8+1e,n

there exists one and only one first integral of | satisfying (19.20) as we
have seen in the N.B. after the proof of the _ Theorem| about {18.36).

20. Fundamental Theorems. We set

(20.1) E}(x,x,---,(;3=(af i(x;aa(:}x’ x)) (:12 )

and
(20.2) 0 (@ (5, %, -+ » By 4@ (2, %, oo W= (@ (8 %y v B A (8, iy -, B (F=1, 20, )
as before.
Further we set
(20.3)  O'=dxita? (@(x, % - ) da (5, & oy ) & (5 &, o0, B (=1,2, 0, )
THEOREM 1°. The simullaneous extended total differential equations
(20.4) g1=0, (*=0, -, O*=0
are completely integrable and
(20.95) fHx;a(x, %, - ,(;i )y vee s S (X5 (%, X, o ,(';c)))
are n z'ndependehi first integrals of such that

ft(x;0)=x", (1=1,2, -, n),
so that )
(20.6) (84,02, e, 0 =(df (3@ (5% e sy S (B30 (55 e, D))
Jor the ideals.

.Proor. We differentiate [16.2):
X . (m) . (m) . (m) . (m)
(20.7)  SiUHE3D(H % ey 1))y, SR (05 D(x £y e, 2)) 5 @ (8 B0y 2y e, 07 (6 5 000, X))
(m) (m) . (m)
=fl(xl’x2,..,’xn;¢l(a(x,x', '"’x);b(x’xa ey %) ) "',Sor(a(x,x’ e, X);

b(x’ Xy oo s(;i))a (i=1: 2, ey 12)




82 TSURUSABURO TAKASU

with respect to b and set 5=0. Then it follows that

(af‘(f(x;b);a))=(6f‘(x;¢(a;b))) ,
b=0

obt v=0 ob* N
(L) (2) - (@resseon ()

(L0 (L0). (PUgbi0) (Geieit)

oft (x; @) (x; B\ © aft (x; a)
o\ oF ),,:o - i@k

Ty . m) iy
(20.8) D et (1, 5, e D=0 g ),
From and (20.3), we obtain

aft(x; a)=g—£dx"+ —g—g—daf

=Lt e+ 2L (o)

2 V1 f ¢ i
(-G

=L pec (ot ... pr
T 0% (0%, -, 00,

Since df!(x;a),--,df"(x;a) are linearly independent, the (20.6) holds. Q. E. D.
The converse of the Theorem 1° holds as will be seen as follows.
THeOREM 2°. When we introduce

& (%, X, +e ,(;;6 C2, (1=1,2,-n;j=1,2, - ,7)

appropriately for the fundamental extended Pfaffians ot, -+, o7, bf an r-dimensional
doubly extended Lie group (germ) G and the simultaneous equations:

(20.9) 01=0, 0*=0, .-, f7=0
are complelely z'ntegrablé, the n independent first integrals f,---,f* such that
(20.10) i (k;0)=xt, (t=1,2, - ,7)
determine an n-dimensional doubly extended Lie iransformation group (germ) and
the given & (1,4 - %) satisfy (20.10).

Proor. If be completely integrable, then there exist # first integrals
I S% e, f satisfying [20.10]. It suffices to show that these satisfy (20.7). Since
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- . (m) . (m) . (m) .
at (x, Xy ooy x)=90’: (k (x: X, 005 %) a(x’ Xy ety X) ), (l=1, 2, RS n)

satisfies

. (m) _ . (m) ) . (m) . (m) .
w? (a— (x) X5 00 ’x), da (x, Xyt x) )=(l)1' (a (x’ Xyt 5 X), da (xa Xy oo ,x) )) (1=1) 2’ *tty f),

the functions
L m . R L
20.11)  fi(x;a(x % -, x))=Lt(x;0R®E % - ,x));ax %, -, %)), (E=1,2, -+, 1),
satisfy
(20. 12 Fi=dxi+a’ Si=drit+ o’ &=0,, (i=1,2,-,n),
i.e. (20.11) becomes the first integrals of [(20.9).

Since (20.11) implies
Ik 4, 0;0)=f 3 k(5 5, 0),
they take values for a=0 with the integrals f*(f(x;a(x, x,---,(}"))) of [20.9) in
common. Hence we must have
Filrs ok A;aln %, D)=  (flxs kg, D)5 a5 1), (=12, 0, 5)
Since thereby df'e (01, ---, 0™), pursuing the process of proof for Theorem 1°

reversedly, we see that [20.8) must hold. If we set a=0 in then we obtain
since

o= &, %:5;, Q. E.D.

The First Fundamental of the doubly extended Lie transtormation
group (germ) below makes a liaison between the property of the doubly extended
Lie transformation group (germ) and the fundamental differential operators. In
order to prove it, we shall try to replace the above properties with those of the
simultancous extended linear partial differential equations of the first order by
virtue of the following (Theorem 1°, Art. 19).

LemMAa. That the simultaneous extended total differential equalions
(20.13) wi=di(5 4, AR =0, (=12, )
are completely integrable is equivalent 10 that the simultaneous doubly extended
linear partial differential equations.of the first order
(20.14) Xr1 [=0, o, Xops [ =0, (n=r+s)
are completely integrable. The first integrals are thereby common to (20.13) and
(20.14). Thereby we have put

(2(5. 15) X f =bt(x, %, - ’(;3‘,%{?’ (,-; 1=1,2,-,n),
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where (b; (x, %, - ,(;3) is the tnverse of (at(x, %, -+ ,('xn)) ).
THE FirsT FUNDAMENTAL THEOREM. In a doubly extended Lie transformation
group (germ) G having G as doubly extended parameter group (germ), the functions
frsalns o m)  (k=12,m)

are n independent solutions of the completely integrable simultaneous doubly ex-
tended linear partial differential equations (cf.[20.1))

(20.16) D =tk DRl & D) S (k=1,2, 1),
such that
(20.17) xt=f*(x;0).

Conversely, when an r-dimensional doubly extended Lie group (germ) is given,
the (20.16) are completely integrable for certain
(5% e D ECY (=12, 855=1,2 0y 1),
the solutions
FrE @l % e LS E G0 % e, 5D )y S (5 6 (3 5 e, 2))
satisfying determine a doubly extended Lie transformation group (germ)
having G as doubly extended parameter group (germ).
Proor. We consider two r-dimensional square matrices A and B defined
by
A=(at(@(n 5, 9)), B=(Bi(alx % -, 5)) AB=BA=(6))
(m
i

having defined ak (@ (x, % -+, %)) and f(a (x4 -, 4) by [10.3] and [10.5). Then

..............................................................................

{ 0'=dx'+ {.B{: (a (x, xs ot a(;)) ) é} (x’ x: o ’("-;) } da* (xs x'9 e 3(233

(m) m) . m
gr=dx"+ {ﬁ:{ (a (x3 1'?, B} x) ) S? (x’ A;, °t x)} da* (x, Xy ***y x)’

and

---------------------------------------------------

(m) m)
[ ot =pi (a(x, %, -+, x) ) da* (x, x, -+ , %),

X (m) v . (m)
0n+r=‘3; (a (x,  ARTIIR x) ) da (x, Xy ooey x),

are linearly independent and the determinant D of their coefficients may be ex-

pressed as follows:
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»=/100..0
0100
000 1

is the unit determinant of the #-th order and £’ the determinant obtained from

(m) . .
I&4(x, %, ---, x| by interchanging the rows with columns. The reciprocal determi-

nant of D is D“‘=<E,. £’
o 4)
We set
(20.18) Af= (af, @i, 1 )aia,)f, I=1,2,-,7)
. (m) a .
(20.19) X,f=(§'; (x, %, - x)w)f (j=1,2, -, 7).

By the above Lemma, when the simultaneous extended total differential
equations

(20.20) At=0, #2=0, ... , 7 =0

are completely integrable, the simultaneous doubly extended linear partial diffe-
rential equations

(20.21) Xif=0,-, Xf =0,
where
(20.22) = — B (1, %, oo s Dl (@, %y e s 2 ) (k=1,2, --- , n)
. XJ"‘ &f by Ay ’A'W F\U Ay Ay ] T{l‘—’ — Ly 4y ’
=—X;+A;, (j=152’ "',7'),

are also completely integrable, the first integrals of (20.9)=(20.20) coincide with
the solution of (20.21).

Now (20.21) and the simultaneous doubly extended linear partial differen-
tial equations
(20.23) Y, f=0,..., Y. f=0,

where

., m N . @ . m a8
(20'24) Y1=ﬁ§(a(x’ Xyrety x))Xl= a?ﬂ —g% (x’ Xyooty x) ‘Bf' ((J (xa Xttty x) )W’(]a l=19 29"'s r)’

are equivalent.

