ON CHARACTERIZATIONS AND UNDECIDABILITY OF THE
FIRST-ORDER FUNCTIONAL CALCULUS

JuLiusz REICHBACH

In publications [8], [9] I have presented some semantic characterizations
of theses of the first-order functional calculus.

In connection with ones the present paper describes more strong characteri-
zations of the theses:

1. By means of new proof rules which kind is different from the usual ones, we
obtain an important syntactic characterization; in this way we reduce the
decidability problem to consistency of families of sets of atomic formulas such
that indices of variables occurring in those formulas are <31

2. In connection with the syntactic characterization we obtain new semantic
characterization which shows that in the decidability problem we may restrict
our considerations only to families of models which domains have <3 elements,
s. [14] 2

3. We explain two ways for decidabling of formulas: syntactic and a semantic
one.

4. In connection with 3 we introduce an algorithmic language based on 1-—1
Turing machines and describe a simple proof of the undecidability theorem
in the given language.

5. We show other ways to such results according to present conclusions.

As a simple corollary we obtain Gédel-Kalmar’s theorem about decidability
of theses Ya, Xa; Tay--11a, F, where F is quanifier and free variable-free ex-
pression and simultaneously, the decidability of the monadic first-order functio-
nal calculus.

We shall use the terminology of [8], [9] and in particular:

(01) free individual variables: x,, xz, --- / simply x/,

\ /

(02) apparent individual variables: a,, a,, --- /simplya/,
(03) finite numbers of relation signs: f1, -+ fi; -5 f% -+, fi [f—of m arguments,
m=1,---,¢ and 7=1, ..., q],

(04) logical constants: [negation], + [altcrnative], I7 [general quantifier],

1 Consistency by respective proof rules; we use here a generalized definition of sets of atomic
formulas and models; therefore it is not inconsistent with the undecidability theorem.
An expression in which an apparent variable @ belongs to the scope of two quantifiers 7a
is not a formula; if @ does not occur in E, then //aFE is not a formula.

2 See footnote 1.
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(05) expressions; E, F, G, E, Fy, Gy, -+

(06) w(E)—the numbger of different free individual / p (E)—apparent / variables
occurring in the expression E,

(07)  {Kn}—the sequence K, -, Kn; {Ki,} —the scquence K,y K, s {Kg) —the
sequence K}, ,K};-; Kty -, K,

(08) {Z,cm} or {j,m}—indices of all frec variables occurring in E,

(09) #n(E)=max{w (E)+p(E), max {7,u]}}

(010) E(u/z)—the expression recsulting from E by the substitution of # for each
occurrence of z in E; if z is an apparent variable, then 2z does not belong in
E to the scope of I1z; if u is an apparent variable, then 2z does not belong to
the scope of I/u in E,

OL1) E ({jm}/ (imh)=E (1, /%0103, %1,), u=2, 0

(012) Sks—the set of all formulas of the form:

Iay---Mla; Sagsy---FacF3, where F is quantifierless expression containing no free
variables, ITay is the sign of the universal quantifier binding a; and 2a;G=(lla;GY,
j: 1., k’

(013) C(E)—the set of all significant parts of the formula E: HeC(E). =* H=E
or there exist EycC {E} and F, G, H, such that:
(H=F)A\(E,=F)Vv{{H=F)V(H=G)}A\E,=F+G)V(3i){H=H\(x:/a)} AN(E\=1]aH,),
Of course, €ach significant part of the formula E is a formula,

(014) M, M,, M,, ---—models; T, Ty, T3, ---,—tables of given rank,

(015) @, Q°, Qy,---—non-empty scts of tables of the same rank &,

(016) A, Ay, As,--—sets of formulas which indiccs of individual variables are<k; A
may be empty,

(017) S,—the set of all individual variables which occur in elements of A ;if E
is an expression, then Sz is the sct of individual variables which occur in E;if
clements of S, are all individual variables with indices <k, then we shall say
that A has the rank &,

(018) B, By, B;,---—families of sets defined in (016) such that if AeB, then A has
the rank £ and for each atomic formula E and its negation if S;cS,, then we
have; Fe A.=.E'¢ A; if elements of A’s only are atomic formulas, and their
negations, then we call them “families of the rank &,

(019) (K)—for each K;(3K)—therc exists K such that, ({Kn}) —for each {Kn};

3 It is Skolem’s normal form.
4 Dots separate more strongly than parantheses.




ON CHARACTERIZATIONS AND UNDECIDABILITY ’ 13

(3 {Km}) —there exists {Kn} such that,
For brieviety we shall assume that we consider only A’s and B's of a
given rank 5.

The pair <D, {F:}> denote a model ; i.c. that the domain D is an
arbitrary non-empty set and {F:} is an arbitrary finite sequence of relations
such that F} is a me-ary relation on D, k=1,---,q and m=1,---,¢ A table of the
rank £ is a model which domain has exactly & elements which are numbers
<k; in the following we shall only consider models which domains are cosets
of the set of natural numbers, i. e. 2<R,.

For each model M=<D, {F{}> by M/s;,+, 5./ —or briefly M/{s;}—we
shall denote a table <D, {¢:}> of the rank % such that for each Vi oo T <R

7 (1152 s Pm). = F5(Srp, 005 8r,), 1S, 1<j<qb.

- We shall also assume that if s;€ D, then:

M/sy, - S/ =M/Sy, -+ 5 St1y Set1, *+* 5 Si/ 5 1< K.

Of course, M / {sx} is a submodel of M in the meaning of homomorphism.

D.0. Ee A/sy, s/ =.(E({sc}/{k}) e A)A(E is an atomic formula or its
negation) ‘

Obviously, if s;€s,, then:

AlS s 3 Sim1y Sty 3 S/ =A /Sty 00, 8% /.

