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Introduction.

This paper is attributed its origin far back to the works of Y. Muto and
K. Yano made in 1935. They developed the connection theory on a
differentiable manifold X, with each point of which is associated another kind
of manifold ¥,. At that time their work was observed as rebelling against
setting conformity with those of formal generalized spaces then extant, until
when K. Yano and E. T. Davies raised their works up to the level of
contact tensor calculus. The distributions tangent to these X, and Y arc
generally not holonnmic and the classical theory of anholonomity introduced by
T. C. Doyle to homogeneous contact transformations served them to refine
their original idea. These two kinds of complementary distributions with equal
dimensions, namely the contact frames, were found later to be available for
defining the horizontal and vertical subspaces of a tangent bundle. The horizontal
distributions give a connection and consequently give the parallelism of tangent
vector field attached to the base space M, in the sense of C. Ehresmann [6]. It
is remarkable that such a tangent bundle T (M,) with base space M, of class
Cr, =4, admits an almost complex structure [17]. K. Yano and E. T. Davies
recently proved that T (M,) admits a complex structure with respect to these
complementary distributions. He nominated them the adapted {rames in order to
distinguish them from the natural frames spanned by the tangent vectors defined
on base space and on fibre. On the basis of the latter frames S. Sasaki
developed his own theory of tangent bundles by taking Riemann manifold
as its base some years ago. However, the notion of complex structure seems to
us likely more favorable by its simplicity in handling the conncction theory of
such T'(M,) as ours.

In Yano’s connection theory of tangent bundles T (My) in which the base
is a Finsler space, what arises with him as question is the dcfinition of the lift
of a vector field, namely, we may well consider that the lift is the vector
contained either in the horizontal or in the vertical distributions. Or also it may
be their algebraic sum. In accordance with these heterogeneous ways of defining

a lift it is of course natural to have the various formulations of the connections
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for T (M,).

According to the observation of the present author it would be plausible,
or rather desirable to have the connection I" on T(M,) such that when we
consider the horizontal lift of a vector in My, the components of the connection
parameter with respect to the horizontal distributions should satisfy those
postulates of parallelisms due to C. Ehresmann or to K. Nomizn [12], since the
usual connection of M, is in short the choice of the horizontal subspace in
T(M,). If then so, those components [}, are, of course, classical and we have
those ones such as due to E. Cartan [2] or to H. Rund for Finsler spaces.
On the other hand it was E. T. Divies and A. Deicke [4] who pointed out
that in order to have a Finsler connection on horizontal distributions it is
necessary for T (M) to have a connection I” with torsion,

This paper intends to show as to the way how to introduce the torsion
tensors to T (M,) in order to obtain the classical Finsler connections from the
theory of tangent bundles, especially those two kinds stated above. And at the
same time it tries determine the connection I' of T (M,) in such a way that a
theorem obtained by K. Yano on base Riemann spaces holds good as its direct
generalization, that is to say, we prove that if the lift of a curve C defined on
the base Finsler space M, is an autoparallel curve in the tangent bundle T(M,,),'
then the sectional curvature of M, defined by the osculaling plane associated to
the curve C is always (—1).

§ 1. Structure of the tangent bundle of a Finsler space.*

Let M, be a differentiable manifold of class C7, (r = 4), and (£*) be its
local coordinate system. The tangent bundle 7 (M, with local coordinate
system (54)=(5*, &%), é"=d$"/dt, is differentiable subject to the coordinate trans-
formations :

( Eh=f"(£),
(1.1)

i EIL'=AZ’ sh’ Z'___., 3’1//,’)&%.
Ghdel gnth def 2% j5 a tangent vector at a point (§*) of M,. If we write (1.1) briefly

as
=g (67,

*  We adopt the following conventions for indices :
A, B, C, D,cee=1, 2,0, mym+1,.++; 2,
ay B, 3, Byee=1, 2,00, m, 1%, 2K gk,
a, byc, h i j kI, m-e=1, 2,0cc0eeee » N,
a*, b*, c*, h*, i*, j* k¥, I* m*=1% 2%.... , n*
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[S+)
(97}

we have
Al )
(1.2 Gsvspem=| "
: yn §J ;i
(1.3) A=, AY, B=0/3".
where

(1.2) shows that the manifold T(M,) is oricntable, as

(1.4) |084/06 5 =1 A} 2>0.

