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Wiweger [3] has introduced a new topology, in a linear spacc $X\backslash \not\in it1_{1}$

two topologics $\tau$

“ and $\tau$ , by the form of neighbourhood $\cup\vee(\underline{\backslash \prime}(U_{\ell}^{*}\cap iU))\backslash vheI^{\cdot}eU_{\iota}^{!}$

and $U$ are neighbourhoods of $0$ in the topologies $\tau and\tau$ lespectively
$--1$ i

and it is,
in tlte case of lincar normed spacc, idcntical with $\tau$ on thc $\tau- bo$ undcd $sul\lrcorner scts$ ,

and is called the mixed topology associatcd with $\tau^{A}$ and $\tau$ .
Persson [2] has madc an attempt to gcncralizc it in a locitlly convcx

linear topological space by saying that it is thc finest locally $CO11\iota\prime c\backslash $ topology on
$X$ which is identical with $\tau$

“ on the $\tau$-bounded subsets of’ $X$, without $b^{\prime ivin}!^{I}\circ tllc$

form of its neighbourhood.
We shall give, in this paper, thc form of $11eighb_{oU1}\cdot 1_{1}ooc1$ for thc gencralizcd

mixed topology and thc gcneral $mcLhod$ to investigiite various mixcd $tt$ [) $()[0\zeta^{\prime}$ ics
detcrmined correspondingly to a certain $t([)olo_{b}yft$ and a systcin $\backslash f1$ .

We see that, if 91 consists of all r-bounde (or, : -totally boundcd, $-\backslash -(\rightarrow()I||1).\downarrow\iota t$ ,

cquicontinuous) convex circled subsets of $X$, then thc mixed $topo1_{0_{\iota\neg}^{\sigma}}y$ is thc fine.$\backslash 1$

topology which is identical with $/\ell$ on.the $\tau$ -boundcd (or $\tau$-totally $1_{J}oul1(1cd$ , \sim -

compact, equicontinuous rcspectively) subsets.
We shall givc morc detailed discussion of $thell\downarrow$ in anothci $[)_{t}\downarrow P^{C1}$ .

\S 1. Definition of the general mixed topology.

By a $1i_{l1}ear$ topological space we understand any $lincal$ sp.u $c\cdot Xo\backslash c\downarrow\rightarrow$ tht

field of real $nu\iota nbersR$ with a linear topology $\tau$ dcfined in such a $\backslash \backslash (\iota\iota$ that

addition and multiplication by scalars arc continuous $itl$ both $\backslash J11^{\cdot}i_{\dot{c}}\iota 1$ ) $[t\backslash ;\iota I_{1}c\iota^{-(}$ .

exists a fundamental neighbourhoods system 11. $s_{\dot{\epsilon}}\iota ti\backslash yi_{11}b^{1}$ thc $r_{o11\prime i_{k^{r}}}U\backslash 11c()lltliti(Jils$ :
(0) if $Uc11-$ and kr $R,$ $i_{\backslash }\neq 0$ , then $\lambda Ur11-$ ,
$(0_{-}))$ if $U_{C}1l_{-}$ and $\lambda_{l}R,$ $\lambda\leq 1$ , then $/\sim U\subset U_{\backslash }$

$(0_{\delta})$ if UclI-, then for every $x(X$, there cxists $\tilde{\Lambda}(R, j_{c}\neq t)$ such that $\lambda x’\iota/$ .
( $Q_{\downarrow}1$ if $Url1_{-}$ and $V’$ lt-, then there exists $W(1t-$ such that $W\subset tI(|V$,
$(0_{s})$ if $U_{C}11-$ , then there exists $V’$ lt- such that $V+V\subset U$.
Definition 1. We say that a family $\backslash $)[ of subsets of $X$ is primitive if’/

satisfies the following conditions;

$(P_{1})$ if $Ar^{\backslash }$)[
$,$

$/_{\iota(}- R,$ $/_{\backslash }\sim\neq 0$ , then $\lambda A_{\backslash }^{\backslash )}1$ ,
$(P_{2})$ if $A^{\backslash )}’\backslash t,$ $/_{\backslash }- R,$ $/_{\iota}\leq 1$ , then $i.A\subset A$ ,
$(P_{3})$ if $x\prime X$, then there exists an element $A$ $of\backslash $) $1\sigma\ell\ell C/l$ as $x\prime A$ ,
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The conditions $(P_{1}),$ $(P_{2})$ and $(P,)$ imply that;
(1.1) The family $\mathfrak{U}$ is frequently absorbing, that is, if $x(X$ then there

exists $\lambda_{0}\epsilon R,$ $\lambda_{0}>0$ such that $\lambda x\epsilon A$ for $|\lambda|\leq\lambda_{0}$ and for some member $A$ in $\mathfrak{U}$.
The condition $(P,)$ is rephrased as the following;
(1.2) if $\mathfrak{U}$ consists of the set $\{A, \ell\epsilon I\}$ , then $\cup A\ell=X$.