We shall assume: A/ {sc}=A /51,8 /.

In the following X, Y, X,, Y}, --- denote a model or a set 4, and U, V, -
denote @, or B.

Of course:

L. 1. X/ {s}/{jm}=X/{ss,}

L. 2. If sy, 84, Sia1, +** S5, Ss41, -+ Sm 18 a sequence of different natural num-
bers and X / {s:}=X:/ {s:}, then there exists X such that X/ {s;}=X,/ {s;} and
X/ (st} Ssa1, 00 s Sm/ =Xz / {St}s S3415 225 Sm/.

D. 1. R X). =.({én}) ({jm}) ((X/ {tn} =X/ {jm}) 2 =FIN - A(En=]m)}

Rn(X) asserts that X/ {#sm} are different for different sequences {in};
obviously, if R, (X), then R, (X) for all m?.

Of course, if Ry(Y), then the operations Y /{s:} gives only different
elements.

5 The assumption is not necessary in genecral.

i. e M/sy, -+, se/= <Dk, {p} > :if {sc} is empty, then it holds for all models.

7 This assumption may be replacd by : E is a quantifierlees formula, E is an arbitrary
formula and other corresponding sets.

8 Examples of Rn (X) may be easily given, see [8], [9].

(2}
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D. 2 XY [k]. =.(3 {se)(X=Y/ {s6}).

Y [£] is the set of all Y/ {sc}.

By an extension of a model <D, {Fi}>we shall call a triple <D, {Fi}, F>
such that F is a function on B and values of F are sequences of numbers 0 and 1
with one number 1 (e.g. given in (L)); such triples we shall also name models,
and shall use all notations given above.

(L) Let <B, {Fi}> be a model and s, s;, - ,s;, --- be all different elements
of Bj; let F(s)=(wy, ws, -+ s, +++) and wi=1. = .s=s; i.e. wy=0 for j=i.
Let M=<D, {Fi},F >; of course R, (M) and therefore also R (M) for all m.

Here M [k] has the following property : '

There exists only a finite number <2%’ of tables belonging to M [k] which
differ on relations of the model <D, {F& >

By an extension of A we shall call a set A° such that:
1. AcA°,
2. There exists a function Fe A° defined on S, with values which are sequences

of numbers 0 and 1 with one number 1, see (L),

3. Only elements defined in 1. and 2. belong to A°.

If A has the rank k&, then we shall say that the extension A° of A also
has the rank & and we shall use all notations described above.

In view of (L)—if we replace <D, {F{}>by A and M by A°, and D by
S,:

L. 3. Each X may be extended to Y such that R,(Y); there exists only
a finite number <2%*° of elements of Y [k] which differ themselves upon
relations of the calculus®,

By a coelement we shall call a coset or a submodel; X (&), U (R)y »+-— we
shall read “X, U, ---—has the rank ¥’ ;v (X), v (U), --- —denote the rank of X, U,-;
{<s»} —we shall read “s;<s,<--- <8 .

D.3. UX/{se}. =. (k<o (U} AQRY) (3 {&}) (YeU)AY / () =X/ {se})} .

UX/ {sc} asserts that X/ {s¢} is a coelement of some element of U in the
meaning in homomorphism.

9 They are different upon the added function F; another construction of extensions is given
in [8], [9] and it replaces the function F by a sequence of monadic relations.

10 If U has the property 2 (U) defined:
kU). =.(X) ({&}) {(XeU) N\ ({t} is a sequence of numbers < v (U)) — (X / {t}eU)},
then {ix} in D. 3. may be replaced by {s¢} ; if {s¢} is empty, then UX / {si}
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Of course:

L. 4. If UX/ {s¢} and {im} C{sx}, m<k, then UX/ {in}.

D.4. U{r}.=. UNANX){XINAUX/{r—=1}ANUX/r->@Y)(UY / {r}AY(7)

A= {({zm} C{PDA (L} NUX [ {im} = (X / (i} =Y / {im})})}

U{)r} asserts that for all X(r), if X/ {r—1} and X/r are coelements of
some elements of U, then there exists Y (r) such that ¥/ {r} is a coelement of
some elment of U and for each {<in}, if {fw}C {7} and X/ {im} is a coelement !
of some element of U, then X/ {in} =Y / {in}.

If U only has one elemeut X, then instead of U {r} we write simply % {r}.

L. 5. If U{r}, then:

(B) ({se}) (X)) { X (B)A({sk} are different numbers<BIAUX/ {sr-1} NUX / s:ANr<k)>
AY WY RAUY / {s;} Al{tm}) {({n} are different numbers <E)A({im}C{s/;})) ANUX/
{En} =X/ T1y oo s lomy Sty o+ 5 Sk / =Y [ 81y 00y iy Sra1,++ 5 Se /D))

L. 5. follows from D. 4. by using many times of L. 2; if in L. 4. we have

UX/ {s;}, then Y=X,

Of course:
L. 6. If R, (X) anb U=X[r], then U {r}.
L. 7. If we only consider the monadic first-order functional calculus and

U=X{[r], then U{r}.

L. 8 If r>2 and U=X{[r], then:

1. If X(k),7,7 < k,UY /i, UY/j, then there exists X, (k) such that UX, /4,7 and:
Xi/1l, -, i—Li+l, - k/ =Y /1, i—1 i+l R/,
Xl/l,...’j_l,j_i.l,...,k/ =Y/ 1,-",j—1f+1,"-,k/.‘2

2. 1742},

3. For each X wehave X {r}.

4. If X is not an extension with added function F, see p---, then for each &
there exists a coelement Y of X such that X[k]=Y [k] and v(Y)<k2""“.