Any fibre on a point () in M, is a subspace of T(M) and the distribution
tangent to it has the compoments

(1.5) CA=(0, o

. We introduce a function F(,£) in T(M) satisfying the postulates that
(1) F{(&, é) is positive if not all &t vanish simultaneously.
(ii) F(,10)="2!+F(,#&) for some arbitrary number 2.

(iii) gy (¢, &) p/ nt is positive definite for a non-vanishing vector %, where
g (&)= 2 9T F(3,3)/ 031081,

gl %) is a tensor defined over M, and is called a Finsler metric, [2],

[107, [18]3, 1201, 1211, r221. The scalar function
(1- 6) mw=gj E'i d;’:’
is a 1-form defined globally on T (M,) and its exterior differential

(1.7) do= ; Fop d2°Ad2T

is also defined on T (M,). Fy, has the components

(05 8a—D:812) 5 &n
(1.8) (F(‘n)=| }l
L —g,ﬂ 0 J 2 .
and the matrix (Fep) is skew-symmetric and of rank 2n as gy #0. Consequently
we can always find a tensor G** such that

G™*Fop=F,

FiFi=—t,

(1.9)

where & denotes the Cronecker delta. The covariant vector Gy defined by
Go.GP'=00 satisfies '

(1.10) FEF3Gep=Ges
and thus 7 (M,) is endowed with a Hermitian structure [6]. [7]. Furthermore,
as we have d(dw)=0, we get ’
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(1.11) d(Fep dic NdEP)=0,
which shows that T (M,) admits an almost complex structure [6].

The distribution B;* obtained by transforming the distribution C4 by FZ
has the direction orthogonal to Cs! and has the components

(1.12) B &l F 5 Cif=(gsa G, g5, G™).

We call this couple of the] complementary distributions B/* and C;* the
horizontal and vertical distributions respectively. Since the metric G™ are
arbitrary to within the requirements (1.9), we can assign the following conditions
on it. First the G,, should satisty

(1.13) CeCi" Gon=gyi.
Then we have

(1. 14) qu,=gﬁ
in virtue of (1.5). For Gj; we assume that B; has the components

(1.15) Bf =0}, = 1),
and hence by the orthogonality property

(1.16) Gy B Ci' =0,
we get

(1.17) Gyi="T"y,
where we have put

(1.18) Iye=gw I
Finally we assume that

(1.19) Gr. B} Bi=gy,
and this yields

(1.20) Gri=gsi+&. I} I,

as we have assumed (1.15). Thus the matrix (Gr,) has the form

) | &3+ Loa e Iy
(1.21) (Gra)=|
| s &
We take the function 7'y in such a way it satisfy the relation
(1.22) I'yi—=T'3=(0; &a— 1 810) §%
the matrix (Fj) whose components are given by (1.9), takes the form

N 7
(1.23) (Fi)= , i
—d=rern =)

because of (1.18) and (1.21), and this shows that for any of such kinds of the
functions I'y; it holds

A tangent space of T (M,) is spanned by
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0 e d 42
and we say that if the displacement d&/ satisfies
(1.24) dii+ T dz*=0

the tangent space is called horizomtal. This is the rcason why we call B! the
horizontal distribution of T (M,). If we consider the distributions B?; and

“ each of which is dual to B and C3 in this order, they have the
components

(1.25) B4 =5}, 0),
(1.26) Cii=(I";, ),
as we have
(1.27) B¢ B4=6},B{C%=0,C# B4=0,C;.C% =0,
(1.28) L BL+Ci Ch=04
Then (1.24) is written as
(1.29) Cidé=0,

which shows that a horizontal tangent vector has no component in the subspace
tangent to the fibre, and this is the reason why we call C;} the vcrt%ca]
distribution, Therefore if we call the distributions spanned by 4/45 and =2,

=1

or in short, by 9/3%* the natural frames, the distributions
(1.29) A;=(B{,C})

can be called the adapted frames of T (My,). On the other hand those B} and

C4 are the projective quantities in the sense of local subspace theory. The

displacement dx* is projected by A# so as to span the sub-displacement

(1.30) (dx)"= A5 dx*.
where we have put
(1.31) i=(B1 Ci).
Each part of (1.30) has the form
(1.32) (@§y =B ds'=ds',
(1.33) (de)' =Cti det =T}
and their dual operators are
(1.34) Xif=df-Tyo,f,  2,=0/d%,
(1.35) Xi.f=0.f.