Hence the Theorems 1° and 2° may be restated in the form of our First

Fundamental
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tarnsformaltions with appropriate functions of coordinates as coefficients, the
concerning invariants being retained. We will refer to such transformations as

extended orthogonal transformations. 'They constitute a group,
orthogonal transformation group.

We utilize the o' appearing in as the o' in (2.1).

It is readily seen that

(14.6) o'o'=olwldxrdx®,
so that

(14.7) L=l
148 'gu | =0} |.|0l| =l F£0.

g**= [cofactor of guv in |Zuv|]/ [ Guv!

— _cofactor of w; in [g,| _cofactor of o] in |e]]
A ) [w!] ’

(14.9) g =25,

Hence

' o (Ofuo o OBoy _ Ofu
()=t (B + - %)

o’ ow! , ! o0 oo am‘)
=] 290 a8 4 (4 ,ﬂ)l 1 Voo PR S v
¥ ox» ol or T oan T O g T x> On ox°/’°

(1410) (4) =403+ 1)+ 405wl (208 - D0k 4 ot (Duz_ Dol

According to (8.14), we set

141 (A} =3 (4 + 40)+ 8l + 8,
so that

(1412)  8io+ 80— 2101 0} 32 - D01 4 o (D02 _ Bwh],

Contracting u—\:

(n+1) ¢ =22 o (2‘;’5 g;’c)-!-m (?;;;A gf;;)]

S AR

ox¥ ox“
(14.13 (n+1) =17, — 12,
what proves the unexpected result:
o (o ydae der _din o, dae de
(14.14) gst + ) ge g5 = ge T ds ds’

Second proof for (14.14). It suffices to prove that

an extended
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linear partial differential equations

) 0 . e i b
(2029) la([{; S: %’ (], l=13 2""37’a7’ k'—]"z’ ’"an)’
such that
(20.30) x5=f*(x;0).

Conversely, when an r-dimensionl doubly extended Lie group (germ) G 1is
given, (20.29) are completely integrable for certain

(m)
5; (x’ x", R x) € Cz, (i= 15 2, AR (4 ;j=19 2’ Ty r)&
their solutions
» . (m . (m)
Ftxsaln g, 2)) - a5 >0)
satisfying (20.26)—(20.30), determine a doubly extended Lie transformation group
(germ). _

Proor. Now it suffices to show that (20.1)=(20.29). For it, multiplying
(20.16):

)

: (m . m 5
t{; =8(x, % -, x) filalx, %, - ) dtf‘.

B

(20.31)
with af (@, %, -, %)), we see that

. e . . (m) . (m) . ™. 5
a; (a(x, %, --~,x5) aaaL =& (x, % -, ) ak (@ % -, 0)) filalx, %, -, %) )—a}—‘-,

=$.‘1(x55e’" ’x) ";’L ;)£ Ei%’frs (l=1, 2’ "'an;j9 h’ k=1, 2,""7’)

(m)
by [10.5) and consequently, muliiplying the last relation with £i(a (%, %y o5 x)),

we return to [20.31).

Tue SECOND FUNDAMENTAL THEOREM. (A Double Extension of the Lie’s
Second Fundamental Theoreml). When a given r-dimensionl doubly extended Lie
group (germ) G as a douby extended parameter group (germ) has the structure
constants C, (4,5, k=1,2,--,v), the mnecessary and sufficient condition for that
(20.16) may be completely integrable, is that the relations '

(20'32) (X5 Xi)=CF X, (h,5,1=1,2, -+, 7)

hotd for the fundamental operators
(20.33) K=t (5 By G=L2 0, mif=L 20 7)

Hereby (X, X;) is the Jacobi’s parentheses.
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Proor. We have seen that the (20.16)={20.23) are completely integrable
is equivalent to that (20.21) is completely integrable. Now it is known that the
necessary and sufficient condition for that (20.21) is completely integrable is
that Xi, X», -, X» form a complete system i.e. that X, -+, X satisfy

(m
’

)
(2034) (Xh )_(z)=—C§'z (x;a(xa 'fa oo x)))_(h, (.7.’ l’ h=1’ 2: oo ,1’).
Now (20.22):

(20. 35) Xn=—Xp+ A
gives
(20, 36) (X5 Xi)=(X) Xi)+ (A3, A)
and after setting
(20.37) dot=LChoIA®,  W=F (a5 ®) dal (x, 5 -3,
(20.38) Ch=-Cp,

apply the operator d to
df=w0'(A:f):
0=d (df)=(Arf) do'+d (Af) N
=5Cli (Anf) & Ao+ A, (Anf) 0 Ao
=J<Z;{C§‘, (Anf)+(A4, A) f }0I A
Thus we obtain
(20. 39) (Ap A)==Ch An.  (4,1=1,2, .-, 7).
Owing to (20.36) and (20.39), the becomes
(X, Xi)—CJ An=—C}: (x; @) (— Xn+ An),
so that
(20.40) Chix;a)=CH
and thus finally we have
(20.41) ' (X, Xi)=C% X,, (l,jsh=1,2, ... 7).
THE THIRD FUNDAMENTAL THEOREM. When r Ilinearly independent diffe-

rential operators

‘m)

( m
(20-42) ijé.;(x’ -75, ey X) ‘ (i=1’ 2; "'an;j=1: 2’ "”r)a (E.if (x,;é,---(x))cC2)

oxt’
are given, the necessary and sufficient condition for that they are the Sundamental
differential operators for a doubly extended Lie transformation group (germ), is
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that the relations
(20.43) (X, Xi)=C% Xa, (hy s 1=1,2, -+, 1)
hold for certain constants
(20.44) Ck, (G, b 1=1,2, -, 7).
Proor. The necessity is implied in the last theorem. It is known that
when & (x, x, -+ ,(;’;))EC", (v=2), the Jacobi’s parentheses satisfy the identities

(20. 45) (X, X;)=—(X;, Xo),
(20, 46) ((Xe, X Xi)+( (X Xe), Xo)+((Xa, Xo), X;)=0.
For the complete system accompanied by the relations (11.4):
(20.47) Ch=-C3,
(20.48) 2 CL+ChCLHCLCL=0, (47,kI=L2,n)

hold. Hence, by Theorem 2° of Art. 14, there exists an r-dimensional doubly

Extended Lie group (germ) G having Cf; as structure constants. If we adopt
this G, we are led to the last for sufficiency.

Tue FourtTl FunpaMmenTaL THEOREM. (A Double Extension of S. Lie’s
Third Fundamental [Theorem). The necessary and sufficient condition for that the
r® given constants C%, (h,j,1=1,2, ---, r) may establish the relations

(Xi, X5)=Cli X

Jor the fundamental differential operators X, -+, Xr of a doubly extended Lie
transformation group (germ), is that they satisfy the following two conditions

(20.47), {20.48):
(20.49) Ci=-C},

(20- 50) C?j lek'l'c’;k fu‘l‘ C;:i Clztj=0’ (i, ja k’ l=1’ 2’ "t 1’).

21. The Lie Ring composed of the Fundamental Differential Operators.
We have represented the (doubly extended) parameter group (germ) G by the
doubly extended transformation group (germ) 7, so that the abstract (doubly ex-
tended) Lie ring R has become homeomorphic to the doubly extended Lie ring
S consisting of the totality

X=1; X, (A4¢=constants).

Thus we obtain the following homeomorphic correspondence:
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Abstract (doubly extended) Lie ring R Doubly Extended Lie ring §
(Doubly extended) parameter group Doubly extended transformation group
(germ) | (germ)
G T
Basis Fundamental differential operators
EI,EZ,"',Er X, Xz,"’,Xr
A=4 E;e R X=24X:c8S
B=w E, ¢ R Y=m X, eS8
aA+ BB aX+BY
(4, B) (X, Y)

Concerning this correspondence, we get the following theorem.

Tueorem 1° In order that a doubly extended transformation group (germ)
may be a faithful representation of the doubly extended parameter group (germ)
G, is that the

doubly extended Lie ring composed of | correspondence of the two sides of the
the fundamental differential operators above table is one-to-one.

and the abstract (doubly extendéd) Lie ‘

ring R may be isomorphic to each other.