$c*I$

Suppose that a locally convex linear Hausdorff topology $t$ is defined in a
linear space $X$. For the primitive system $\mathfrak{U}=\{A_{\iota}, \iota\epsilon I\}$ , and subcollection $\mathfrak{S}=\{U,$ ,
$f\epsilon I\}$ of neighbourhoods of $0$ for the topology $\mu$ we put

(1) $U^{\alpha}=k_{e}\{\bigcup_{\iota\epsilon f}(U_{\ell}\cap A_{\ell})\}$

whe$rek(A)$ denotes the convex envelope of $A$ .
Proposition. Let $\mathfrak{U}^{\alpha}$ denote the fanrily of all the sets (1) which are

determined correspondingly to $\mathfrak{S}$ . Then, the family $1l^{\alpha}$ defines the new topology,
and $X$ is the locall.$v$ convex linear Hausdorff top0logical space by it.

Proof. i) For any non-zero $\lambda\epsilon R$ and $U^{\alpha}\epsilon \mathfrak{U}^{\alpha}$,
$\lambda U^{\alpha}=\lambda k\{\bigcup_{\prime\epsilon I}(U_{\ell}\cap A)\}=k\{\lambda\bigcup_{\ell cI}(U\cap A_{t})\}=k\{\bigcup_{\iota\iota l}(\lambda U\cap\lambda Af)\}$ where $\lambda Uc?I_{\mu}$ and $\lambda A_{\ell^{(}}?t$

for each $\iota\epsilon I$ by $(P_{1})$ , So, $\lambda U^{a}\epsilon \mathfrak{U}\cdot$, hence $1l^{\alpha}$ satisfies $(0_{1}^{1}$ .
ii) For $\lambda\epsilon R,$ $|\lambda|\leq 1$ and $U^{\alpha}\epsilon \mathfrak{U}^{a}$,
$\lambda U^{\alpha}=k\{\cup(\lambda U\cap\lambda A_{t})\}$ , where $\lambda U_{\ell}\subset U_{t}$ and $\lambda A_{t}\subset A_{t}$ by $(I_{2}^{J})$ for each $\iota\epsilon I$, so

$\lambda U^{\iota}\subset U^{t}$ , hence $1l^{\alpha}$ satisfies (0).

iii) For any $X\epsilon X$, there exist $\lambda_{1}$ and $\lambda_{2}$ such that $f_{01}$. at least one $\ell_{0^{(}}I$,
$\lambda_{1}xcA_{t_{\phi}},$ $\lambda_{2}xrU_{\ell_{0}}$ by $(P_{8})$ . Let $\lambda_{1)}=\min(\lambda_{1}, \lambda_{2})$ , since $U_{\ell_{0}}$ and $A_{0}$ are both circled,

$\lambda_{0^{Xt}}U_{t_{0}}\cap A_{\ell_{0}}\subset k\{\bigcup_{If(}(U, \cap A_{\ell})\}=U^{f}$, so $(0.,)$ is satisfied.
iv) If $U\epsilon 11^{r\iota}$ and $V^{\alpha}\epsilon 1l^{\alpha}$ ,

$U^{a}=k\{\bigcup_{\iota cI}(U\cap A)\}$ and $V^{t}=k\{\bigcup_{I\ell(}(V\cap A)\}$

for $U_{\ell^{(}}\mathfrak{S}\subset 1t_{\ell}$ and $V_{t^{C}}\mathfrak{S}^{\prime}\subset 1l_{/}$ . Then, there exists $W_{t}\subset U_{\ell}\cap V_{\ell}$ for every $\ell cl$, so
$\bigcup_{\prime\iota I}(W\cap A)\subset\bigcup_{icI}\{(U_{t}\cap A_{\ell})\cap(V\cap A)\}\subset\{\bigcup_{t\prime l}(U\cap A_{t})\}\cap\{.\bigcup_{\prime\iota l}(V_{t}\cap A_{t})\}$