D. 5. H//E.=.(3{F})(E=Fi+ - +FR+H+Fiyy+ - +F)AF)(G)HxF+G).

D. 6. UX/E.=.3n(wU=nAH){j}){{i}{twn} ) NH//E->UX/
{jr}}

D.7. E/XY.=.{(v(X)=v(Y))A(max {fm} <min {v(X), v (Y)D)} AH)
{H/] EAX [ {bwar} =Y / {twm})}.

11 In the meaning of homomorphism.
12 L. 8 asserts L. 5., for =2, in more strong form. If UY/i,j, then X,=:Y.
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The sense of D, 5.—D. 7. is clear:

We give an inductive definition of the number e (E), which has an impor-

tant role in the following considerations:

e(F)=0, if F is a quantifierless formula,
e (F+G)=max {e(F), e (G)},
e(llaF)=e {F (x/a)}, where x ¢S5,
e(ZaF)=w (F)+1, if e {F (x/a)} =013,
e (YaF)=e{F(x/a)}, if e {F(x/a)}+0 and x¢ S,
If e(E) is not defined above, then e(E)= max {e(G)}, for each GeC(E),
where if G=IlaH, then e(G)=w (H)+1,e(F')=e(F) e(F+G)=max {e(F),
e(G)}.
For examle:
(1°) If EeSkS and E'=2Xa,---Ya; l1aiy,---11aiF, for some F, then e(E')=i,
(2°) If E={llaf7(a, %3, +** s Xm)+ (%1, -~ , Xn) }, then e (E)=m,
(3°) e(E)YSw(E)+p(E)<n(E),
(4°) e(E)=0.=.E is an alternative of formulas of the form [7a,---Ila,F, where F
is quantifierless on alternative of generalizations of such alternative sets.
For an arbitrary T=<By, {Fi}> of the rank k&, for an arbitrary formula
E which indices of free variables occurring in it are < 2 and for an arbitrary
non-empty &, we introduce the inductive definition of the functional W:
(1d) WAT, f7(%r)s - %0, QY=L = . FF (11, -+ , ¥m),
(2d) W{T,F,Q}=1.=.x» W{T,F,Q}=1.=.W|{T,F,Q}=0,
(3d) WI{T,F+G,Q}=1.=.W{T,F,Q}=1vW{T,G,Q}=1,
(4d) W{T,IllaF,Q}=1.=.0) (T) {(<EAF/TTiAQT\/F (x:/a)* A\ Ty (k) > W {T,
F(xi/a), Q}=1}.
D. 8. EeP(Q,T).=.T{QT/E-W|{T,E, Q}=1}.
D. 9. EP(r).=.@Q (T){Q(r}AT#n(E))»EP(Q,T)))
D.10. Ee¢P.=.EcP(e(E)).
We explain the meaning of ones:
1. W{T,E,Q}=1 may be read: T satisfy E relatively to Q.
2. If M is a model and Q=M [k], then the elements of Q are submodels of M
in the meaning of homomorphism, the number 7 in (4d) is a name of an
arbitrary element of the domain of M and in D. 8.—D. 10. we associate to

13 If e {F(x/a)} =0, then e {F (xi/a)} =0, for each i.
In exact given cases ¢ (E) may be less than defined above.
14 We may replace here F/TT, by T/{iym} =T1/iwcm} sce [8], [9], [14.]
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each formula a pair of numbers and assume that we only consider submodels
of M.

3. Obviously, if E is quantifier-free, then EcP. = .E is true.

4. We shall prove that P is the class of all true formulas, see T. 7.

Of course:

Bd) WI{T,F+G,Q}=0.=.W{T,F,Q}=0AW{T,G, Q}=0,

(4d") W T, IaF,Q}=0.= .3 (3T ({<HAF/TTIAQT./F (x:/a) NT:(R)AW { T,
F(x:/a), @} =0},

@d’y W{T,=aF,Q}=0.=.6(T\){GSRAF/TTiAQT,/ F(x:/a)ANT (k) —> W T,
F(x:/ a), Q}=0}.

(5d) EéP.=.3Q)(AT){Q {e(E}NT (n(E))ANQT/EANW {T, E,Q}=0}.

L. 9. Let E° results from E by replacing free variables with indices
i1, **+ 5 i,z conespondingly by free variables with indices jy, -, juwo, W(E)=
w(E®°) 15 and T, T° tables such that for some %k > n(E) and some m > n(E°)
we have: T(k), T°(m) and T/ {iuu}=T°/ {joun)

Then:

WI{T,E,Q}=1.=.W{T° E° Q}=1.
The proof of L.9. is easy and is inductivel on the length of the formula E,
see [8],[9].

D. 11. M(A,Q).=. (E){(EcA)»W (M, E, Q}=1}.

M (A, @) may be read “M is a Q-modcl of A”.

Let M=<D,{F!},F>and v(M)>v(A); wc shall write M{A} if and

only if for each my,--- ,m; <v(A) and j<¢,7 < g we have:
1 Flmy, - ,my). = .1 (Zm, 5 Im)) cA.

2. U Sfi(Xmg sy Xm)) €A, then f{’(xm1 500y Xm) cA.

3. F(r)=F(x,.

L. 10. l'or each k> 1:

(1) for cach M, if £ < v(M), then the model M determine A such that v(A)=Fk
and M {A}.

(2) for each A, if &> v(A), then the set A determine M such that v(M)=*Fk and
M{A}.

(3) If M {A}, scc both cases (1) and (2), then M (A, Q) for each non-cmpty Q.

L. 11. If A(¥) and T=M/1,---,k/, then T{A}. =.M{A}.

L. 12. If v (M)=v(M,),v(A)=v(A:), M, {A,} and M: {A.}, then:

It M,/ {i}=M,/ (i}, then A,/ {is}=A:/{is}; il also dy,-, i < v(Ay), then the
last implication may be replaced by the equivalence.