Proor. We utilize the canonical parameter # of the doubly extended Lie
group (germ) G. Taking a point (a!,---,a") in the vicinity of the origin (unit
element), we set -

S (&Y e xm s at e @)= (x) e, xm50),  (§=1,2, -, ).
Then by (20.16) and (14.11), we have

i i . (m) i
) (21 1) ) ‘ %jt:—'= aa-zt‘ al=(ﬁlk (a) al) 65 (xs Xy eey x)—g%

m

—or{tle B2 ) ol Xl

Hence, in the case that the correspondence between the two sides of the
above table is not one-to-one, we have

(21.2) X=X+ +1 X,=0,
where 4!,.--,4" are sufficiently small values, which are not zero at the same
time. |

If we take them for (a!, -, a")=(2}, ---, 2"), from (21.1), we obtain
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(i=1’ 2, ) 71)

i.e.
ft (xl, ey X7 alt’ tty art)=xi, (i=1’ 2, ., 71).

Thus G and T do not correspond one-to-one.

In the case, where holds when and only when A'=A%*=...=2", take a
hypersphere with sufficiently small radius ¢ and with the origin as center. Then,
since a@* X3*0 in (21.1) for each point (a!,-:-,a") on it, we get

(21.3) Six, - x50, - art)xxt, (1=1,2, - , 75|t < d(at, -~ ,a")).

Since d(al,---,a") is evidently a continuous function of (a!,::-,a"), for the

least value J, of it, we must hnve

(21.4) Tox Ty, (ata’<do).
Since T makes a doubly extended group (germ) from [21.4) we can conclude
that G and T correspond one-to-one in a suffieiently small vicinity of the origin.
Q.E.D.

Let us consider now the case, where R and S are not isomorphic to each
other generally. Let s(<7) out of the  fundamental differential operators X,
-+, X, be linearly independent with constant coefficients. Let

(21.5) Yi=hiX;, (i=1,2,.,5)
be linearly independent and suppose that in terms of them we have
(21.6) X;=g! X, (7=1,2, -, 7).
Since Y,,---, Y, are linearly independent, we have
(21.7) bl gh=a% (1, k=1,2, --- ,s)
Utilizing ,
(X, Xi)=C7 X,
we obtain
(Ye, Yy)=h! b (Xe, Xo)=h' b Cfi Xn=h! b Cli g% Y,
i.e.
(21.8) Yo, Yi)=15Y, (=12, -,s),
where
(21.9) r5=ht b, g2 CT.

Further we set
(21.10) i (a, da)=g% v’ (a, da), (f=1,2,-,8).
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From and it results that
(21.11) dwm‘(me)——;- 0P Aw? (X, Xo) f=0,
which becomes
(21.12) drt (Y; f)——;;- AT (Y, Vi) f=0

by virtue of and (21.10).
Utilizing (21. 8), thence we obtain

[
(21.13) (dri——;— 14 T ATE) (Yif)=0.

Now, since Yy, -+, Y, are linearly independent, their coefficients must vanish
severally, i.e.

(21.14) dsi(a, da)=—;— TRTIAT, (=12, -, )

Consequently the simultaneous extended total differential equations
(21.15) 7l (a, da)=0, .-, 7/ (a,da)=0
are completely integrable. Since further Yj, .-+, Y, are linearly independent, the
rank of (g% is s. Hence 7!,..-,7* are also linearly independent by virtue of
(21.10).  Thus there exist s independent first integrals of (21.15), which are zero
at the origin. Let them be
bt (al, -, @), - , b* (@', - , @) € C?,
where
b(0,-.-,0)=0, (7=1,2,---,5)
Taking (r—s) adequate functions
b (al, N 18 NETTIN b (at, -+, ae C2’
where
b (0,-+,0)=0, (j=s+1,s+2,---,7)
in addition, we have one-to-one correspondence
‘ (@, -, a‘f)_)(bl’ TN bf)
in the vicinity of the origin. Noticing this transformation of the variables, we
write :
tt(a,da)==*(b,db), (i=1,2,-,s).
Since b!,-.-, b are s independent first integrals of (21.15), the relation
(x1, -« , m8)=(dbl, --- , db*)
holds, so that we may write
wt (b, db)=¢j (b, --- , b7)dbI, (i=1,2,..-,38),
Now, by (21.14), we must have
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drt (b, ab)=201C oo Ol n s,y 1=1,2, -, 7)
= T T AT (5, k=1,2, -+, s)

= 7 LB, e, ) dBPAGE (B, -, b) b

Tﬂc ol br) o (b, -, -, br)db* Adb,
so that

95 L j=1,2, ., 83 k=s+1, e
W_O’ (z’]—'l’z’ ’s')k s+ > ’r)'

Hence we have
=¢§ (bl, TN bx),
and consequently z* must be expressible in terms of &%, ---, 5%, db', --- , db* only.
We denote the s-dimensional (doubly extended) Lie group (germ) defined
uniquely by

(21.16) d1r‘=% tIATE, (=12, -, $)
in the s-dimensional neighborhood of the origin of (8%, --,b") by G. Now by
Theorem 1° of Art. 20, the f*(x; a) are the first integrals of

dxt+«’ (a, da) & (x, %, - ,x) 0, (i=1,2, -, n)
such that f*(x;0)=x'. Taking the last differential equation together with (21.5),
and (21.10), we can deduce

(21.17) dxt+ 7 (b, db) 75 (%, %, -+, £)=0,  (1=1,2, -, ),
(m) .

(21.18) Yim b Xj=r 0 % R

for

WA e, D=H 8 (5,5, -, 7

Hence (21.17) are also completely integrable and its first integral is ex-

pressible as
(21. 19) f‘: (xl’ I L ar):gi (&, ey 2™ b (a)’ T b (a) ) (1=1, 2,0y n).

Thus we obtain the following theorem.

THEOREM 2°, When the rank of the fundamental (doubly extended) Lie ring
composed of the fundamental differetial operators X, , -, X, is s(<r), there exists
an s-dimensional (doubly extended) Lie group (germ) G as doubly extended para-
meler group (germ) having linearly independent (21.18)as fundamental differential
operators, for which we have (21.19). In this case, the given doubly extended
transformation group (germ) becomes a faithful representation of G.
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§ 6. The Relation between the Non-Locally Line-Elemented
II-Geodesic Curves in the Base Manifold M and Those

in the Doubly Extended Lie Transformation Group
Manifold G.

22. The Relation between the Non-Locally Line-Elemented II-Geodesic
Curves in the Base Manifold M and Those in the Doubly Extended Lie Trans-
formation Group Manifold G. We must not overlook that we are considering both
the non-locally line-elemented Il-geodesic curves in the

base manifold M. | doubly extended Lie transformation
group manifold G.

Now we will seek for how the non-locally line-elemented II-geodesic curves
in the

doubly extended Lie transformation
group manifold G

base manifold M

behave in the

doubly extended Lie transformation base manifold M.

group manifold G.

If we multiply (20.3) with, E(x, % -, %) defined by & &=3| [(25.1)], then

- . (m) - . (m) . (m) . (m)
fé (xa Xy ooy x) 0t=$: (xs Xy ooy x) dxt+.8.ll (a (x’ X, ++* X) ) da’ (x’ Xy 00y x)s

so that the differential equations (20.20) 6'=0, ... ,0*=0 give

@22.1)  B(g 4, Ddri=—F(a (% 1) da’ (8 % -, 7)
iL.e. (25.13)
(22.2) déi= —da’=¢e’ dt

by (4.12). Thus to the non-locally line-elemented II-geodesic curves ds’=e’dt in the
base manifold M, there correspond the non-locally line-elemented 11-geodesic curves
da’=—e’dt in the doubly extended Lie transformation group manifold G.

§7. Two Systems of Equipollences of Vectors in the
Doubly Extended Lie Transformation Group Space.

23. Two Systems of Equipollences of Vectors in the Doubly Extended Lie
Transformation Group Space. '
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(i) Consider a doubly extended Lie transformation group G with 7 doubly
extended parameters a'(%,x, -+ ,C";c)), ad(x, x, -+ ,(?c)), e, ar(x, x, (.;cn)) The coordinates
x=(xt, --- ,x"), which undergo the doubly extended Lie transformations a(x, x, -, ;’5:
will play quite an accessory rdle in the following lines. We will extend the E.
Cartan’s theory ([19]) of two kinds of parallelisms of the vectors in the group

space to the case of our doubly extended Lie transformation group space €.

(m)

Let us denote the elements of G corresponding to a(x,%,:+,%) as an
operator by Ty and the product of 7. and 7, by T:T., and the inverse of Ta
by T.! so that (Ty To) '=T' T;

m (m)
We will call a pair of points (@ (x, x, - ,(x))) and (b (x, %, ---,x)) taken in this

(€] . (Gn) .
order a vector ZZ of € and when a(x, %, -+, x)=b (%, %, - ), we will call the vector
a null vector.

-
(ii) DeriniTION. We will say that two vectors ;;J and a'b’ are equipollent
of the

Jirst I second
kind, when
(23.1) T,T;i=To T l T Ty=T2Ts.
Considering the inverses, we may replace by
TaT5'=Tu T | T3 Ta=TTan
The equipollences have the following properties.
1°.  Every veclor, which is equipollent to a null vector is null.