The subspaces spanned by these distributions are not in general holonomic and
the condition of integrability

(1.36) Q. r=A1(X:;A2— X1A%)
are not all zero. It has the components
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[ =00 =00 =02, =0,
(1.37) | Qi =XI}-X)T,
Q"= —0, I
The metric Ggas and the almost complex structure F! with respect to the
adapted frames have the components

. (& 0,
(1.38) (Goa)=(AZALG) = ‘
S &t
(0 o
(1.39) (Fi)=(ASAIF)=
=0 0

This shows that the T (M,) is Kachlerian with respect to the adapted frame.

§ 2. Infinitesimal connections of 7 (M,).

It is always possible to introduce an affine connection in a differentiable
manifold and let I'4; and S,# the parameter of affine connection and torsion
tensor introduced to natural frames of T (My) respectively, i.e.

(2.1) Scit =T'én— 4,

Then for those that are transformed into the adapted frames we have
(2 2) I-'(;p = A: (Ac; Ag r(‘?‘n"‘XvA;):
(2-3) P;ﬁ—rsr_‘srﬁa‘"grﬁn’

where

S“," = A; A{;‘ Ag S(;BA.
We assume that the 7’7, satisfies the Euclidean connection with respect to gga,
namely

(2.4) Voo =Xe&s =T 148, =T 85=0.
Then from the identity
; (—vrgﬂa'*'vﬁgnr-"v“gw) gra =09

We deduce

Ti= 1)+ 5 (@ + 25,4 25
(2.5)
+ 5 (S +55,+S5%),

‘where

(2~6) {ra.e}"—'%g“ (Xrg3a+Xﬁgrﬂ_X5grﬁ)a
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2.7 Q.5=8" g L2..°,

(2.8) Ses=g8%8w S, .

We now assume that

2.9) X, g+ Iy §1=0,
and we get the relation

(2.10) ri=ryé,
because of (1.35). Then we have

(2.11) ok = (d&y,

.Originally a vector field v* in a Finsler space is the function of both ¢’s
and é’s, and consequently its lift is well defined in T (My). And if the lift belongs
to the horizontal subspace in T (M,) and consequently it is of the form B} v,
the connection of it is of course defined along the horizontal subspacc in the
usual sense such as of C. Ehresmann and the parallelisms serving to define it are
classical. we shall show that our connection parameter 'Y, can be determined
in such a way that the parallelism defined on a horizontal lift agrees with the
classical ones, for example, that of E. Cartan [2] or of H. Rund [13]. Those
'z are, of course, determined as they should be even if otherwise we consider
the lift of a vector field v (&, £) as a vertical one, or the sum of these two.

(1). I

By virtue of (1.37) and (1.38) the functions /'¢; endowed with the form
(2.6) takes the form
i+ %S,’j,--i— —é- S;.

l,s‘bi:@l_gna (X Zui+ Xi Gra— Xu got)+ }),_

We set up the assumption that S,* satisfies

(2.12). Sit= 5 8" (0 Zyu— 1} Oiu 1)
Then we get
(2.13) Pi= () = 5 8" O g I
by the use of the relations where {4} is the Christoffel symbol:
(2.14) {7} = é £" (0 gai+ 01 Zya— 0u &yi).
But as we have had (2.10), we have from (2.13)
(2.15) iy si=rn={4) &,

Since the function gy (&, &) is homogeneous of degree zero in the &s, that is,

Cjiu ’Sa = 09
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where we have put

(2. 16) Ciiu= ; 9, oty

and Cyu is symmctric in all the three indices. Substitution of (2.15) and (2. 16)
in to {2.16) yields

2.17) - [he= i) -Che (1) &,
where
(2. 18) Cj‘h‘ =g"0 Cjtu,

and the I}, thus obtained is nothing but the connection parameter of a Finsler
space introduced by H. Rund [13], in 1951 om the postulate that the
parallelism of a vector v' (£, ) dragged along a curve (£'(t)) is not only Euclidean
but also is one that preserves the scalar Sunclion guviv as a direct generaliza-
tion of Levi Civita’s parallelism in a Riemann space aloug a curve. It is easily
shown that the function ["; defined by (1.18) satisfies the requirement (1.22) for
this 1'%,
We now put another assumption that

(2.19) S,i+=0.
Then (2.5) takes the form
2.20) Ph= ()= 5 15 Culi= 5 15 Cp+ L gre 1t

Multiplying & and again using (2.14) we have
(2.21) U= (k) § =Tt Cy,
or
sn=8us L) $4= 1'% &t Ceay,
from which we sce that the requircment (1.22) holds too.
Contracting (2.20) by $/ we get
I &= ()
where we put
. (id = 15} % td = {0} $ 4
Then (2.21) can be wrilten as
1= {0} = (&) Clyy
Now, for
L= };'g'ji é" éts
we have '
v;‘ L=X;: L'—-‘-'-a;, L=$" gku,
ViVil=V; X, L=NV;0; L=0;9; L=gyu.



