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Wiweger has introduced a new topology, in a lincar space X with
two topologics " and z, by the form of neighbourhood EJ_l (igl(UZﬂiU)) where U,
and U are neighbourhoods of 0 in the topologies = and © respectively, and it is,
in the case of lincar normed space, identical with = on the c-bounded subsets,
and is called the mixed topology associated with z* and .

Persson has madc an attempt to gencralize it in a locally convex
linear topological space by saying that it is the finest locally convex topology on
X which is identical with 7' on the r-bounded subsets of X, without giving the
form of its neighbourhood.

We shall give, in this paper, the form of neighbourhood for the gencralized
mixed topology and the general method to investigate various mixed topologies
determined correspondingly to a certain topology s and a systemn 2.

We see that, if A consists of all -bounde (or, =-totally bounded, s-compact,
cquicontinuous) convex circled subsets of X, then thc mixed topology is the finest
topology which is identical with ;s on the :-bounded (or =-totally bounded, =-
compact, equicontinuous respectively) subsets.

We shall give more detailed discussion of them in another paper.

§ 1. Definition of the general mixed topology.

By a linear topological space we understand any lincar space X over the
field of real numbers R with a linear topology = defined in such a way that
addition and multiplication by scalars arc continuous in both variables: there
exists a fundamental neighbourhoods system 1. satisying the following conditions:

0,) 2f U\, and ic R, 1+0, then iUl

(0) 2f UW. and A4 R, 4+ < 1, then :UCU,

0,) if UL, then for every x X, there cxists iR, 4150 such that ix: U,

0y if UN. and VL., then there exists Wll. such that Wclinv, .

(05) 2f U\, then there exists V. such that V-+VcU.

Definition 1. We say that a family N of subsets of X is primitive if 1t
satisfies the following conditions ;

(Py) of AN, 4R, 2#0, then 1A,

(Py) if AW, 4R, 42 <1, then tAC A,

(P3) if xc X, then there exists an element A of N such as xA.
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The conditions (Py), (P;) and (F;) imply that;

(1.1) The family % is frequently absorbing, that is, if x<X then there
exists 4R, 4> 0 such that ixeA for |4/<4, and for some member A in .

The condition (Ps) is rephrased as the following ;

(1.2) if A consists of the set {A,¢el}, then UAe—X

Suppose that a locally convex linear HausdorfT topology /¢ is defined in a
linear space X. For the primitive system A={A,«l}, and subcollection &={U,
tel'} of neighbourhoods of 0 for the topology x we put
(D) Us=k{U (U.NA))

" where k(A) denotes the convex envelope of A.

Proposition. Let U« denote the fawily of all the sets (1) which are

- determined correspondingly to ©. Then, the family I\~ defines the new topology,

and X is the locally convex linear Hausdor[f topological space by it.

Proof. i) For any non-zero 2R and U-<ells,
RU“—-Zk{U(U,ﬂA )= k{XU(UﬂA )= k{U (AU.N4A))} where AU., and 14,

for each ¢l by (Pl), So, AU “ell“ hencc e satlsﬁes 0,

ii) For ZeR,|2|<1 and U=,
AU*=k{U(AU.N2A)}, where 2U.CU, and 14.CA. by (I%) for each ¢l, so
AU«c U<, hence W* satisfies (0,).
iti) For any xeX, there exist 4y and 4; such that for at least one ¢yl
%Ay Aexc U, by (Ps). Let Zy=min (4, 23), since U, and A, are both circled,
AoxcU,N A, Ck{U (U.NA)}=U=, so \0,) is satisfied.
iv) If U "cll" and Veellr,
Us=FEk{U (U NA)} and Ve= k{ (V NA)} :
for U.&cll, and V& Cll,( Then, there exists WCU NV. for every ¢l, so
‘_d(W.,nA,)c H{(U,nA,)n(V,nA,)}c{g(U,nA, In {H(V,nAz)}
Therefore ,
E{UW.NA)CR{UU.NAN}N{UV.NA)}]
Y cRIUWN AN NRUV.NA)

~ hence, there exists Wedle such that Wec U"ﬂ Ve, -s0 (0,) is satisfied.

v) U~ll* is convex and circled, so U"/z+ U"/ZC U« and U</2 -,

T'hus, (0,) is also satisticd. v

Consequently, the family 1 i a basis of nmg,hbumhoods of 0 in a new
locally convex linear topology in X.