2°. Every vector is equipollent to itself.

30, If a vector is equipollent to a second vector, then the second vector is
equipollent to the first.

40, If two vectors are equipollent, then their inverses are also equipollent.

50, Every point of the group space € may be considered as the origin of oie
and only one vector, which is equipollent to a given vector.

6% Two vectors, which are eéﬁipollent to a third vector, are equipollent to
each other.

7. If ;5 is equipollent to @b and be equipollent to 5'-::', then the vector ZZ'
is equipollent to aTg’.

The 7° méy be proved as follows. From

TbT ;l = Tb'T;II, T‘c]-‘i:l = Tcl ;11,
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we obtain
(T3 T T )=(Te T (To T2
i.e.
TcT;-l: Tcl T;}.

(iii) THEOREM. When ZZ is- equipollent to the first kind to a'b, the vector
-—>
Zc)z' is equipollent of the second kind to bb and vice versa.

Proor. From [23.1), we have
TD_ITDT;I'Z‘QI = T;lTbl T;Il Tal,
i.e.
(23.2) T3To=T:'Ty,
which is of the form for aa’ and Bb.

THEOREM. When the first equipollence plays property 7°, the second equipol-
lence plays the property 6° and vice versa.

Proor. Suppose that an equipollence satisfying the properties 1°—6° is
defined in an r-dimensional space in a certain way. Thence we deduce an equi-
pollence of the second kind saying that ad s equipollent of the second kind
to b5 and @b is equipollent of the first kind to ab. It is easy to see that the
properties 1°—5° are verified for this equipollence of the second kind. But as for
the property 6°, it is not ncceésarily the case. Suppose ¢’ and b are equipollent
of the second kind to ¢¢. This means that ac is equipollent of the first kind to
@¢ and that be is equipollent of the first kind to bc'. In order that ai and b¥
may be equipollent of the second kind of each other, it is necessary and sufficient
that ab is equipollent of the first kind to a_’?)'; in other words, the equipollence
of the second kind will verify 6° when the equipollence of the first kind verifies
7° and vice versa.

(iv) The two kinds of equipollences are in close relation to fwo groups of
doubly extended parameters of G. Indeed, let us consider (?nl)le geometrical opera-
tion consisting of laying through a variable point (£ (x, %, -+, x)) a vector &&, which
is equipollent of the first kind to a fixed vector. Let (a (x, %, -+ ,("J;))) be the ex-
tremity of the vector, which is equipollent to the fixed vector and is drawn
through the origin of €. The operation considered is expressed analytically by

TeT;'=T:
or by

(23. 3) Tef = TaTe.
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This is thus analytically identical to one of the transformations of the
first group of doubly extended parameters .

Similarly the operation consisting in drawing a vector 5—5)’ through a variable
point (& (x, %, ---,(;))), which is equipollent of the second kind to a fixed vector
6:1, may be expressed analytically by

(23.4) Te=T¢T..
This is thus analytically identical to one of the transformations of the

second group of doubly extended parameters 10,

(v) The property explained by the under (ii) is a geometrical
interpretation of the fact that the doubly extended transformations of the two

groups of extended parameters are interchanged among themselves.

The properties 1°—7° are the characteristic properties of the equipollence
attached to the groups. We shall prove that when we have defined an equipollence
of vectors in doubly extended group space € playing the seven properties 1°—7°,
the space & can be considered as a space of group, the equipollence defined in €
being the first equipollence attached to doubly extended group.

For this purpose, let us take an origin (O) in the space & quite arbitrarily.
Let (a (x, x, - ,(1;6))) be any point of €. Consider an operator S,, by which we pass

(m
9

) on)
from a variable point (¢ (x, %, -, %)) to the extremity (§'(x, %, -+, %)) of the vector

—_
£¢', which is equipollent to Oa (a vector, which exists by 5%. We will prove first
that these operations constitute a group.

To prove this, we proceed as follows. Those operations contain evidently
the identical operation (by1°. Let S, and S, be two such operators. Let

(m m
(c(x, %, - ,x))) be the transform of (a(x, %, --- ,(x))) by S,. Executing the operation
(m
S. and S, successively, we pass from the point (£(x, :&,---,x;) to the point
(&' (=, %, - ,(;)) and then to (¢ (x, x, --- ,(";)) by virtue of
—_ > — —
(Sa) €§'=0a, (Ss) &'8"=00b.
Now, by the hypothesis, ac is equipollent to Ob. Hence §'¢” is equipollent
to ac (by 6°. From the equipollences

= Sran
§§'=0a, £'&" = qe,

follows thus (79 that

(9) A double extension of the analogous result in [16). p. 449.
(10) [16], p. 633.
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-
. 55' = OC:
whence we obtain S, S,=S.. Q.E.D.

Next, let G be the group composed of the operations S,. This group is
simply transitive. This means that it contains one and only one transformation,
which maps a given point (£ (¥, J&,-"(;;) to another given point (¢’ (x,x, ---,SB)),
obtaining the transformation S, corresponding to the extremity of the vector 071:
which is equipollent to {-‘? Consider next two arbitrary equipollent vectors ab
and @'%. The vector (—72, which i equipollent to &Z, is also equipollent to ay
(property 6°). Hence the transformation S. maps (a (x, %, -+ ,(;))) to (b (x, %, --‘(;3) and
(@ (x, %, - ,(;))) to (&' (x, %, -+ ,(;))) simultaneously. Now the transformation S,S;! also
maps (a(x, %, -+ ,(;3) to (b(x, x, ...’('}))) (by the mediation of the origin (0)), and
transformation S, S;! maps likewise (a’ (%, %, - ,(;'3) to (& (x,x, «-- ,(;))). Hence we
have

Se=Ss S;'=S S;',
what shows us that the equipollence defined in € is identical with the equipollence
of the first kind attached to the group G.

(vi) The results of the last that the equipollence of the second
kind of the space of group may be considered as equipollence of the first kind
attached to another group admitting the same representative space. It is easy to
sec that the second group of doubly extended parameters will admit the second
equipollence of the group G for the first equipollence.

Now we encounter another important remark. Consider a set of trans-
formation 7T, depending on 7 doubly extended parameters, not forming a group,
but playing the property that the transformations T, T;* do not depend on not
more than r doubly oriented parameters (when a(x, %, -~ ,(;)) and b(x, x, --- ,(;3 take
all possible values). We can define an equipollence of vectors in the space of
this set of transformations by the equality

(23.5) T, T;*=T, T3,
and this equipollence plays the seven properties 1°—7° as we can easily verify.
Choose an arbitrary origin transformation T, T he transformation S, defined above
may be expressed as follows:
Te' T;-l: Ta To-l

i.e.

(Sa) Td=T,T:T..

Execute the transformations S, and S, successively and set
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Sb Sa= Sc.
We shall obtain

Te'=T. Ti' T,
Tew=To T5' Te=To T5" T T5* Te=Te T5* Tt

by S. and S, successively. Hence the equality
(L, TN T T3)=T. T
results, so that the transformations T, T;* form a group.

This theorem, which is of purely analytical nature, may be proved else
directly. Consider a set of transformations 7, T';! of #» doubly ecxtended para-

(To TH(Ty T3Y)
of such transformations, we see that thcre exists a transformation 7. such that
(23.6) 7‘;11 Tb= Th—ll Tc-

|
|
|
| meters. From the product
For, the transformations 7T, 77, where we let thc doubly cxtended para-

meters & vary, must have all the transformations of set 7y 7T} so, in particul;ar,
. ’ ’, ~ . . . . (m)

the transformation 7, T;* Therefore there cxists a point (c(x, 4, +:+,4)) such

that

'I‘b7‘c_1= ” ‘a.' , -‘b_,l.

This equality is equivalent to thc equality [23.6]. Thus from [23.6)} we

deduce

(To TN T =T T T T'=T. T3,
which shows us that the transformations 7% 7°;* form a group. Moreover all the
transformations of this group are obtainable by lctting (a(x, x,---,(;;) fix and
letting (b (x, % -, %)) vary.

(vii) We know that two groups G and (' of the same order are said to
be isomorphic (holoédrique), ‘> when we can establish among their transforma-
tions a correspondence such that to the product of two arbitrary transformations
of the first group there corresponds the product of two corresponding transforma-
tions of the second group. In the correspondence, which realize the isomorphism,
the identity transformations correspond to each other. Moreover to the inverse
of transformation of the first group there corresponds the inverse of the corres-
ponding transformation of the second group.