Therefore
$h\{.\bigcup_{\prime\iota I}(W_{\ell}\cap A,)\}\subset k[\{\bigcup_{ccI}(U_{\iota}\cap A_{\ell})\}\cap\{\bigcup_{ccI}(V_{\ell}\cap A_{t})\}]$

$\subset h\{ \bigcup_{tcI}(U\cap A_{\ell})\}\cap k\{\bigcup_{I}(V\cap A_{t})\}$

hencc, there exists $W^{a}\mathfrak{c}11$ such that $W(l\subset U^{a}\cap V^{\alpha}$ , so (0) is satisfied.
v) $U\prime t_{(}11^{\prime}$ is convex and circled, so $U^{\iota}\sqrt 2+U^{t}/2\subset U$ ( and $U^{r}/2c\mathfrak{U}^{\iota}$.
$r1^{\prime}hus,$ $(0.,)$ is also satislicd.
Consequently, thc farnily $1t^{t1}$ i,s a basis of neighbourhoods $()fU$ in a new

locally convex linear topology in $X$.
Finally, we sliall $s\}_{1}0\backslash v$ that if the topology $/t$ is Hausdorff, so is the new

Lopology determined by the family $1\mathfrak{j}^{\prime\tau}$ . In fact, choosing only a neighbourhood
as a subcollection $’\epsilon-\{\Gamma^{\gamma}-I^{f}’ I\}$ , wc sec by $($ 1. $\underline{\prime})$
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$k\{\bigcup_{\iota\epsilon I}(U_{\ell}\cap A)\}=k$ $\{ \bigcup_{teI}(U\cap A_{\ell})\}=k\{U\cap(\bigcup_{\ell ef}A’)\}=k(U\cap X)=U$

hence we have the inclusion relation
(1.3) $\mathfrak{U}_{\mu}\subset \mathfrak{U}^{\alpha}$

From this, for $x\neq 0$ in $X$, there exists a set $U^{a}\epsilon \mathfrak{U}^{\alpha}$ such that $x\overline{\epsilon}U^{a}$ if the

topology $\mu$ is Hausdorff.
We call this topology of which neighbourhood basis is the family $\mathfrak{U}^{\alpha}$ in

proposition 1.1, the general mixed topology ($gm$ . topology) determined by the

primitive family ?I and the topology $\ell^{l}$ . We denote it by $\alpha(t^{\prime,\mathfrak{U}})$ or shortly $\mu^{a}$ .
Deflnition 2. We denole $\mathfrak{C}(\mathfrak{U})$ the family of all subsets in $X$ satisfying

the following conditions:
$(E_{1})$ if $A\epsilon \mathfrak{E}(\mathfrak{A}),$ $\lambda\epsilon R,$ $\lambda\neq 0$ , then $\lambda A\epsilon \mathfrak{E}(\mathfrak{A})$ ,
$(E_{2})$ $\iota fA\epsilon \mathfrak{E}(\mathfrak{A})$, the circled envelope of $A$, belongs to $\mathfrak{U}$ .
$(E_{3})$ $\mathfrak{U}\subset \mathfrak{E}(\mathfrak{U})$ .
\S 2. properties of the general mixed topology.

Lemma 2.1 For each $U\epsilon \mathfrak{U}_{\mu}$ there exists a $U^{a}u^{\alpha}$ such as $U^{a}\subset U$.
Proof. At first, we notice that for each $U\epsilon \mathfrak{U}_{\mu}$ , there exists a subcollection

of $\mu- neighbourhoods$, {U. $\ell\epsilon I$ }, such that $\bigcup_{\iota\epsilon I}U_{\ell}\subset U$. In fact, let {V,, $\iota\epsilon I$ } be a

subcollection of $\mu$-neighbourhoods, then for each $\ell\epsilon I$, there exists $U_{\ell}$ such that
$U_{\ell}\subset Un$ $V$ , so $\bigcup_{cI}U_{l}\subset U$.

For its subcollection $\{U_{\ell}, ’\epsilon I\}$ , we have a neighbourhood $U^{a}\epsilon 11^{\mathfrak{n}}$ such that
$U^{a}=k\{\bigcup_{\prime\epsilon I}(U_{t}\cap A’.)\}\subset k(\bigcup_{\iota \mathfrak{c}I}U)\subset\bigcup_{\ell I}k(U_{\ell})=\bigcup_{\mathfrak{c}I}U\subset U$.