15 Then E results from E° by an inverse substitution.
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D. 12. Q{B}. =.(A)(IM) {(AeB)>MQ) A M {A}} A (M)(3A) {(MeQ)~{AeB)
AM{A} }.

L. 13. If Q(B) and r=v(B)=v(Q), then: B{r}.=.Q(r),

The proof of the above lemmas is immediately.

For an arbitrary number % we shall assume that the sequence of different
elements |
(K) Ay, Ay, -+, Ay, - |
includes all sets A of the rank k1!%; i.c. we assume that we enumerated all .
sets of the rank %2 which we have a denumerable number.

Because we only consider the enumecration (K), therefore we shall sometimes
omit indices of A's.

For an arbitrary A and B; and for each formula E we introduce the
symbol A, B~ E which we read. “the formula E is a thesis of A respectively to
B”

(11) A, B F, for each formula FeA,
(12) A, B+ F+F'. lor each formula F,
(13) If A,B+ Fi+ i +Fn and ky, -+, ka is an arbitrary permutation of numbers
< m, then 4, B+ Fi +-+Fe 1.
(14) If A,B+ F and G is a formula, then A, B+ F+G,
(15) If the following conditions are satisfied :
(1°) A,B+ F+G,A, B~ F+G',G occurs in F or w(G') < e (I7),
(2°) If B is non-empty, and G” does uot occur in F, then for all AY, if v(AY)
=v(A),F/A°A and BA® /F+G’, then A°, B+ F+G and A% B\ F+G',
then A, B F18,
(16) If the following conditions are satisfied :
(1°) A, Bt I'+G, xméSy;
(2°) If B is non-empty, then for all A°, il v(A°)=v(A), '+ !laG (a/x.)/ A°A
and BA° / F+G,then A°, B+ F+G, '
(3°) If B is non-cmpty, then for each xS,y we have A, B ['4+G (x/%n),

then A, B+ F+1laG (a/%m).

16 See footnote 19; for an arbitrary B we may assume that we only consider such /’s that
(3s) (BA/s).

17 By a simple modification of D. 13. the rule (13) may be replaced by two usual laws, sce
[8]

18 In the first reading the reader may assume less strong form of the rules.

Here also A°, B F.

In (17) we may also assume only w (G) < ¢ (F) instead of w (G) < ¢ (F).
All considerations remain truc if we replace in all rules the number ¢ (F) by the number
¢ (£) which occur in D, 13.
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(17) If the following conditions are satisfied :
(1°) A,B} F+1laG and w(G) < e(F),
(2°) If B is non-empty, then for all A°, if v(A°)=v(A), F+G (xn/a)/ A°A and

BA° / F+llaG, then A°, B F+1laG,

then A, B+ F+G (xn/a),
(18) If the following conditions are satisfied :
(10) Sy+G (xm/a) c S,
(2°) If B is non-empty, then there exists A° such that v (A®)=v(4),
F+2aG [/ A°A, BA°/F+G (%n/a) aud A, B+ F+G (4n/a),
then A, B+ F+2aG.
If B is empty. then:
(1) The rules (12)—(15) are proof rules of the propositional calculus.
(2") The rules (12)—(17) are proof rules of the first-order functional calculus.

D. 13. The doubly sequence Ei, +++, Ein;, i=1,2, -+ is a formal proof of thc
formula E in Aj; respectively to B if and only if E=Ejm,j=1,2. - ,e(E)>e(H)
for each H occurring in the formal proof, and for each {=1,2, .- and k=1, -, 1y
onc of the following conditions is satisfied:

1. Eu is an element of A, see (K), or Eyx=F+F’, for some F,

2. There exists I < £ such that Ej reshlts from E;; by meaus of one of the
rules (13), (14).

3. There exist I, #<k such that E; results from E; and E.. by means of the
rule (15), ¢=1,2, .-

4. Eu results from the doubly sequence E., -, Eck-1,6=1,2,+- by means of
the rule (16) or (17).

5. There exists ! < k and » such that Ej results from E, by means of the
rule (18). .

D. 14. The formula E is a thesis of A; respcctively to B—in symbols: A,
B+ E — if and only if there exists a formal proof of E in A, respectively to B.

The usual defiuition of the thesis we shall obtain by:

D. 15. The formula E is a thesis—in symbols: — E—if and only if E is
a thesis of A; respectively to B, for some ¢, and A, B are empty.

(For the propositional calculus, B in D. 15. may be arbitrary.)

By an interval E;; of the doubly sequence Ej, - yEgm,j=1,2,---, we shall call
the sequence Eyy, -, Es_y.

D. 16 The formula E is a B—thesis—in symbols: B+ E—if and only if

19 Therefore it suffices to consider in (K) only Aj; with the condition given in D. 16. and
footnote 16,
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for all j=1,2, .-, if v(A;)=n(E) and BA;/ E", then E is a thesis of A; respecti-
vely to B.

D. 17. The formula E is a r—thesis if and only if for ecach B, if B{r},
then E is a B—thesis.

'Dy 18. The formula E is a e—thesis—in symbols: -eE—if and only if E
is a e (E)—thesis.

Of course:

T. 1. If E, then for each j=1,2,-.-, we have: Ay, B+ E; therefore also
 eE.

The basis of a converse theorem is:

T. 2 If A;,B-ET(A;,Q),Q{B},Q {e(E)}, B(e(E))and v(T)=n(E), then
EP(Q,T)

T. 2. may beread: If T isa @—modcl of A;,Q {B},Q {¢(E)},B(e(E)) and
v(T) > n(E) and QT/E, then T is a @—model for the thesis E of A, respectively

to B.
Proof: Let the assumptions of T. 2. hold; therefore in view of L. 13.

also B{eE)}.