(11) “Hémiédrique” in the case of one-to-one correspondence. ([44], (1930), p. 11)
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Let G and G’ be two isomorphic groups and & and &' their spaces.

All correspondences by isomorphism of two groups may be interpreted by the
point-correspondence of two spaces & and &', such that to two vectors of €, which
are equipollent of the first (second) kind to each other, there correspond two vectors
of €', which are equipollent of the first (second) kind to each other.

Indeed, we can choose the doubly extended parameters of two groups in
such a way that in the correspondence by isomorphism under consideration, the
doubly extended parameters of two corresponding transformations are the same.
We denote the transformations of the two groups by T and 6. Then the equality

Tb T;1= Tbl ;11
signifies that there exists a transformation 7. such that we have
Tb= Tc Ta,, Tbi = Tc Ta',
whence follows;
(-)b = cha, @b! = @c @at’
so that
6, @;1=@b: @;:1. Q: E. D.

The demonstration will be the same for the parallelism of the second kind.

(viii) Conversely, suppose that we can establish a point correspondence between
the spaces € and €' of two groups G and G’ of the same order r such that to two
vectors of €, which are equipollent of the first kind, there correspond two vectors of
€', which are equipollent of the first kind, then the two groups G and G' are
isomorphic.

To prove this, let (w) be the point of @' corresponding to the origin (O)

(n) @n) ! m

of € and let (a(x, %, -, %)), (0%, ---,%)) and (c(x,a&,---,(x;) be three arbitrary

. (m) . (mn) . (m)
points of € and (a(x 4 ---,%)),(B(x, 4% -,%)),(r(x %, ++,x)) the corresponding
points of €. From the equality

TbT‘:l: Tc= Tc y 0-1
follows :

0, 0;'=0, 6!

by hypothesis. In other words, from the equality

Tb= Tc Ta,
follows :
@ﬁ @;l=(@r @;1) (@a @;1)-

Then we let the transformation ©,6;' of G’ correspond to the transforma-
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tion 7T, of G. This correspondence shows the isomorphism of the two groups by
the last equality.

We can make the remark that it is very easy to establish a correspondence
with a given group by interchanging the two kinds of equipollence attached to
the group : it suffices to make the transformation 7,=7;' correspond to the
transformation 7,. Then the equality '

Ty T;=Ty T,
which defines the equipollence of the first kind, becomes changed into the
equality

T;l Ta——— 7“;/1 Tal,
which defines the equipollence of the second kind.

It results from this remark, that ii order that two groups of the same order
may be isomorphic, it is necessury and sufficient that we can establish a point
correspondence between the spaces of two groups transforming one of the spages
into a certain of the spaces by an equipollence of the second kind.

(ix) The preceding consideration proposes the question of determination
of all the point transformations of a space of group into itself, which play the
property to conserve the two kinds of equipollence of the space.

It is firstly evident that a point transformation, which conserves the equi-
pollence of the first kind, conserves the equipollence of the second kind and
vice versa. Let (a(x, 2, - ,(;cn))), (Bix, x, -+ ,(;)) ), etc. be the points transformed from
(alx, %, --- ,(}3 ) (b(x, %, «-+ ,(;)) ), etc. From the equipollence of the first kind of c;;) and
a—’Z' follows that of &}5 and ;’)‘B’ by hypothesis, whence follows that from the
equipollence of the second kind of aa' and bb follows that of ae’ and ﬁTF;’

Let us commence with determination of the point transformations, which
conserve the equipollence of the first kind and let the point origin be invariant.

The equality

Te=T,T; ‘
expresses simply the equipollencé of the first kind of vectors O_l; and (l_(‘: whence
follows the equipollence of 579 and c;;, and consequently the equality holds:

T7= Tp T;l.
Hence the transformation sought for is antoisomorphism of group (. Among

. the autoisomorphisms, there exist in particular the transformations of the adjoint
group :
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Te=T7' T: T,,

(m)

where (a(x, %, -+, x)) is a fixed point.

If the group G is semi-simple, the adjoint group is the largest maximum
continuous group of automorphisms of G [41].

In order to obtain all the point transformations conserving the equipollence

of the first kind, it will suffice to combine the preceding point transformations
with the transformations

Tel= Te Ta or Tel = Ta Te
or further with the trannsformations
(23. 7) Tel= Ta Te Tb,
m (m)
(a(x, %, - ,<x))) and (b(x,x,--,x)) denoting two fixed points. The point transfor-
mations (23.7) transform the equality
T, T=T;T¢
into the equality

Tylsl T-e-ll= T‘,‘." Y‘E—Il.

Evidently the transformations (23.9) form a group I'y,, which is a suBgroup
of the total group I' of transformations, which conserve the equipollence of the
first kind. It is likewise ecasy to see that I'yg is an invariant subgroup of I'. It
suffices to prove that all the transformations of 7"y are changed into other trans-
formations of 'y by an automorphism of the group G. If the points (¢’ (x, %, --- ,U,;'; ),
B (5% oo, ), (5, 5, oo, %) ), (3 (5,4, -+ %)) correspond 10 (& (%, 7, -+, %)), (b (3, 5, - %))

. . . . )
(5 (x 2 -+, 2)), (9 (x, 4, =+, x)) by this isomorphism, th relation

T?y= T! TG 7‘0
is changed into
Tzl - 71;11 Tel Tbl,

. . . . (m) (m)
the transformation of I'y corresponding to points (a(x, %, --,%)) and (b(x, %, -, 1))

is changed into another transformation of 7'y, that which correspond to points
. (m) . Gn) ’

(@' (%%, -+, %)) and (' (x, %, -+, x)).
We will give the name group of isomorphism of € to I.

The group of point transformations of €, which conserve the set of two
equipollences will easily be deduced from I" by combining it with the trans-
formation

T:=Ts.
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It may be remarked that the group I', defined by the equations (23.7) is
at most of 2r doubly extended parameters. Precisely, it is of 2r—p doubly ex-
tended parameters, where p denotes the order of the subgroup formed of those
transformations of G, which are interchangeable with all the other transformations
of G. The group I'; contains evidently the adjoint group which is itself of
r—po doubly extended parameters.

§8. Extension of E. Cartan’s Geodesics, His Two
Kinds of Parallelisms and His Transformations.

24. Extension of E. Cartan’s Geodesics, His Two Kinds of Parallelisms
and His Transformations.

(i) In case of the ordinary equipollence of two vectors, the straight line
play the following characteristic property:

If we take three arbitrary points (a),(b),(c) on a straight line, the vector
—_
cd, which is equipollent to ZZ has its extremity (d) on the straight line.

E. Cartan ([19]) has generalized this notion in his space of group. Now we

will generalize his notion further to the case of the groups of doubly extended
parameters as follows.

DEFINITION. A curve (C) traced in a space of group of doubly extended
parameters will be called a II'-geodesic (read: the first geodesics of the second
grade), when three arbitrary points (a (x, %, -+ ,(1;;) ), (b (x, %, - ,(?c))) and (¢(x, %, -+ ,(.'x':)))
are taken on this curve, the extremity (d(x, X%, - ,(.11':))) of the vector c?l, which is
epuipollent of the first kind to 213, lie also on this curve. The II-geodesics may

be defined similarly with respect to the equipollence of the second kind.

But we have to make the following important remark.

All the
11 -geodesics l 11;-geodesics
are
I1.-geodesics. t 11;-geodesics.

—_> -—> . . . —>
For, if cd be equiollent of the first kind to ab, then this implies that bd
is equipollent of the second kind to a and. vice versa.
Thus there exist really only I1-geodesics.

(ii) The Primary question arising is that of the existence of the II-geodesics.
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Now it is easy to find a priori an infinity of II’-geodesics in the spaces of groups
with doubly extended parameters. For this purpose, take a fixed point of (a(x, %,

,(x)) Let us consider a 1-parametrlc subgloup g of G. Denote its general trans-
formation by ©,. The point (£ (x, %, -+ ,x) ) defined by

(24.1) T¢=6,T,

describes a IT'-geodesic. For, if oy, us and u#s be thrce parucular values of the
parameter #, and (&, (x, %, x)) (52 (x, %, - ,x) ), (63 {x, %, - ,x)) the three correspon-
ding points and if (&, (x, %, -+ ,x)) be the extremity of the vector 53 &, which is
equipollent of the first kind to &¢,, then we have

T, Ti'=T, T3,

Ouy Ta=6%, Ta. Q. E.D.

u 1 ‘llr3

Tey=Te,T:'Tey=6,, 6

Conversely, we obtain all the II’-geodesics in this manner.