ON THE CONNECTIONS OF THE TANGENT BUNDLE 3

and thus we get
&.L!} gmc=§;”’ ah, ae L—Oc L.
If we differentiate this equality partially by £J, we have

0;( {%} gme)=2 {7} &m.
Hence if we introduce the function G such that

Gn= (&),

Gc‘—‘%’ &me {%
we find that

a;GL = {ya}gvni,
7 Ga= (i} =5 (B} C 1™

Using the latter, (2.20) is now expressed to

(2.22) I'l= (5} = (3) G™) C it — (9, G™) Conf +8*" (7% G™) Congs
which coincides with the connection parameter of a Finsler space due to E.
Cartan [2), [20], [21], [22].

(ii)l ’j:i‘l
By virute of (1.37) and (1.38) the /7, takes the form
= ’é‘g"“ (X5 Gt + Xie o — Xu» 3i)

+Sj"i*l“+ghw it Sa‘j*k‘ +g[m gis Su'i‘k.-
We sct up the assumption that

(2. 23) Sj*ikh‘ = 0-
Then by using the tensor Chy defined by (2.16) we have
(2.24) [w=Cl.

(i), I'k, and I'f.
First /", has the form
/= 1 ha 0’ — 1 na X ]k X A
,m'—TZ‘g i But gg i (X 15— X4 1)

+ o Spl 5 (Sl S

We now assume that

(2.25) =1
(2. 26) .’_;‘i + S’;,) = 0.

By the use of which and together with (2.24) we dcduce
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(2.27) Syit=gm g (X, 4= X, I'k):
From the equality (2.3) we have
D=l =Spl+ 2,0,
and we have had
(2.28) I=C},
in consequence of (2.24) and (2.25), while £,. vanishes because of (1.37). Hence
the above equality yields
(2.29) Iy =Cla—g" gy (Xo 15— X, 1Y),
Also if we multiply (2. 26) by G‘ha and G’““‘ which are nothing but gy, and
g™ respectively as we have proved (1.38) and take (2.27) into account, we obtain
(2.30) St=X: ["—X, 't
(iv). I'j.
In virtue of (1.37) and (1.38) the 1'{9,. takes the form
1 "
+ 5 S
But as G*=G""=g and G**=G*"=0, we have
Gt S=8" g S, +8" gy St
and the right member vanishes identically because of (2.27). Thus we get
(2.31) [Mm = Clym Xy I X, IS,

(v) Il and I'ls,

/';’;:‘ __ gha X it + p n* (Slii+sh.

We set up the assumptions
(2.32) 1,
(2.33) 1 =0,

Then from

['.,;Z* =5 (g’m ‘Y/g'lb'*', gh”gk Ivfa +g/mgﬂﬁ Su't‘ ) -/ h + 2 ghu i Sa*,l‘

we have
(2. 34) S, =0
by the first of these two assumptions.
Also from the equality
U=, =8+ 2,1,
we get
(2. 35) = — (0, 'l -"
by virtue of (1.38), and (2. 33).
(vi). I
If we take account of the relation (2.34) and also of a fact resulting from



ON THE CONNECTIONS OF THE TANGENT BUNDLE 33

the anholonomity of the distribtions, namely the relation
Qb = =, 1%,
we see that the component /%, of (2.6) is reduccd to — 2 g”" V&, and conse-
quently we have
(2. 36) /™0 =0.
Summarizing the results we have had

(1) [I"%(E. Cartan’s or H. Rund’s connection parametcrs given by
(2.22) or (2.17) respectively).

(2) I =Ct (12.28)).
(3) I =Cyl—g" g (X 15— Ky 1), =Cl— Kl &7, ((2.29)).
(2.37)  (4) 1'9”.,.=0 ((2.36)).
(8) IG==Cil =X I+ Xl = —C =Kt 3, ((2.3D).
(6) 1';;—/91-, ((2.32)).
(7)) I =0, ((2.33)).
(8) I'M.=C," ((2.24)).
where
(2.38) Kly= X I l= Xy Ul Ul 15—l
and
K i=8"" g K.
(1) S;r=0, ((2.19)),
= 5 & 1 g = [} g, ((2.12)),
| which serves to derive E. Cartan’s and H. Rund’s connection
paramctcx 1"}, respectively in this order.
A2 (2) St — g gt (X 5= X 1), =K, 5 ((2.27)),
( ) S, =0, . C(2.39)),
(4) S;t=X1"-X;1"—~—-K, 3, ((2.30)).
(B) Slt=—(d; 1) &, ((2.395)),
(6) S;;"=0. ((2.23)).