We denote $\nu|A$ the topology induced on $A$ by the topologv , .
Lemma 2.2. Let the primitive system ?I satisfy the following condition;

$(K)$ every $A\epsilon?${ is convex.
Then, for every $A\epsilon \mathfrak{E}(\mathfrak{U}),$ $f^{\ell}|A=f^{\ell^{\alpha}}|A$ .
Proof. The neighbourhoods of an $x_{0}rA$ in the topologies $’\ell$

$A$ and $\prime^{p^{\eta}}|A$

are of the forms $(x_{0}+U)\cap A$ and $(x+U^{a})\cap A$ respectively.
By the conditions $(P_{1})$ and $(E_{2})$ , for everv $Ar\mathfrak{E}(A)$ there exist $A_{1}r?$[ and

$A\epsilon \mathfrak{U}-$, such that $A_{1}\supset A$ and $A_{2}\supset 2A_{\ell_{1}}$.
For $(x_{0}+U^{a})\cap A$, take $U\epsilon u_{\mu}$ such as $U\subset U_{\ell_{2}}$, thcn

$(x_{0}+U)\cap A\subset(x_{0}+U)\cap A_{1}\subset x_{0}+U\cap A_{\iota_{2}}$

In fact, if $x\epsilon(x_{0}+U)\cap A_{\ell_{1}}$, then $x=x_{0}+y$, where $x_{0}\epsilon A_{\ell_{1}},$ $yrU$ and $x_{0}+y\epsilon A_{\iota}’$,

by the condition $(K)$ and $(P_{n}\sim)$ . $(x_{0}+y-x_{0})/2=y/2^{c}A_{t_{1}}$ , that is, $y2A_{\iota_{1}}\subset A_{\iota_{2}}$. so,

$x_{0}+y\epsilon x_{0}+U\cap A_{\underline{\sigma}}$.
Moreover,
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$x_{0}+U\cap A_{\iota_{3}}\subset x_{0}+U_{\iota_{2}}\cap A_{\ell_{2}}\subset x_{0}+k\{\bigcup_{\ell\epsilon I}(U\cap A)\}=x_{0}+U^{\alpha}$ .
$(x_{0}+U)\cap A\subset(x_{0}+U^{a})\cap A$ follows from $(x_{0}+U)\cap A\cap A\subset(X_{0}+U^{a})\cap A$ . Thus, $\mu|A\geq$

$ft^{\alpha}|A$ .
On the other hand, since $f^{\ell}\leq\mu^{\alpha}$ by lemma 2.1, $\mu A\leq\mu^{\alpha}A$ . Hence, $\mu|A=$

$f^{\ell^{\alpha}|A}$ .
Let $\overline{\iota}$

‘ denote a locally convex linear topology defined in $X$, and let $\tau^{\prime_{\alpha}}$ be
the $g.m$ . topology determined by the topology $\tau^{\prime}$ and $\mathfrak{U}$, where $\mathfrak{U}$ is the same
that determines $\mu^{\alpha}$.

Henceforth, we postulate that (i) the primitive system $\mathfrak{U}$ satisfies $(K)$ and
(ii) if $A\epsilon \mathfrak{E}(\mathfrak{A}),$ $h(A)$ belongs to $\mathfrak{E}(\mathfrak{A})$ . Thus we obtain,

Theorem 1. For any $A\epsilon \mathfrak{C}(\mathfrak{A})$ , the following conditions are equivalent; (i)
$f^{\ell}|A=\tau^{\prime}|A$ (ii) $\tau^{\prime}\leq\sim’\ell^{\alpha}$ and $\mu\leq\tau^{\prime_{\alpha}}$ (iii) $\mu^{a}=\tau^{\prime_{\alpha}}$

Proof. If $\mu|A=\tau^{\prime}|$ $A$ for any $A\epsilon \mathfrak{E}(\mathfrak{A})$ , then obviou.sly $\mu A=\tau^{\prime}|A_{\ell}$ for
each $A_{\ell}\epsilon \mathfrak{U}$, and for every $U^{\prime}\epsilon U^{\prime}$ , where $\mathfrak{U}^{\prime}$ is a basis of neighbourhoods of $0$ in
the topology $\rightarrow$

’ we have a subcollection of neighbourhoods of $u^{\prime},$ { $U_{t}^{\prime},$ ’

such that $\bigcup_{\prime\epsilon I}$ U. $\subset U^{\prime}$, moreover for each $U_{\ell}^{\prime}$ , we have $U_{\ell^{\xi}}\mathfrak{U}_{\mu}$ such that
$U_{\ell}\cap A\subset U^{\prime},\cap A_{\iota}\subset U^{\prime}’$