Let Eg, -y Einy £=1,2, --- be a formal proot of the formula E in A; respec-
tively to B.

In view of D. 13. we may assume that e (E) > e¢(H), for each H occurring
in the formal proof given above.

First of all we consider the casc r=e¢(E)>0; in this case we shall prove
T. 2. by induction on s=n;—simultaneously lor all i=1,2, ...

Of course, if n<s and Ey=F+I" or Ep,c¢A; then in view of the
assumption, T. 2. holds.

In view of D. 13. it suffices to verify :

(1) If Ei results from Ei, k<s, by mcans of the rule (13) or (14) and T.2.
holds for Ei, then it holds for Ei.

2V If Exm=F+G,Ex=F+G’,G’" occurs in F or w(G)<e(F)<r,E;=F,m,k<s,
and for for all [=1,2,..-, if F/A,A:;, BA,/F+G and G’ does not occur in F,
then Egpy=F+G and E;;=F+G’, and T. 2. holds for all #<s, then it also holds
for s. '

(3") If Ew=F+G, xn€Ss, k<, E;s=F+11aG (a/xm), formulas F+G (x/%x,) occur in
the interval Ey for all x¢S;,.,» and for each 1=1,2,..., if F+IlaG(a/xn)/
A/A;: and BA,/F+G, then F+ G occurs in the interval E;; and T.2. holds for
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n<s, then it also holds for s.

4) If Ex=F+laG,w(G)<e(F),Eis=F+G (xn/a\ k<s, and for cach /=1,2,---,
if F+G(%¥n/a)/ AiA; and BA,/F+11aG, then Ey=F+IlaG, and T.2. holds
for n<s, then it also holds for s.

(5") If Sriceryiay C Sayy Es=F+23aG and there exists I such that F+2XaG/A; A,
BA,/ F+G (xn/a) and E=F+ G(%n/a), for some k<s, and T.2. holds for n<s,
then it alsv for s. '

First of all it is obviously that (1’) is true.

2'. Let the assumptions of (2') hold and W {T?, F, Q}=0, for some T° such that

QT°/F and v (T°)> n(F);hence T° {A{}.
The case G’ occurs in F is immediately.
Therefore it suffices to consider w (G') < e (F) < r=e (E).

In view of the above and L.2 there exists T such that F/TT°,QT/F,
v(T)2n(F+G)=n(F+G",QT/c for all ¢ < v(T) and v(T) > v (Ao.

Because QT/F and QT/c for all ¢ < v(T), and @ {e(E)}, therefore using L.
5. we conclude that there exists T; such that »(Ty)=v(T),QT,\/G" and F/T\T.

Hence by virtue of the above,(32’) L.3. and L. 9. we obtain:

W{T,F,Q}=0,QT,/F+G+G' and therefore either W {T\,F+G,Q}=0 or
W{T,F+G,Q}=0; i.e. either F+GéP(Q,T:) or F+G' ¢ P(Q, T))

Because in view of L. 10. there exists / such that 7 {A:}, therefore by virtue
of L.12, @ {B}, T° {A{} and v (@)=v(B) we have F/A; A, and BA/F+G+G';
because in view of the above and assumptions of (2') formulas F+G and F+ G’
occur in the interval E;; and T.2 holds for ones therefore we have a contra-
diction with the above conclusions.

3. Let the assumptions of (3') hold and W {T, F+17aG (a/%a), Q} =0, for some T
such that QT/F+11aG(a/xm) and v (T) > n(F+1TaG(a/xm)); hcncc'T{A,}.

In view of L.9. we may assume v (T) > n(F+G),v(T) > m and v(T) > v(A))

By virtue of (3d') also W {T, F, Q}=0, W {T, I1aG (a/xn), &} =0.

Therefore by virtue of (4d’) there exist ¢ < v(7T) and T; such that v (Ti)=
v(T),Ga/x2)/TT,,QT/G (x:/xm) and W{T,, @, G (x:/2m)} =0. Hence, if x; ¢ S,,-(,,,,m),
then in view of L.9. and (3d'): W {T, G(x:/xm), Q}=0 and W {T, F+ G (%1/%n),
Q}=0; therefore in view of the above F+G (x:i/%m)€ P(Q, T) and this is in-
consistent with the assumption of (3'), because F+ G (x:/xm) occurs in the interval
Eis-

Therefore it remains to consider the case ;€ Sgu/r,»; in view of L. 2./we
may assume G’ (a/xn)/TT,s. footnote 14.
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Let
Tz { T, if i=m
ATy, i, my it L, e =1 i, m+ 1, - 0 (T) /, if i < m.

(We note that # > m, then we permute ¢ and m.)

Hence by L. 1. T2/ {tww}=T1/ {fwcw=,»} i/, where {fuw} = {fwa@izn} M.

Therefore in view of L. 2. there exists T° of the rank v (T') such that T° / {#uw@)}
=T/{twe} and T°/ {jwm} = T/ {jwer} Because QT /G (x:/ xm), therefore the
above proves QT°/F+G and by L.9. and (3d') W {T°, F+G,Q}=0; hence F+
GeP(Q, To.

Because in view of L. 10. there exists I such that T° {4}, therefore by
virtue of L. 12, @ {B}, T {A:} and v (Q)=v(B) we obtain F+11aG (a/x)/A: A; and
BA,/F+G; hence F+G occurs in the interval E: and analogously to (2') we
have a contradiction.

4'. Let the assumptions of (4') hold and W {T, F+G (xn/a), Q}=0, for some T
such that QT /F+G(xm/a) and v(T) > n(F+G(xn/ a)).

In view of L.9. we may assume v (T)>n(F+17aG) and v (T) > v (A)),

Hence by (3d') W{T,F,Q}=0 and W {T, G (xn/ a), @} =0.