For F} wec have derived its componcents at the end of § 1, from which we
find that
iR =i~

holds good subject to thc¢ connection parameters derived above. Hence from

we have
(2.40) i Fr =0,
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In determination of /';, K. Yano and E. T. Davies adopted such
assumptions that

a) geodcsics and autoparallel curves coincide, so that S, +S,,=0.

b) /'.;Li'_——lvf;i." ['.I;‘i= I‘jf:m

c) S;l=S.=0.
As was seen above we get E. Cartan’s connection parameters from (c), but /™.
thus obtained involves Berwald’s curvature d;/% explicitly and we feel it hard
to avail these I, for the discussions in the following paragraph especially when
we speak of the relation between the arc length of a curve in the base space
and that of an autoparallel curve corresponding as its natural lift in 7 (M,).

§3. Auto-parallel curves in T (M,).

Let o denote the components of a displacement dé4 in T (M,) on the
adapted frames:

(3.1 = A% dEA,
To each frames we have

8.2) o'=B! di*=dg,

3.3) o = Cly dé4 = (dé)l = b3,

becauc of (1.25), (1.26) and (2. 14).
Given a curve §!'=¢!(s) be a curve in the base spaee, where we take its
arc length s as its parameter. Its lift in 7 (M,) has the form (&, ¢! (s)) where

*Tds
We assume that the lift draws an autoparallel curve in T (M). Then if
we denote its arc length by £, we have for it the equations

. d oy
(\‘3.4) —Jt— w (t)+l

, o (L) (2)

~af dt

For y=h we have

d(den\ . d&)p, dit . dY g, 08 0% g, dE | 08 . G5
¢Tt< dt>+ ar Uiy toar Uie g t—gg Vgt ar U3 =0

in virtue of (3.2) and (3.3). Using the list (2.37) of each component for /7,, we
have for (3.4) the equations

24n . 651 dst
(3. 5) gl_ +Kkjth gl. 057 ds =0,

wherce
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(‘;‘ZEIL _ _‘i?i-:ﬁ d;:j " ‘dsl
(8.6) ar = ar tarar
For y=h" we have

d 68 | dE) e dgt A e 08 BH e dE 8 e 85 g
o tar i g tagr Vegrtar g Tar T dn

in virtue of (3.2) and (3.3). Using (2.37) as above we have then the equations

Gér d (G M, dE) pu 080 08~ 6§ _
(3.8) ar " dt (dt ) +3r g +ar Crgr =%

Now, since ¢ was taken to the arc length of the autoparallel curve, we
should have

.
&—gr ar = b
or
| ds’ dgi ass ag
¢ Bt Dok TN R
8-9) gy ar T e g ar =*
But as

o 5 (o )

681 ogi
s~ “»  =consL, and accor-

at dt o
=const. Then as it holds g;;%’;-. —‘;‘;=1

vanishes because of (3.8) and of ag;=0. Hence gy
d§! dgt
dt adt
for the projection, we have —%:— =const. and observe that the arc lengths ¢ and

dingly we see from (3.9) that gy

s are linearly related.

Therefore the equations (3.5) and (3.8) can be written as

3.10 EREAWY: JENE AT 2
3. 10) 7 (g ) vEu G (G )@ =
. 0° A ‘
8. 1 4 (G)-0
) dé . . 6 ordN
I'he unit tangent vector —y— together with its normal vector ds ( ds') spans

the osculating planc along the curve. Then let us write

. . deh N

1 e _
(8.12) as

. 1 I; d;.‘h = U
(8.13) ds ( ds ) oI

and we have gy A Ai=1, gy pt=1,g85 10 4'=0. Substituting (3.12) and (3. 13) into
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{3.10) we have

(3.14) Kinig 2 g 2 pt = — 1.
Hence we have the
Theorem. If a lift of a curve C of a Finsler space is an autoparallel curve in
the tangent bundle T (M,), then the sectional eurvature of the Finsler space
determined by osculating planes along C is always (—1).

From (3.10) and (3.11) we see easily that the lift of any geodesic is an
autoparallel curve in T (M,).

University of California, Los Angeles.
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