ON THE DERIVATIVES OF INCREASING MAPPING
by
SADAYUKI YAMAMURO.

If a real-valued function f(x) of a real variable is differentiable at a point
a and the derivative f” (@) is not zero, then the function f(x) is either increasing

or decreasing at a.

The purpose of this paper is to generalize this fact into the case when
the function f is a mapping acting on a space of an arbitrary dimension.

1. Throughout this paper, let E be a real Banach space, G be an open subset
and G be its closure.

We need the following three definitions:
Definstion 1. A mapping f : G— E is said to be (0)- increasing at acG if
there exists a number 6 > O such ihat
(1) a+xeG if |xi<0;
(2) flat+x)—fla)+ax if a<0 and 0<|x|<a.
A mapping f: G—E is said to be (c, 0) - uniformly increasing at acG if there
exist numbers ¢ >0 and 3 > 0 such that
1) a+xeG if |x)<0;
@) (flatx)—fl@)—ax| =z x| ifa<0 and 0< x| <0
Definition 2. A mapping F : G — E is said to be completely continuous on
G if it is continuous and, for any bounded subset B C G, F(B) is contained in
a compact set. A mapping f : G — E is said to be a completely continuous vector
field on G if the mapping F(x)=x—f(x) is completely continuous on G.
Definition 3. A mapping f: G— E is said to be Fréchet-differentiable at
aeG if there exists a continuous linear mapping D.:E— E such that
(4) fla+x)—f(a)=Dq (x)+7(a,x) for every xcE,
where

C Lim L7(@, )| _
® - lm e =0

The linear mapping D, is called the Fréchet-derivative of f at a and is
denoted by f”(a).

Now, we can state our theorem in the following form.

Theorem. Let E be a real Hilbert space and =f : G - E be completely
 continuous vector fields on G. If f is Fréchet-differentiable at acG and the
Fréchet-derivative f'(a) satisfies the following condition :

(6) (f' (a)(x), x) #0 if x=0,
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then f or—f is (e, d) - uniformly increasing at acG for some ¢>0 and 6>0.

Remark 1. We denote the value of the mapping f'(a) at x by f”(a)(x).
Remark 2. We denote the inner product of x and y by (x,¥).
Remark 3. — f is the mapping defined by (—f)(x)=—f(2).

Remark 4. Definition 1 was given first in (cf. [3], [4] and [5]).

2. In this section, we give three lemmas. The space E is assumed to be a real

Banach space.

Lemma 1. The Fréchet-derivative of a completely continuous mapping is
a completely continuons linear mafping.

A proof of this well-known fact can be found, for example, in [1,p. 51,
Theorem 4.7].

Lemma 2. Every proper value of the linear mapping f'(a) is positive if
and only if the Fréchet-differentiable completely continuous vector field f is (e, 0)-
uniformly increasing at a for some ¢ >0 and o > 0.

Proof. Assume that every proper value of f’(a) is positive and that f is
not (¢, 6) - uniformly increasing at a<G for any ¢ >0 and d > 0. Then, by (3),
we can find elements x,(#=1,2, ---) and numbers a, (#=1,2, -.-) such that

(7) i1 fa (Xn)—an 22| < %il Xnly an =0 and 0 < | %a i< ',17a
where fa (xn) =f (a+xﬂ)—f(a)'

This sequence (a,) is bounded, because
an = H“nxnﬁ/zgxn“

%, ” (1 fa (Xn)—n Xn il + | fu(%0)1)

i!ﬂt (xn) il (by (7))

!xn|'

<1

n .

=i (g )i+ et (by (4))
1

L f" (@) ] ”r(a xn)'
+|f a) + lx”h )

where the right - hand side is bounded because of (5). (1f" (@)} is the norm of

the linear mapping f” (@). Since it is a continuous linear mapping, this is a finite
number.) Therefore, there exists subsequence (am) C (an) such that

8 lim am=ay

for some non-positive number aj.