’

so, $\bigcup_{el}(U_{\ell}\cap A_{\ell})\subset\bigcup_{\prime\epsilon I}(U_{\ell}^{\prime}\cap A)\subset.,\bigcup_{\epsilon I}U^{\prime}\subset U^{\prime}$ , hence
$-’\leqq\tau^{\prime_{a}}\leqq,p\ell^{\alpha}$

On the other hand, it follows from $\mu^{1}A_{\iota}=\tau^{\prime}|A_{\ell}$ that for every $U\epsilon \mathfrak{U}$, we
have $\{U_{\ell}, \iota\epsilon I\}$ such that $\bigcup_{\epsilon I}U_{\ell}\subset U$ and for each $U_{\ell}$ we have $U^{\prime},\epsilon \mathfrak{U}^{\prime}$ such that

$U_{\iota}^{\prime}\cap A\subset U_{\ell}\cap A_{\ell}\subset U_{\ell}$

so $\bigcup_{\prime\prime l}(U^{\prime}’\cap A)\subset\bigcup_{\ell\cdot I}(U\cap V)\subset\bigcup_{\prime I}U\subset U$

Hence $\mu\leq\mu^{a}\leq\mu^{\prime_{\alpha}}$

Two inequalities show that (i) implies (ii) and (iii).

By lemma 2. 1, (iii) implies (ii).

If $\tau^{\prime}\leq\tau^{\alpha}$ and $\mu\leq\tau^{\prime_{a}}$ simultaneously, then for any $A\epsilon \mathfrak{C}(\mathfrak{U})$ . $\tau^{\prime}|A\leq\mu^{\alpha}|A$ and
$f^{p}$

‘ $A\leq\tau^{\prime_{\alpha}}A$ . By lemma 2.2, $\mu^{\alpha}A=\mu|A$ and $\tau^{\prime_{\alpha}}|A=\tau^{\prime}|A$, so $\tau^{\prime}A\leq\mu$ $A$ and
$\ell\ell|A\leq-’|A$ , that is $\tau^{\prime}|A=\tau|A$ . Hcnce (ii) implies (i).

We denote the $g$ . $m$ . topology determined by $\mathfrak{A}$ and $p^{t}$ where $\mu^{n}$ is the
$g.m$ . topology determined by $\mathfrak{A}$ and $f^{\ell}$, by $l’$ ’

In particular, taking $\mu^{\alpha}$ as $\tau^{\prime}$ in theorem 1, we obtain

Corollary 2.1. $\mu^{\alpha\sigma}=\mu^{a}$

In fact, by lemma 2. 1, for any $A\epsilon \mathfrak{E}(\mathfrak{U}^{1},$ $\mu^{a}A=\mu^{a\alpha}A$ , while $\ell\ell|A=f^{p^{\alpha}}A$ , so
$\mu|A=’\ell^{\iota\alpha}|A$. Hence (i) in theorem 1 is satisfied. So, $\mu^{a}=\mu^{\alpha\alpha}$ .

Corollary 2.2. The $g$. $m.$ topology $e^{\prime r}$ is characterized as follozv; The finest
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locally convex topology on $X$ which is identical with the topology $f^{\ell}$ on any member

in $\mathfrak{E}(\mathfrak{A})$ is the $g$. $m$ . topology determined by $\mu$ and $\mathfrak{A}$ .

Theorem 2. Let $f$ be a linear olerator from $X$ into an\‘other linear space
$Y$ rvith a locally convex top0logy $\tau^{\prime}$. Then, $f$ is $(/\ell,\tau^{\prime})$-continuous on every $A\epsilon \mathfrak{C}(\mathfrak{U})$

if and only if $f$ is $(\mu^{\alpha}, \tau^{\prime})$ continuous on $X$.
Proof. Sufficiency: If $f$ is $(\prime p^{\alpha}\tau^{\prime})$-continuous, then $fA$ , the restriction

of $f$ on $A$ , is $(\mu^{a}|A, \tau^{\prime})$-continuous, hence by lemma 2.2, $f|A$ is $(/\ell^{n}A, \tau^{\prime})-$

continuous, that is, $(\mu, \tau^{\prime})$-continuous on $A$.
Necessity: If $f$ is $(\mu, \tau^{\prime})$-continuous on every $A\epsilon \mathfrak{E}(\mathfrak{U})$, then for every $A_{t}\epsilon^{\backslash }$)$[$ ,