Therefore in view of the above and (4d"), W {T, I1aG, @} =0 and by (34’) W {T,
F+1lag, Q}=0.

If G is not an alternative of some formulas, then in view of the above and
L.4. also QT/F+11aG and therefore F+17aGé P(Q, T) which contradicts with
the assumption—because F+I1aG occurs in the interval Ej,.

If G is an alternative of some formulas, then by virtue of w(G) <7 and
L.5. we obtain that there exists T such that v(7)=v(Th), QT\/F+1TaG and
F+G (xm/a)/ TT,, and also QT\/G (xn/a).

Therefore in view of (34’), L. 9. and the above W {T, F+G (xm/a), Q} =0, and
by (8d),(4d") W {T\, F+11aG, Q}=0; therefore also F+11aG ¢ P(Q, T,). By virtue
of L.10. there exists / such that T, {A;}; therefore by virtue of L. 12, @ {B},
T {A:},v(Q)=v(B) and the above F+G (¥m/a)/A;A; and QA,/F+11aG. Therefore
in view of the assumptions of (4’), F+I1aG occurs in the interval E; which give
a contradiction with the above conclusions.

5. Let the assumption of (5') hold and W {T, F+2aG, Q}=0, for some T such
that QT/F+2aG and v(T)>n(F+2aG); hence T {A:}.
In view of L.9. we may assume v(7T) = n(F+G (¥n/a) and v(T) > v (A).
By virtue of (5') there exists / sueh that v(4,)=v(A), F+2aG/A,A,,
BA,;/F+G (%n/a) and F+G (xn/a)occurs in the interval Ej,.

In vitew of L. 10. there exists T° such that »(7°)=v(T) and T° {A.}.

Because Srige,/: C©Sa, therefore in view of L.12. @ {B}, T {A¢}, v (Q}=v(B)
and the above we have F+2aG/T°T,QT°/F+G (¥n/a). Hence and in view of
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L.9, (3d") and the above W {T°,F, Q}=0 and W {T", YaG, Q} =0; therefore by
4d")W {T°, G (¥m/a), Q}=0. and by (3d’) also W {T°, F+G (%m/a),Q}=0 and
F+G(xm/a)€ P(Q, T°).

Because F+G (xm/a) occurs in the interval Ei, therefore in view of T°{A;}
we have a contradiction with the assumptions of (5".
In view of the above and (4°), p. 50, the case e (E)=0 is obvious; g.e. d.

T. 3. If E’ is not a thesis, then there exists a set / of formulas such that

Ee¢J and:

(1) Fe].=.F'¢], for each F'.

2) F+Ge].=.FcJvGc], for each F+G.

(3) MaFe].=.(i) {F(xi/a)e]}, for each TaF.
The proof of T.3. is given in[5] and [7].

T. 4. Let J be the set defined in T. 3. and Ee¢]; let EcSks, FeC(E), k=
n(E)> n(F) and B=] [e(E')]; then:

Ln If k=v(A),J/ {s‘ww)}:A/{i"'(F)} and F({Slw(F)}/{iw(F)}) €], then A, B F.
(2) B E and E’ is not a 2—thesis.
(3) If R,(J), then it is not true that - eE’.

Proof: — First of all we note that (2) follows from assumptions, T.2,(1)
and L.8.;, we note here that each B(k) determine Q (k) such that @ {B}.

Howewer (3) follows from (2), L.6. and T.2.

We shall prove (1) by induction on the number of quantifiers occurring
in F. If FeC(E) and F is quantifierless, then (1) holds; we note here that A (k)
and if it is not true that A, B+ F, then in view of the deduction theorem for
the propositional calculus and T.3. (1), (2) we obtain a contradiction. '

Therefore it suffices to verify that if (1) holds for F(x:/a)C(E) then it
also holds for formulas belonging to C(E) of the form :

(1) 2aF,
(2") IlaF.

In the case (1) by virtue of the assumption, T.3.(3), L.L and definitions
we obtain:

If 7/ {34,,,(F)}=A/{iw(r)} and TaF({s: .}/ {fuem]) cJ, then (38)(3s) {E < B A
(%ESRINF (2:/) (151 oo}/ linco) (a7 ]}, then (38)(350 (34°) ((P<B) A (5iES7) A
/{815y bs 81/ =A%/ {iuers}s £ NAF (£:/@) ({81, gy} e }) (¥t / %) cJ)NBA® [F(x:/ a)},
then (37)(3A°) {({<kA(xiéSHAYaF/ A°A N\ BA°/ Fixi/a) N A°, B+ F(x:/ a)};
therefore in view of (18): A, B+ X aF.

) /
20 i.e. here BA®/{iwm},i and A°/{iwm},i/eB; we consider here E’ as Skolem’s normal
form for theses.
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In the case (2') by virtue of l/aFeC(E), Ee Sks, T.3. (3), Ec], B=J[e(E")]
and of the assumption we obtain that for an arbitrary ¢ < k£ and each A° such
that v(A°)=v(A)=k and BA°/F(x;/a)* we have A°, B\ F(x:/a); therefore in
view of (16): A, B\~ IIaF for all A such that BA /IlaF; q.e.d.

T. 5. If Eis a r—thesis, r > ¢(E)>0, then it is a 74 1—thesis.

Proof: — Let B {r+1} holds and let

AcBy. =.(3A°)(3 {t:}) {{A%B)A(ts, - , t,<r+)A(A=A°/ty, -+ 1,/)}.

It is‘easy to see that B, {r} and in view of D.4. if B, - E, then B+ E;
q.e.d.

L. 14. For each formula E which has no free variables may be written
down a formula F=G’, for some GeSks, such that E’'+F is a thesis and E
is a thesis if and only if F is a thesis (it is possible to assume e (F) > ¢ (E)), see [2].