Finally, we shall show that if the topology ;- is Hausdorfl, so is the new
topology determined by the family 1 = In fact, choosing only a neighbourhood
as a subcollection S~ {U. =17, I}, we sec by (1.2)
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k {HI(U‘DA‘)}::k {‘L(JI(UOA,)}=k {Uﬂ(ELJIA,)}=k(UnX)=U

hence we have the inclusion relation

(1.3) . cl-

From this, for £#0 in X, there exists a set U®l" such that xe U< if the -
topology ¢ is Hausdorff.

We call this topology of which neighbourhood basis is the family U* in
proposition 1.1, the genmeral mixed topology (g.m. topology) determined by the
primitive family % and the topology x We denote it by a () or shortly p°.

Definition 2. We denote G () the family of all subsets in X satlisfying
the following conditions :

(Ey) if Ae€GN), AeR, A0, then A1AEN),

(E;) if AcG(WN), the circled envelope of A, belongs to A,

(Eg) NcCEM).

§2. properties of the general mixed topology.

Lemma 2.1 For each Uell, there exists a Ucll* such as U~cCU.

Proof. At first, we notice that for each Uell,, there exists a subcollection
of p-neighbourhoods, (U, eI}, such that U U.cU. In fact, let {V.,wl} be a
subcollection of p-neighbourhoods, then for each cel, there exists U, such that
UcUnV, so U UcCU.

174
For its subcollection {U,, «1}, we have a neighbourhood U<l such that
k{U(UﬂA }Ck(UU)CUk U)= UUCU
We denote v A the topology mduccd on A by thc topology ».

Lemma 2.2. Let the primitive system W satisfy the Jfollowing condition ;

(K) every AN is convex.

Then, for every AcGMN), ! A=p=| A.

Proof. The neighbourhoods of an %,cA in the topologies 2. A and | A
are of the forms (%o+U)NA and (x+U<)N A respectively. ”

By the conditions (Py) and (E:), for everv AcG (A) there exist A, and
A, such that A,DA and A,D24., ’ ‘

For (x,+U®NA, take Uell, such as UcU.,, then

(xo+U)NAC(%+U)NA,Cxo+UNA, _

In fact, if xe(%+U)NA,, then x=x,+y, where %A, ¥ U and x+yeA.,
by the condition (K) and (Pe). (Xo+y—%0)/2=3/2¢A,,, that is, y24,CA.,. so,
Zo+yexo+UN A,

Moreover,
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x0+UNA,Cxo+ U,zﬂA,zcxo+k{!LfJI(U,ﬂA,)}=x0+ U~
®o+U)NAC(xo+ U")N A follows from (x+U)NANAC(Xo+ U)N A. Thus, 1| A>
ne| A.
On the other hand, since p<g* by lemma 2.1, ¢ A<p*! A. Hence, n|A=
re A
Let =’ denote a locally convex linear topology defined in X, and let ¢« be

the g.m. topology determined by the topology t’ and %A, where A is the same
that determines p-.

Henceforth, we postulate that (i) the primitive system % satisfies (K) and
(i) if Ae€¥), k(A) belongs to EA). Thus we obtain,

Theorem 1. For any Ae€(N), the following conditions are equivalent; (1)
piA=7'1A (ii) ’<p* and p<'* (iii) pr=1'*

Proof. If p|A=7c'| A for any AeE), then obviously piA,=7'|A, for
each A%, and for every U’ell!, where W' is a basis of neighbourhoods of 0 in
the topology ', we have a subcollection of neighbourhoods of W, {U., el }
such that UU.,cU’, moreover for each U, we have U.%, such that

" UNnAcU,NA.cU,
so, U(U.NA,)C U(U NA)cuU.cU’, hence
“ ! TS e

On the other hand, it follows from x'A,=<'| A, that for every Uell, we

have {U, I} such that UU,cU and for each U, we have Ull’ such that
“l UNAcU.nA.cU.

so HI(U: NA.)c ul.nv)c ‘L‘JIU‘CU

Hence pupeL e

Two inequalities show that (i) implies (ii) and (iii).

By lemma 2.1, (iii) implies (ii).