For, if (§(x, %, --- ,(;))) and (y(x, %, --- ,Zn))) be two variable points and (a(x, %,
. ,Oxni) a fixed pomt on a II’-gcodesm, then there exists on this II’-geodesic a
point (£ (x, x, ,x)) such that
T, T=T.T;

and consequently the transformations T, T';! depend on a single parameter, whence
follows that these transformations and especially the transformations 7%: 73! form
a one-parametric subgroup g of G. Denoting its general transformation by ©., we
obtain

Te=06, T,. Q.E.D.
It should bc remarked that any II-geodesic may be defined also by
(24.2) Te=Tq 0y,
the 6, forming a one-parametric group, or more generally by
(24.3) Te=T,0, T
Moreover the may be rewritten as follows;
Te=(Ta®u T;Y)(To Ty),
and the transformation 7,6, T;' constitute a group being led to the trans-
formation group of g by 7.. Thus we fall on the expression again.
(iii) HlthCI‘tO we have considered a vector ab to be defined uniquely by its
origin (a(x, %, -~ ,x)) and its extremity (b(x, %, - ,x))) When the parameters of

(m) (m)
(b(x, 4, ---, %)) do not differ much from those of (a(x, %, ---,%)), the transformation
T, T;* belongs to one and only one-parametric subgroup g of G as in the case
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of the theory of continuous groups of S. Lie; consequently the two points

X (m) . (m) . .
(a(x, % -+ ,x)) and (b(x, %, -+, %)) belong to one and only one II’-geodesic, which
is the locus of the point (£ (x, %, -+ ,(;))) defined by
Te=@u Ta,’

where O, is the general transformation of g. Thus the vector assimilates to the
m)

¢ (m)
II’-geodesic segment limited by (a(x, %, --- ,(x)) and (b(x, %, -+, %))
We can then state as follows:

All vectors lying on a 11'-geodesic is equipollent of the first and the second
kind to a determined vector lying on the 1l-geodesic and having for the origin a
given point of this 11'-geodesic.

If we define the equality of two segments by the equipollence of corres-
ponding vectors, we can measure the segment of one and the same II'-geodesic
as soon as we choose a unit segment on this IT'-geodesic segment.

If, in particular, we have taken our parameter t (the affine length : a
generalization of the canonic parameter of S. Lie) introduced in (4.8) for the
parameter # of the general transformation g such that

0. 0w =6ysu, (u=t, u'=t')
the measure of the segment 51_22 with
T51=@ul Ta,, T52=8u2 Ta_,
will be |us—u, | =|t;—#|. The change of # into kx means a change of the unit

— —
of length. The algebraic ratio of two vectors §;&: and & &, taken on one and
the same II’-geodesic has the determinate value
Us—Us_ La—1y

Us— Uy tz—tl ’

Thus we may now drop the dashes (primes) from 11'-geodesics and write
down merely Il-geodesics in place of IT'-geodesics.

TuroreMm. The 11'-geodesics in this section are the non-locally line-elemented
11-geodesics in the sense of our Art. 4.

. (m)
(iv) ParaLLELIsMs. If we draw through a point (b(x, %, -+, x)) outside of
(m
a non-locally line-elemented II-geodesic (C) passin through (a (x, Xy ey x))) vectors,

which are equipollent of the first kind to several vectors lying on (C), wc obtain
the vector b—;, which is equipollent of the first kind to the vector a—E), whose ex-
tremity (£ (x, ﬁ('?,--',(,;t))) describes (C). Hence the point (7) describes a curve (oy}
and this curve is a non-locally line-elemented II-geodesic. If we have
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T$= Tu Tg,,
then we deduce thence:
T”=Tu, Tho
We say that (C') is parallel of the first kind to (C) and any vector lying on
(C’) is equipollent of the first kind to a vector lying on (C).
Two non-locally line-elemented 11-geodesics, which are parallel of the first
kind to a third, are parallel of the first kind to each other.
We can define similarly won-locally line-elemented 11-geodesics, which are
parallel of the second kind to each other. When this is defined by
T6=Ta @71,
we obtain non-locally line-elemented II-geodesics defined by
Tv= Th 91,,
where (b(x, %, --- ,(Z:))) is an arbitrary fixed point.
Thus we have defined two kinds of parallelisms for the non-locally line-
clemented Il-geodesics and for each of these kinds, we have the following
properties.

1°%  Each non-locally line-clemented 11-geodesic is parallel to itself.
20. Two non-locally line-elemented 11-geodesics, which are parallel to a third,

are ﬁamllel to each other.

3. Through any point taken oul-side of a non-locally line-elemented 11-
geodesics, there exists one and only one non-locally line-elemented 11-geodesic, which
is parallel to the former.

It should be remarked that the two parallelisms permit us easily to const-

—'
ruct the vector &7 equipollent of the
first ‘ l second
. . — . . . . ; (m)
kind to a given vector ab and having a given origin (&(x, %, - ,x)); for this it

(m)
suffices to draw through (¢ (x, %, -, %)) the non-locally line-elemented II-geodesic,
which is parallel of the

first ' second

kind to b and then through (b(x, -, %) the II-geodesic, which is parallel of
the

second i first
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.—)
kind to af; these two non-locally line-elemented II-geodesics meet in the point
(m)
(n (x, %, -++, x)) sought for.
(v) It is convenient to say that two non-localfy line-elemented II-geodesics,

which are parallel of the
first ! second
kind, have the same direction of the

first kind. ’ second kind.

If we draw through the origin the parallel of the

first I second

kind to a given non-locally line-elemented II-geodesic, then several points of this
parallel represent the transformations of a one-parametric group g Hence we
can say that any direction of the

Sfirst ‘ second
kind is defined by a one-parametric subgroup of G.

) .

If a one-parametric subgroup g of G together with a point (a(x, %, -, x))

. . . . . (m)

of the space is given, starting from the point (a(x, %, ---,x)) we can make a

displacement in the direction of the

first second

kind definend by g, and thus we obtain two distinct non-locally line-elemented 11-

(m)
geodesics starting from (a(x, %, - x)).

(vi) The equipollences of the first and the second kind permits us, as we
have done in (iii), to define the equality and then the ratio of two segments
lying on two non-locally line-elemented II-geodesics, which are parallel of the
first or second kind. If on a given non-locally line-elemented II-geodesic, we
can thus measure the segment on all the non-locally line-elemented II-geodesics,
which are parallel of the first kind to given non-locally line-elemented II-geodesic
and then on any non-locally line-elemented II-geodesic, which is parallel of the
second kind to one of those latter and so on. Suppose that the given non-locally
line-elemented II-geodesic starting from the point of origin and defined by a
subgroup g of transformations 6,, the # being the affine length (canonical para-
meter). The non-locally line-elemented II-geodesics, which thus arise by the
indicated process are the loci of the point (§(x, %, --- ,(;))) given by
Te=Ta0, T,
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the (a(x,x,--- ,(;3) and the (b(x, «x, --- ,(;))) denoting two arbitrary fixed points, in
particular, those among such non-locally line-elemented II-geodesics, which pass

through the point of origin, are given by
Te= Tq, @u T;l;

their directions are defined by the various homogencous (gleichberechtigte, [16],
p. 474) subgroup of g in the total group G. Itis only in the set of these directions,
that the space admits of an intrinsic metric.

(vii) Any point transformation of the group of isomorphism of the space
€ transforms evidently a non-locally line-elemented II-geodesic, into a non-locally
line-elemented II-geodesic, the ratio of segments being conserved. It transforms
further two parallel non-locally line-elemented II-geodesics into two parallel
non-locally line-elemented II-geodesics.

Consider, in particular, the transformation
Tel= Ta, Te-

By this transformation, the p'oints of the space describe the vectors, which
are equipollent of the first kind to one another. Moreover any vector is trans-
formed into another vector, which is equipollent of the second kind to the former,
and any non-locally line-elemented II-geodesie into another non-locally line-ele-
mented II-geodesic, which is parallel of the second kind. We may give to such
a transformation the name “the translation of the first kind”. These transformations
are the transformations of the first group of doubly extended parameters ((ii) of
Art. 24),

The equation
Te=T: T,
defines similarly a translation of the second kind.
The continuous translation of the first kind
Te=6,T;
where 6, denotes an arbitrary transformation of the one-parametric group g
(# playing the réle of the time), plays the property that respective points of the
space describe the non-locally line-clemented II-geodesics, which are parallel of
the first kind to another, while respective non-locally line-elemented II-geodesics
displace remaining parallel of the second kind to another. We will call this
continuous translation the non-locally line-elemented 11-geodesic translation of the
Sirst kind. We define similarly the non-locally line-elemented II-geodesic trans-
lation of the second kind.
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§9. Simplification of the Fundamental Theorems on the Doubly
Extended Lie Transformation Groups by Means of the
Doubly Non-Local II-Geodesic Parallel Coordinates.