T.6. —E.=.| eE.

Proof; — In view of T.1. it suffices to verify:
(1) If - eE, then - E.

In view of (4°),p ---, the case e (E)=0 is obvious.

Therefore we shall only consider the second case e(E)>0.

The sign “ i ” we shall read: not .

We are giving the proof of (I) for sentences:

Let - eE holds and let i E; let F be the Skolem’s normal form for E
determined by L.14. and such that e(F) > e(E); therefore i F. Hence and in
‘view of L.3, L.6. and T.3.—4. there exists B such that B{e(F)} and B F.
Therefore in view of L.14. and T.5: i eE, what is impossible.

The general case we shall obtain by simple modyfication of the above
considerations ; we also note above that B F' and use here T.2. and the follo-
wing lemma:

If T/1,-,j—1,4,j+1,--,k/=T?°, then:

WA{T,E(x:/%)),Q}=1.=. W {T°E, Q}=1.

The easy inductive proof of the lemma and all other details we remain for
the readers; q.e.d.

In view of L.10. and L.13. if v(Q)=v(B), then each @ {r} determine B {7}
and each B {r} determine some @ {r} such that @ {B}; Therefore from T.3.
T. 4. and T.6. follows.

T.7. - E. =.EcP.

T. 7. may be also proved analogic to [8],[9].

It is easy to show:
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1. T.6—7. remain true if we only consider U’s with property given in L.3. for
Y [k].

2. If EeSks and E'=23a, -+ Za; [l ag,---TapF, then E' is a thesis if and only if:
(1°) it is a i-thesis; (2°) EeP (7).

3. P(1)cP (2)c--+/ analogously to T.5./

4. The monadic first-order functional calculus and 1 -theses, 2 - theses—i.e. the
classes P (1) and P (2)—are decidable; it follows from L.7, L.8. and T.6-7.

In view of L.8. we obtain that in 4. we may only consider U oneelementong
such that v (U) < k2%, where k=e(E); one’s are analogical results to Godel’s
[1].

Because all theses of the form Xa; Sa, Ilas---ITayF, where F is quantifier and
free veriable—free, are 2-theses/belong to P (2)/therefore 4. and T. 6-7 are
generalizations of Godel’s and Kalmar's results [T], [3].

It is known, [1], [2], that the decidability of 3 - theses (of P(8)) is equiva-
lent with the decidability of the first-order functional calculus and therefore we
may restrict our consideration to B {3} and @ {3} ; and by virtue of the
undecidability theorem; which we shall describe, the function W is not compu-
table (B and @ may be infinite, see L. 3, L. 6, T. 4)

The above considerations give two possibilities for decidabling of formulas:

the syntactic way described in T. 6. and the semantic way given in T. 7, see
[13], [14]; both ways may be described in 4 propositional calculus.

The undecidability theorem is based on theory of algorithms, [15].

By an algorithmic calculation we do the following elementary operations:
1. We choose an algorithm: an alphabet, expressions and algoritmic rules of
transformation.

2. We distinguish different signs.

3. We indicate a definite sign and replace one by another sign.

4. We remember the obtained results.
Alphabet of the considered algorithmic language is composed on three signs:
o, I, s.

We explain that by means of s we shall only indicate an expression and
a sign. '

21  The considered algorithmic language is based on 1/1 Turing machines, see [3]: it is epsy
to describe another one.
In my other paper T. 4. and other conclusions are proved for the first-order functional
calulus with termes and on such basis we have a new way to the algorithmic theory.
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Expressions are finite sequence of signs: o,1,s; for example : olso, loosllos,:--

Expressions we shall denote by : p, 7, p,, 7, -
Numbers are : 0=1, 1=11, 2=111,---; e. g. 111111 denote the number 5.

For an arbitrary #, arbitrary expressions p, », and i, =1, 2,-.-, n we

consider the following algoritmic rules:

(A1) ispor —» jspsr , R
isposr — jsplsr R isplsr — jsposr,
isposr —» jspsor ,  isplsr — jspslr,
isposr — jspslr ,  isplsr — jspsor,
iSposXr = jspoxsr , isplsxr —  jsplxsr
isposxr = jsplxsr ,  isplsxr —» jspoxsr} *=0, 1
ispos — jspoos R ispos  — jsps

p,7 may be empty; exception the first, third, fourth line and the last rule
for p.

The rules (A1) assert that the antecedent of each rule may be replaced by
it succedent; th rules (A1) are not independent /e.g. the first rule and third
line depend from others/, but they describe all possibilities of a working Turing

_machine with two signs: 0,1; therefore it may be proved:

(All) isps —» jsrps, isprws — jspwrs, ispos — jspls, ispls — Jspos, isps — jspos,
ispos —» jsps, 7, j=1, -, m.
Of course, the rules (A1l) enables all intuitive algorithmic transformation of an
expression composed on 0 and 1; therefore it may be used (A1l instead 2 of (A1),

Each rule we shall call a sequent and denote by: S, Sy, -+ .

A finite sequence {S,} of consistent sequents given in (A 1l), we shall call
an algorithm, and shall denote by: f, g.fi, £1, -

A finite sequence py,---,pr of expressions is an algorithmic transformation
in the algorithm f={S,} if and only if p,=1sps, p,=0srs for some p.-r. and for
each i=1, -, R, there exists j < # such that S;=p,—p.,,.

An algorithm f transformate p in r—in symbols: »=f(p)—if and only if
there exists an alorithmic transformation p,, -, p, such that Ppi=1sps and p=
Osrs; then 7 we call the value of f in p.

It is easy to show:
If 7 =f(p) and rg=f(p), then ri=7,.