If 7'<z* and p<7'« simultaneously, then for any Ac§). -'|A<ps{A and
p A<7’='A. By lemma 2.2, p*' A=p!A and < |A=7]A,s0 7 A<y A and
rl A< A, that is 7’| A=7"| A. Hence (ii) implies (i).

We denote the g.m. topology determined by % and g~ where p is the
g. m. topology determined by A and g, by po~.

’

In particular, taking g as z’ in theorem 1, we obtain

Corollary 2.1. pHeT=p

In fact, by lemma 2.1, for any AeG), p= A=p= A, while ;z’A—/e" A, so
| A=pe«| A. Hence (i) in theorem 1 is satisfied. So, pe=puce,

Corollary 2.2. The g. m. topology 1~ is characterized as follow ; The finest
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locally convex topology on X which is identical with the topology 1+ on any membery
in &) is the g.m. topology determined by ;o and .

Theorem 2. Let f be a linear operator from X inlo another linear space
Y with a locally convex topology ='. Then, f is (n,7)-continuous on every AcCG)
if and only if f is (u, ') continuous on X.

Proof. Sufficiency: If f is (x4 ¢')-continuous, then f A, the restriction
of f on A, is (¢*]A,)-continuous, hence by lemma 2.2, f| A is (v A)-
continuous, that is, (g, v')-continuous on A.

Necessity : If f is (g, v')-continuous on every Ae€EMN), then for every A.eN,
SlA, is (¢} A,7')-continuous at the point 0.

Let W be an arbitrary convex neighbourhood for 0 in the topology <,
and take a collection {W,, I} such that U W.cW.

It follows from the (z|A,z )-contmmty of f A. at the point 0 that for
each A,e?l there exists U,ll such that

flUNA)CW,

hence f(U(UnA))CUWCW
that is, there exists U%ell such that f(U “)CW

Corollary 2.3. For every Ae), the closure of A is the same for the topology
w and ;-

In fact, the sets of all linear continuous functionals on X with p° and
those on each A with p are the same by Theorem 2. So, by separation theorem
(see p. 22, Theorem 5, Cor. 2) the s-closure of A coincides with the /-
closure of A.

§3. The g.m. topology in various cases.

Some examples of the primitive systems in a linear space X with two
locally convex linear Hausdorff topologies /: and = are:

(i) the set B. of all =-bounded convex circled subsets of X.

(ii) the set I. of all z-totally bounded convex circled subests of X.

(iii) the set R. of all =-compact convex circled subsets of X.

(iv) the set €. of all convex circled equicontinuous subsets of X.

(v) W.; a baséis of neighbourhoods at O in the t-topology.

We call the g.m. topology determinde by the topology s and ®:(or T, R,
€., 1. respectively) y-(or ?-,c-,e-, u-) mixed topology, which is charaterized as
below :

Theorem 3. The y-(or t-,c-,-€) mixed topology is the finest locally eonvex
linear Hausdorff topology which is identical with ;. on the r-bounded (or =-totally
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bounded, t-compact, equicontinuous) subsets of X.
Proof. It is an immediate consequence by corollary 2.2.

Corollary 3.1. In a locally convex linear topological space, the 7-mixed
topology coincides with Persson’s mixed topology. _

In fact, Persson has defined the mixed topology by saying that it is
the finest locally convex linear Hausdorff topology which is identical with »
on the r-bounded subsets of X. So the y-mixed topology coincides with it
according to the theorem 3.

Corollary 3.2. In the case of*two-norm spaces, the r-mixed topology is
identical with Wiweger’'s mixed topology.

In fact, Persson’s mixed topology coincides with the topology introduced
by Wiweger in the case of two-norm spaces. (see [3])

Corresponding to some kinds of conditions which are added to the primitive
system, the linear space or the topologies y and r, we shall obtain various mixed
topologies. For instance, we see that the topology §(E’, E) which is defined in
the dual space E’ of E by the uniform convergence on each t-precompact
subset of a locally convex linear Hausdorff space E is an e-mixed topology,
and is a c-mixed topology if E is a Mackey space, and is a 7-mixed topology
if E is a barrelled space. In particular 8(E’, E) determined by the weak*-
topology and € in E’, coincides with the almost weak*-topology. ‘see [1])
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