25. Non-Local II-Geodesic Parallel Coordinates in the Base Manifold and
the Group Space. In (5.4), we have already introduced doubly non-local 11-geodesic.
parallel coordinates 7* in the doubly extended Lie group manifolds. Now we shall
introduce doubly non-local 11-geodesic parallel coordinates & in the base manifold.
For this purpose we introduce a matrix:

(m)
E(x, % - ,x)eC?,  (i=1,2,-,n;j=1,2-,7)

corresponding to the matrix &}(x, %, -+ ,(;3 introduced by [20.1) by the conditions:
(25-1) 54&:6{’ (4, &, D, q,"'=1a 2)"’s”;h’j, I, ce=1,2, 000, 7).

Multiplying
ERSE
where i are unkowns, by £}, we obtain Fi=g, by virtue of so that it
results that
(25.2) &L Ei=0}
and multiplying 5% éi=4% by &, we obtain F{=F] arriving at [25.1]. Thus we see
that

< [25.2).

For
[&16t =1 &Ll -1 & |ELEL = [ &kl [ &1
N p 00 |15 & §165-- & i 7.00---0
=l gt 0.0 || 26382 = e 200---0 (2
..................... &'? 3‘ ‘;} 5?5;& ;_‘ cesssssscasassesanssesee
7ins 7200 00 OF <000 775 - 730 0--- 0
............ | | {
000 S o000
we have
25.3)  |B&t]=(o|=1 | ghétl = ati=1

Replace & (x, %, -+ ,(;)) of Art. 4 by
E;u (l=1,2,---,r;h,p,q=1,2,---,u;r;n)

and consider the extended Pfaffians
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dar

which are assumed to be of rank 7, so that the condition

(25.4) W =EL (1, %, -, %) di, (& (5 % - D (af Mt “(x"é”"’(;i)ah_ah),

(25.5) |8z, % -, D[E#0 in M
is satisfied.

We define the connection parameter £, by
(m+1)

a o a x" a - . (m)

25.6) Mottt gt '“+_x'f“,§'"") & (5 %, -+, %)
x:f

TR e 9 n)

- X . m

=8t a +"‘+7'g~;) Ei % -, 2)

as in the case of (4.7), the last identity arising from [25. 2).
Consider a parametrized curve xi=xt(f), (1=1,2, .-, n).

We can easily prove the identity

d o d'x . dx? dxe
(25.7) W A ”‘){alt2 + e g ar }

- We consider the combined manifold ( {xf}, {E, X, X, o ,(n))} ), the
— . (m) .
{51 (x’ Xy eeey x) } = {f: (x’ Xttty x)}
forming the structure group.

We can convert [(25.7) into

g d o _dw . de dn
(25.8) St dt e + 45, ar dr

From [25.7) and [25.8), we see that

d o _ ~ x| 4, dxv dit _
(25.9) =0 = Gt S 20

as in the case (4.10).
The left-hand side of [25.9) may be 1ntegrated readily :
(25.10) w'=c'df, (¢‘=const.),

(25.11) f-—‘t—‘i’;-dt =c!{+-dt, (d'=const.),

the being guided by the simple character of the right-hand side of [25.10).
Noticing again the simple clear character of the right-hand side of [25.11), we set

§l=cit+d',
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so that
1= {2 gi=ct+d
(25.12) ¢ fdt dt=ct+d.

This means that we adopt such curves as &-axes in the r-dimensional space

containing subspace {x'}.

From (25.12), we see that the curves represcnied by (25.12) behave as for

meet and join like straight lines in the large. We will call such curves non-locally
line-elemented 11-geodesic curves.

The expression (25.12) tells us that, for the given g (x, %, (?8 dx, there ex-
ists xi(f), whose line-elements {dx‘} with direction {c¢!} is given by the diffcrential
d&'. This is the case for all the directions {¢!}. Thus in [25.4]) we may omit ¢

and write it down as follows;
n)

(25.13) dé =F(x, %, -, %) dx’.
The first differential equation [25.9) may be rewritten as follows:

d2§l _
=0

(m)
Multiplying with & (x, x, .-+, x) and taking into account, we see
that the relations

(25.14) _‘.’d_’;‘_:cl 7

hold along the non-locally linc-elemented I1-gecodesic line-elements.

We will call {&} the non-locall 11-gcodesic parallel coordinalcs corresponding

to E referred to the &'-axes. The (&'} are global.

From [25.3) we obtain
- . (m) - X o) - . (m)
‘aﬂ=.fs:i (xa Xy oty x) dxl=§$ (x, Xy cte .\’) xi"'jx"‘.dé:i (X Xy o0y X),
- . m) X _ _
(25.15) §=¢(x,x, -+, x) x*+&, (§j=const.)
as in the case of (5.8), the differential equations to the non-locally line-elemented

II-geodesic curves being
n)

(25-16) dgi (xa xa ax) dx'=0
or
(m)

(25.17) &t (x, %, -+, x) x*=0
as in the case of (5.2) and [5.5].
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0 _a O 0 _ , 0
26. To prove a_e“e‘a—f‘ and B =Yg
ri=gLdx*, dxi=¢&i a’)=pidal, da’=da,da*.
- p(x5a) ;. m 9¢ (x; a)
3¢(x;a(x,:é,-~-fx)))_1im o 3¢(x;a(x,ﬁé,---,(x3)_hm dar 9%
af‘ - dzt=0 éi: dxk aal dat=0 ﬂj daj
¢ (x;a) ¢ (x; a)
—lim _oF_ oA —lim _da_ %9
d.rf:o él nT" dal=0 ﬁj al at
=1 ™ .00 (x;a) 1 a* ., 0¢(x;a)
d‘i{f‘a 3te M o “j:f,fo o F ag
—Tim T 209 (x;a) = lim & 109 (x;5a)
-l 52 -lim 5ot
0 : Y (x;a ¢ (x; ¢ (x;
=0 ;L‘;bg;ia) =& ¢Z(9x‘ ) =0% o] ¢§af al ¢8(af a).
Hence
0 At i) 0 -t a
(26.1) 5 =S A

27. Simplification of the First Fundamental [Theorem/ on the Doubly Ex-
tended Lie Transformation Group by means of the Non-Local Parallel Coordinates.
The First Fundamental of the Theory of the Doubly Extended Lie
Transformation Groups has been stated in the form of Cor. 2° of Art. 20. Now,
by virtue of the last Art. as well as of (4.12), it may be simplified and made
global as follows.

THE FirsT FUNDAMENTAL THEOREM (The simplified form). In the doubly
extended Lie transformation group G as doubly extended parameter group, the
FEE (68, - ,E (cf. [27.6)), (k=1,2, ---, n) are n independent solutions of the com-
pletely integrable simultaneous linear partial differential equations

U O (i 1=1.2 e yeiB=12 ..
(27'1) 07 as; ’ (.73 1—1’2’ xEx) k—laz , 1)
such that
(27°2) Eizfi (E 3 O), (1'=1’ 2, .-, n).

Conversely, when an r-dimensional doubly extended Lie gronp is given, the
is completely integrable, their solutions f*(¢;7 (&, &, ---(Em))), (I=1,2,...,7) satis-
Sying (27.2), determine a doubly extended Lie transformation group having G as
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doubly extended parameter group.
SoruTtion oF [27.1] The Lagrange’s auxiliary differential equations of (27.1)

are
(27.3) dgt= —dy, ((20.4),(20.5),(20.)). (cf. (27.6)).
The (20.22) gives in this case:
> 0 0 7] 0
=t £ ) =l | — _9
(27.4) X=e/ 8l =e (— gt )
Cousider
(27.5) - Xf=0.
The Lagrange’s auxiliary differential equations become
ag¢ ___dp P =12, e
8’ 6} et _ej 5; ) (]3 l_' 1’ 2? ] r)
_ &dx _ aidd"
dE s  —eddaf
__d¥ _ da* _ i h=1,2. .
=~ Toa =dt, (¢, k=1,2, -, n),
so that
(27.6) dét=dp'=¢edt
in conformity with (4.12) aud (27.3), whence follows:
@1.7)  E=yi—7(5E e, H=e (—te) (cf.(27.12) (rh te=const),

which represents a non-locally line-elemented 11-geodesic curve
§i=¢' (t—1o) pt=n—e (t—t)
corresponding to .
& aj
in the differentiable

base manifolds. group manifold.