Next, put %,=%m /| m!. Then, since |x.,i{ =1, it follows from Lemma 1
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that there exists a subsequence (x;) C (x,) such that
9) - lim F'(a) (x)=2%0

k=Ppco
for some element x,. (F'(a) is the Fréchet-derivative of F(x) at a. It exists
because of the differentiability of f(x) at @ and we have F’(a)=I—f"(a), where
I is the identity mapping.)

On the other hand, we have, by (4) and (7), that
lim [ (1—ae)x,—F' (a)(x) ]
k—>oo

=lim [ (x.—F'(a)(x.))—ax x.]
k=P

(10) =lim (f" (a) (x.)— ac %)
k—poo
“lim Y @ (=
—}:11[)1«: ” P " (f (a) (x’ﬂ) (277 x’f)
=lm - @) () —fe () +lim - (e () e

=0,

Therefore, it follows from (9) that

lim (1—(11.:) x;:,:xo ,
k—Poo

and, by (8), we have

lim x,=-—1
k=P l—ap

X0

which implies that
” Xo ”=1—a0 >
and, by (10), we have that

7 (@2 ) =lim 1 (@) i) =lim o xi=aoy T
This means that a, is a non-positive proper value of f’ (a).

Conversely, let us assume that f is (¢, d)—uniformly increasing at a for
some ¢ >0 and 0> 0. Suppose that a is a proper value of f’(a), namely,
suppose that there exists an element x, such that | x,| =1 and

S (@) (%)=ax, .

Then, since f”(a) is linear,

(11) I (@) (Exo)=atx, for any number ¢.
It follows from (5) that there exists J;,>0such that J,<d and
[7{a,éxo) || < €| €] if [§] < 6.

Then, we have, if |§] < d),
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i fa (§x0)—asx,

=|f"(a) (£x0)+7 (@, Ex0) — %y | (by (4))
=il 7(a, §%o) . (by [1T))

<5[5l= 5“;‘:5’503{3
which, by (3), implies that a« >0.
Lemma 3. Assnme that — f is a completely continuous vector field. Then,

every proper value of the linear mapping f'(a) is negative if and only if the
mapping — [ is (e, 0) - uniformly increasing at a for some ¢ >0 and 6 > 0.

Proof. This lemma is equifalent to because a number is a
positive proper value of f’(a) if and only if it is the absolute value of a
negative proper value of — f”(a)=(— f) (a).

3. Proof of Theorem. Assume that neither f nor —f is (e, 6)- uniformly
increasing at @ for any ¢ >0 and ¢ >0. Then, from [Lemma 2 and Lemma
3, it follows that there exist numbers a; ({=1,2) and elements %;(:=1,2) such that

S (@) (x)=axi(1=1,2),0; 2 0,0 £ 0 and x; =1(=1,2).

By (6), a; are not zero, namely,
a; >0 and ay < 0.

Since %, and x; are lincarly independent, we have
(12) 2(t) = (11—t 2, +1x:#0 0=t 1.
Now, consider the following continuous function

¢ t)=(f"(a)(z(t)),2(f) O=¢=1).
Then, since ¢ (0)=a;>0 and ¢ (l)=a:<0, there cxists o (0,1) such that ¢ (/))=0,
namely,

(f" (@) {z (o)), 2(t))=0.
Since z(t) %0 by this contradicts the condition (6).

4. In [2; Theorem 2], we have proved the following fact:

Let E be a real Banach space and f: G —E be a completely continuous
vector field on G. If f is (0) - increasing at acG, then, for any o, >0 such that
Jd; <d, we have ,

d (0, B(0,d1),fa)=1, ‘ _
where the left-hand side is the mapping degree of B(0,0)={x |x ,<d} at 0 by
fo |

Since an (s, d) - uniformly increasing mapping at a is (J)-increasing at a,
we have the following corollary:
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Corollary. Let E be a real Hilbert space and +f : G — E be completely
continuous vector fields on G. If f is Fréchet-differentiable at acG and the
Fréchet-derivative f' a) satisfies the condition (6), there exists o >0 such that

d (0, B(0,d), fa)=1 for any 6, such that 0 < d; < 6,
or
d\0, B(0,d,),—f.)=1 Jor any d; such that 0 < d, <.
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