$f|A_{\ell}$ is $(\mu|A, \tau^{\prime})$-continuous at the point $0$ .
Let $W$ be an arbitrary convex neighbourhood for $0$ in the topology $\tau^{\prime}$ ,

and take a collection $\{W_{t}, \iota\epsilon I\}$ such that $\cup$ $W.\subset W$.
It follows from the $(\mu|A, \tau^{\prime})- contin^{\epsilon}u^{I}ity$ of $f$ A. at the point $0$ that for

each $A.,\epsilon \mathfrak{U}$ there exists $U_{\iota}\epsilon \mathfrak{U}$ such that
$[(U\cap A)\subset W$

hence $f(\cup(UnA_{\iota}))\subset\cup W.$ $\subset W$.
that is, there exists $U^{\alpha}\epsilon \mathfrak{U}^{\alpha}such^{\iota eI}$ that $f(U^{a})\subset W\iota\epsilon I$

Corollary 2.3. For every $A\epsilon \mathfrak{A}$, the closure of $A$ is the same foi the topology

$\mu$ and $\iota\ell^{\alpha}$

In fact, the sets of all linear continuous functionals on $X\backslash vith\mu^{\alpha}$ and

those on each $A$ with $\mu$ are the same by Theorem 2. So, by scparation theorem

(see [1] p. 22, Theorem 5, Cor. 2) the $\int\ell^{a}$-closure of $A$ coincides with the $/\ell-$

closure of A.

\S 3. The $g.m$ . topology in various cases.

Some examples of the primitive systems in a linear space $X\backslash \backslash \cdot ith$ . $(\backslash vo$

locally convex linear Hausdorff topologies [ $\ell$ and $\tau$ are:
(i) the set $\mathfrak{B}$ of all $\tau$-bounded convex circled subsets of $X$.
(ii) the set $\mathfrak{T}-$ of all $\tau$-totally bounded convex circled subests of $X$.
(iii) the set St. of all $\tau$-compact convex circled subsets of $X$.
(iv) the set $\mathfrak{E}-$ of all convex circled equicontinuous subsets of $X$.
(v) 1l-; a basis of neighbourhoods at $0$ in the $\tau$-topology.
$lVe$ call the $g.m$ . topology determinde by the topology $/p$ and $\mathfrak{B}-(or\mathfrak{T}-,$ l?-,

$\mathfrak{E}-,$
$\mathfrak{U}-$ respectively) $\gamma-$ ($or$ t-, c-, e-, u-) mixed topology, which is charatcrized as

below:

Theorem 3. The $\gamma-$ ($or$ t-, c-, -e) mixed topol0gy is the finest locally eonvex
linear Hausdorff topology which is identical ivith $/\ell$ on the $\tau$-bounded (or $\tau$-totally
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bounded, $\tau$-compact, equicontinuous) subsets of $X$.
Proof. It is an immediate consequence by $co$rollary 2.2.
Corollary 3.1. In a locally convex linear topological space, the $\gamma$-mixed

topology coincides with Persson’s mixed topology.
In fact, Persson [2] has dcfined the mixed topology by saying that it is

the finest locally convex linear Hausdorff topology which is identical with $\mu$

on the r-bounded subsets of $X$. So the $\gamma$-mixed topology coincides with it
according to the theorem 3.

Corollary 3.2. In the case of’ two-norm spaces, the $\gamma- m\iota xed$ topol0gy is
identical with $W\grave{\ell}weger’ s$ mixed topolOgy.

In fact, Persson’s mixed topology coincides with the topology introduced
by Wiweger in the case of two-norm spaces. (see [3])

Corresponding to some kinds of conditions which are added to the primitive
system, the linear space or the topologies $\ell\ell$ and $\tau$ , we shall obtain various mixed
topologies. For instance, we see that thc topology $\beta(E^{\prime}, E)$ which is defined in
the dual space $E^{\prime}$ of $E$ by the uniform convergence on each $\tau$-precompact
subset of a locally convex linear Hausdorff space $E$ is an e-mixed topology,
and is a c-mixed topology if $E$ is a Mackey space, and is a $\gamma$-mixed topology
if $E$ is a barrelled space. In particular $\beta(E^{\prime}, E)$ determined by the $weak^{*}-$

topology and $\mathfrak{E}$ in $E^{\prime}$, coincides with the almost weak*-topology. $/\sec[1]$ )
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