The complete integral consists of (27.7) and the general integral is
. (m) L
(27° 8) X (€l+7}1 (xa Xyttt s x)’ B ET+777 (x, Xy o0y x) )’ (Cf’ (27— 12) ))
where y is an arbitrary function.
Comparing (27.7) with

(27.9) BB (4, , B+, (E=const, i=12, -, n50=1,2,,7),
we see that
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(m)

(27. 10) fi (x, -is oo ;))x‘+§3=775—7}’ (x, x.'s M) x)»

[¢
’

so that

' . m) _ . (m) _ ' . (m)
7 (x, Ky oo ,x)=770'—$¢(x, Ky oo ,x)—55,=77.,—5‘ (xa Xy orry X),

i.e.
. (m) . (m)
(27.11) 7 (X Xy ooo s X)=0L—E (X, X, oo+, X).
The inverse transformation of (27.9) was
. . (m)
(27.12) #=8(§, 6, -, 6) /48, (Ei=const.).

N.B. The differential equation (20.19) reduce to (27. 1).

28. Simplification of the Second Fundamental [Theorem. When a given r-
dimensional doubly extended Lie group G as a doubly extended parameter group
has the structure constants

Ck, (6 g, k=1,2,-,7)
the necessary and sufficient condition for that (27.1) may be completely integrable, is
that the relations
(28.1) Ci=0, (B4, l=12,+,7),
holds.

Proor. In [20.32), we have

(X5 X0={8 054 - 30 Het (B2

i s ™ Mang o ™9
_{\';l. (xa Xy ooty ) ox® }{“J (xs Xy eory x)‘ax_;,}
o ® _ _o

T 9EToE OB oEI
and Xj are linearly independent.

29. Simplification of the Third Fundamental Theorem. When r linearly
independent differential operators
@ _ 3

oxt = &5 (i=1,2,.--n;j=1,2,---,1’),

. (m)
(&5 (x, x, -+, x) € C?)
are given, the necessary and sufficient condition for that they are fundamental
differential operators for a doubly extended Lie transformation group, is that the

(29- 1) XJ=$§ (xa xa e
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Jollowing relations hold :

(29.2) Ch=0, (hj k=12 -,7).
30. Simplification of the Fourth Fundamental The r* constants
Ch=0, (B, 7, 1=1,2, .+, 7)
for the fundamental operators
0 0 0

oE1’ e ) oE"

of a doubly extended Lie transformation group make the following three conditions
identities :

(30- 1) (X.h Xl)=cffll Xh, (ha k3 ja l=13 2, seey )
(30.2) Ch=-Cp,
(30-3) ?j Ciri'c?kcﬁri'c'it ll;j=03 (i’jy k’ l=1’ 2, vy 7’),

so that the Fourth Fundamental of Art. 20 holds.

N.B. Thus the Second, the Third and the Fourth Fundamental Theorems

reduce extremely, the First and the Second Fundamental Theorems only remain
effectively.

The following relations are readily deducible and are note-worthy:

(30.4) e=E=w!(x, %, ,gcm))f“

. @ o
=_7/l=—-a,,(a, a,--,a)d (x,x""9x):

(m) @n) (m)
i)

(30.5) G= (1, %y ey 2)=— B (ay Gy -+, @) O (%, %y e, 2)

) | . (m)
=‘Bf,, (as a, -, d) 7/"': —e" ﬁ}u ((l, a, -, (l),
. (m) Gn) . (m)
(30.6) xi= —-.Qf (,‘\.‘, L ATEIN x) a"‘ (a, [7ARTTIN a) a’ (x’ X, o0y X)

. (m) . . (m)
=0} (x, %, -, x) § =" 2} (%, %, -+ , X).

§10. Adjoint Doubly Extended Lie Transformation Groups.

31. Adjoint Doubly Extended Group of Doubly Extended Lie Transforma-
tion Groups. In Art. 13, we have extended the concept of adjoint groups ([16],
p.450) of a Lie transformation group doubly to the case of the adjoint doubly
extended group of a doubly extended Lie transformation group G.

I. We shall first study the adjoint doubly extended transformations
-~ . (m)
e=§(cc -, c) é,

where the ¢’ are those, which we have considered in [27.4).
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Since

-

(31.1) xt(f)=e't+ct, (ct=const.)

Jor the 1l-geodesic curves in the manifold, the and (27.7) ‘-may be rewritten
as follows:

- . m) ~ - . m) ~ -~
(31.2) dét=¢%(x, %, --- x) et dt §'=E(x, %, - x) (e*t+ch)+ ¢
=e' di, =e't+cl, (c!=const., ¢*=E}),
so that
- . (m) ~ . m) ~
(31-3) ei(x,x, ""x;e';:ez’ Etl(x,x’ -n,x)c§+¢':‘=c‘,

whose inverse transformation is
-..‘ . . (m) : . .
=6t (x, %y« x) ¢ +&5 (Si=—61 §o)-

) Zi‘:&(x,’&’ ey X) e.
Thus

(m) 1

A T
undergo the doubly extended affine transformations
31.4). | (31.3). | BLa | (31.3).

II. Next we will consider the general case. Let us denote the operator
corresponding to
(m)

(31.5) di=fi(x;a(x %, %))
by X:.f. Then we shall have
(31.6) e’ Xnf=e"* X",

where ¢’* are certain functions of
als a2, ey an, ela eza ey
by virtue of 31.4).
If we set f=x* in [(31.6), then it results that ‘
. (m) , .
(31.7) &% -, )= X312, (i=1,2,..-,n)

- . (p)
If we give n determinate values =z, (p=1,2,---,%) to x%, then x'* becomes
functions of al, a?, ---,a’. Thus we obtain

. (m) . m)
@ (» » p) (p) Ep) oxt
(31.8) e &i(x, x, o, x)=€" T (%, %, -+, X) —r] -
ox’  fmat
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@
Thereby we assume that » values (p=1,2, ..., 7) of % have been so chosen that

(m)
(» @ (p)

(31.9) | €5 (%, 2, «++ 5 x| #£0, (1=1,2, .-, m).
Let 5’( ) be a matrix such that
(31.10) 5’( )5’( ) 8]  (p:summed;i:not summed),

and multiply with &/ (x) and sum the result with respect to p. Then we
obtain

n . (m) P~ Oyt
J—pl §l=p'l &% (5 3] ox .
el=e di=e"t &% (), 4,0, X') Bl (x) ax’k],,¢=,¢’ (p: summed)
i.e.
(m) (m)

(31'11) e"=|0{(a(x>x’ -, x))e'l, (le(a(x, Ji‘"""-‘t))l * 0)1

where
. . (m) . (m) (2X(P) ( )
(31.12) o (a(x, %, -, %)) =85 (x, %, - x) & ( ;2, X X [3x”‘] L (p: summed).

(m)
If we denote the inverse transformation of (31.12) by p'(a(x, &, -+-, 1)), then

we have

m)
P’f(a(x,v":', ot )) k( (x’x’ ))=5£’
(31.13) e -

ok (a(x, %, -, %)) o (a(x, %, - ))=,5z’
and
(m)

(31.4) e'l=pl(a(x, %, ,x))e’
That forms a group, may be proved as in the case of ([16], p.452).

32. Adjoint Doubly Extended Transformation Group in terms of the Non-
Local II-Geodesic Parallel Coordinates. The becomes

(82.1) e thEe‘g—-g:—=e" XifEfz"—a—as—'{%,

when £ and &'* are respective doubly extended II-geodesic parallel coordinates,
such that

(32.2) GU=FL(E, 8, e 08,  EI=E(E, Y, BN e,
If we set f=§, then we obtain

el=e/di=¢i 2 ag 7 €L (&, € ,(g’);

from i e.
. (m) - . (m)
(32-3) e=e' E}l(': ,El3 "'35’), e"=51k (Scs 59 '"36) ex.
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Thus & (&, &, -, &) and B¢, é, - &) themselves play the rbles of o}(a (€&, -, &))
m)

and (a8, 6, -, 8)in [BL.I1] and (31.14) respectively.

33. The Canonical Equations of 7-Dimensional Doubly Extended Lie Trans-
formation Gronp. The following theorem is an extension of a [Theoreml ([16], p.
454, Theorem 32) of Sophus Lie.

TueorREM. If
(33.1) X'i=xi+e lex’:+21‘|,efe‘ X; Xy aiAeen

be the canonical equations of an r-dimensional doubly extended Lie tranformtion
group X,f, Xof, -, Xof in n variables x',x% .-, 2" and if we apply the trans-

Sformation (31.4), then the transformations (e, e .-, e") are transformed into (¢', €%,
-, €") by the transformations

(31.14), } (32.3),

where

(m) ]

- . (m)
i(ps(a(x’x3“"x))!¢o' !5%(5969"'95)[*0'
The transformations

(31.14) [ | (32.3)

constitute a group and the relation

(31.6) { ' (32.1)

holds.

The part concerning may be proved quite as in the case of ([16], p.
454, Theorem 32).
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