22 By means of (All) it is very easy to define addition, multiplication, +++ and to prove their
properties.
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By the definition domain D; of the algorithm f we shall call the set of all
p such that f(p)=r, for some 7.

If elements of D, has the form om0 --- m;_.,om;, where m,,---,my; are
numbers, then f we call a partial rekursive function of j- arguments.

If elements of Dy are all expressions composed on o0 and 1, then we shall
say that f is computable; if D, is here the set of all j—tuples om,0---m;_,om;
of all natural numbers, then f we call general rekursive function of j—arguments.

Algorithmic relation R is defined by an equation f=0, where f is an
algorithm ; if f is computable, partial or general rekursive, then R is respectively
computable, partial or general rekursive.

Each theory of functional calculi may be developed in the language of
algorithms:

Let us read:
2,3, 5—respectively as: s,0 and 1.
5,55 (=111111111111), 555, .- —numbers 0, 1, --- ; we shall denote §=5,1=55,.-
7,11, 13—respectively as negation, alternative and quantifier,
1701, 17011, .- —free variables.
1901, 19011, -.- —apparent variables.
235mol, 23omoll, .- —signs of relations of m—arguments, m<17.

S0 W

Constant terms are:

2,3 and numbers 71,9, -
If p,q are constant terms, then pooq are constant terms.

O .

(*) Terms are constant terms and all expressions resulting from one of (Al) by
replacing 2 ¢, 7,5, 0, 1, p, r respectively by 1,7, 2,3,5, u,z, where «,z are variables,
and writing between each two last signs the expression 0o; e.g. ispsr we re-
place by 100200u00200z, ispos by 100200u003002, jspsir by joo200u00200500u, -+*

Atomic expressions are of the form Rooot,000ts::000t,, where R is a rela-
tion sign of m - arguments and ¢, .-+, #,» are terms defined above.

If E, F are expressions, then 70000E, 11o000Eoc000oF and 13o0000acoooF are
expressions (a - apparent variable).

The further description of the above first-order functional calculus with

defined terms x—simply: Cf—is identical with the usuel one, but in the above
description wesmay only substitute variables and constant terms for variables.

23  Using (All) we obtain simpler terms; we are omitting parantheses by using the Lukasje-
wicz’s notations,
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We see that all expressions of Cf are composed on o and 1, and therefore
are expressions of the algorithmic language. ‘

Hence, the metamathematical notions may be consider in this language (a
sequence Ej, .-, E; of formulas we may write in the form E;00000E;::-00000E).

The completeness theorem of Ct may be proved analogic to [5],[7]; we
note here that if the semantic interpretation of x,y are respectively x°,5°, then
the semantic interpretation of xy is x° y°.

The theory is decidable - according to A. Church-if and only if the set
of its all theorems is computable.

It is easy to reduce the decidability of the first-order functional cal-
culus to the decidability of Ct; therefore it suffices to prove the undecidability
theorem for Ct:

The algorithmic rules (Al) may be described in Cf:

Let E be relation of two arguments and let p be the expression resulting
from p by transformation described in (*).

By replacing each sequent p—r of (Al) by E(p,7) we obtain a finite
sequence Al of atomic formulas.

Therefore each algorithm f determine a consistent subsequence f of Al
Let 'F be the conjuction of all formulas of f and K; the conjuctien of two
formulas®: 71a, Ila, I1a, {E(ai, a2) E (az, @)D E (a3, @3) } and Tay---1a.F( {an}/{%:} ),
where {x,} are all variables occurring in F.

Of course:
r=1(p). = . K; - E(Tsps, 013,
and in view of the deduction theorem:
r=f(p). = .+ K, DE(Isps, Osrs)
Because s is an indicate letter, therefore in the following we shall omit s;
therefore the last equality we shall write in the form:
) r=f(p). =.+ K, > E(1p,0r).
T. 8. The calculus Ct is undecidable.
Proof:—Let C? be decidable ; therefore there exists a computable algotithm
S with two values 0 and 1 such that:

(00) f(D)=0.=.-p, f(P)=1l.=.K p.

24 For simplification we use the usual symbols which are names of the respective signs;
conjuction and implication are defined in the usual way.
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Let g(x) be an algorithm such that if p is an expression, then g(p)=p(p/%);
it is easy to see that g is computable.

Let fg be the supperposition of two algorithmes f and g; i.e. fg results
from f and g by replacing each sequent ip —0r of g by ip —(k+1)7 and each
sequent ip — jr of f by (i+k)p —(j+k)r,j#0, and ip = Or by (i+k)p — Or, where
k is the number of sequents of g Therefore fg also is computable and by
virtue of (0):

(000) g (p)}=0.= .+ Ky D E(1p,00),
flg(p)}=1.= . K; D E(1,01).

Let m=K,, > E(ix,0I); therefore g (m)=Ky, D E (1m, O1).

We note that the last formula asserts that it is not a thesis.

If £ {g(m)}=1, then in view of [00): i g(m), i.e. x Ky D E(Tm,01).

Hence, in view of [000): f{g(p)} = 1, which is impossible.

If f{g(m)}=0, then I g (m),i.e. — Ky, D E(1m,01).

Therefore in view of [000): f {g(m) } =1, which is imposible; q.e.d.?

The proved undec:dability theorem of the first-order functional calculus
shows that the process of extending of a set B to By {7}, where r=¢(E) >3 see

D. 1., such that if B+ E, then B, - E is not computable; but if we have such
extension then E’ is not a thesis, see T.6.

The last note is connected with a choosing of an algorithm, see p..- and

[15] —[16].

25 It is easy to see the connection of T.8. with the non-computability of the set of all Ky,
where f-computable and with the problem of words. In notion of the algorithmic
language the given proof may be reduced to one line. s. [15].
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