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1. Introduction. This paper is concerned with the properties of a
minimal extention of a Boolean algebra. T. Traczyk [2] had $1$)$roved$ that a

minimal extension of a weakly a-distributive Boolean algebra satisfying the

a-chain condition is also weakly a-distributive. The tools with which he had

proved this theorem was the family of a-partitions of a Boolean algebra $B$ which
has a covering of $B$ which refines every member of the family. In this way his

proof was so algebraic but so elegant. Motiviated by this theorem, I thought

that whether this theorem can be proved by another method $i.c$ . topological
one or not. However, an answer for this problem is affirmative by showing the
theorem which is as follows: A minimal extension of an $\alpha\cdot representative$ Boolean
algebra satisfying the a-chain condition is also a-representative. In the first place
I prove this theorem by using topological properties of the Stone space of a
Boolean algebra and in the second place givc another proof of the previous
Traczyk’s theorem. All sorts of theorems, concepts and terminologies which are
used in this paper due to the work of Prof. Sikorski [1].

2. Terminology and notation. Throughout this $P^{a}I$)$er,$ $\alpha$ denotes an
infinite cardinal number. The symbol $\cup$ will be used both for the Boolean $|oin$

and for set-theoretical union. The symbol $\cap$ will be used both for the Boolean
meet and for the set-theoretical intersection. The zero element of a Boolean

algebra will be denoted by $0$ and the unit by 1. The empty set will be denoted

by $\phi$ and the complement of a set $A$ will be denoted by $A^{\prime}$ . The difference of

two sets $A$ and $C$ is written by $A-C$. The symbol $|\mathcal{T}$ stands for the cardinal
number of the set $T$.

If $A$ is a subalgebra of a Boolean algebra $B$ and $a_{t}cA$ for every $t\epsilon T$, then

the set $\{a_{t} : \ell\epsilon T\}$ may have two joins, one taken in $A$ and the other in $B$ ; we
denote these joins whenever they exist, by $\bigcup_{\iota_{\epsilon T}}^{A}a_{t}$ and $\bigcup_{\ell\epsilon T}^{l}a_{t}$ respectively.
$A$ subalgebra $A$ of a Boolean algebra $B$ is said to be a-rcgular subalgebra of $B$

provided, for $\{a_{t} : a_{t}\epsilon A, t\epsilon T, |T|\leqq\alpha\}$ , if the join $\bigcup_{*r}^{A}a_{t}$ exists, it is also the join

of all $a_{t}$ in $B,$ $i.e$. the equality
$\bigcup_{eI’}^{B}a_{t}=\bigcup_{eT}^{A}a_{t}$

holds.
A set $D$ of clements of a Boolean algcbra $B$ is said to be dense in $B$

provided, for every element $a\epsilon B,$ $a\neq 0.$
’ then there exists an element bcD such
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that $0\neq b\subset a$ .
H. M. Stone had proved that every Boolean algebra $B$ is isomorphic to a

field of all both open and closed subsets of a compact totally disconnected space.
Such a space is said to be the Stone space of $B$ and such a isomorphism is
called the Stone isomorphism. For every Boolean algebra and every cardinal
number $\alpha,$ $S(B)$ denotes the Stone space of $B,$ $F_{0}(B)$ the field of all both open
and closed subsets of $S(B)$, and $F(B)$ the smallest $\alpha$-field of subsets of $S(B)$

containing $F_{0}(B)$ .
3. Topological properties. A subset $A$ of a topological space $X$ is said

to bc $\alpha$-closed provided it is the intersection of at most $\alpha$ both open and closed
subsets. A subset $A$ of topological space $X$ is said to be $\alpha$-nowhere dense
provided it is a subset of a nowhere dense $\alpha$-closed set. Any union of at most
( $f$ sets which arc all $\alpha$-nowhere dcnse in $X$ is called set of the $\alpha$-category.
Obviously, the class of all sets of the $\alpha$-category in $X$ forms $\alpha$-ideal in the
class of all subsets of $X$. We define that $A\subset X$ is said to be have the Baire
$\alpha$-property if there exists an open set $G$ such that $A-G$ and $G-A$ are sets of
the cv-category. In other words, $A$ has Baire $\alpha$-property if

$A=(G-N_{1})\cup N_{2}$

$\backslash t\cdot herc*G$ is open, and $N_{1}$ , N. are of the $\alpha$-category.

Lemma 1. $lf$ every nowhere dense se $t$ in a topological space $X$ is $\iota-$

$no\backslash vhere$ dense, then the class of sets which have all Baire $\iota$-property is a $c\iota-$

ficld of subsets of $X$.

Proof. The symbol $B$ denotes the closure of a set $B$. If $A$ has the Baire
cu-property, that is, there exists an open set $G$ such that $A-G$ and $G-A$ are
sets of the a-category, so has its complement. In fact, $(\overline{G})^{\prime}=G_{0}$ be the comple-
ment of the closure of $G$ . Then $G_{0}$ is open, and

$A^{\prime}-G_{0}=\overline{G}-A\subset(\overline{G}-G)\cup(G-A)$ .
Since $\overline{G}-G$ is the boundary set of open set $G$, it is a nowhere dense. $\Lambda ccording$

to the hypothcsis, $\overline{G}-G$ is an a-nowhere dense. On the other hand,
$G_{0}-A^{\prime}=A-\overline{G}\subset A-G$ .

Hence, it follows that $A^{\prime}-G_{0}$ and $G_{0}-A^{\prime}$ are of the $\alpha$-category.
If all sete $A_{t}(\ell_{t}T, T\leqq(\iota)$ have thc Bairc $cr$-propcrty, so their union $A$ .

In fact, let $G_{t}$ be open sets such that $A_{t}-G_{t}$ and $G_{t}-A_{t}$ arc sets of the ru-
category $trT$. Let $G$ be the union of all sets $G_{t}$ . Since

$A-G\subset\bigcup_{\ell c^{\prime}l}(A_{t}-G,),$ $G-A\subset\bigcup_{p_{cT}}(G_{t}-A_{t}1$ ,
the sets $A-G$ and $G-A$ are of the ( $f$-category.
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Lemma 2. If every nowhere dense set in a topological space $X1S$ cu-

nowhere dense, then every set of the smallest $ c\iota$-field containing the field of all

both open and closed subsets of $X$ has the Baire $\alpha$-property.

Proof. It is clear that every both open and closed set has the Baire

$\alpha- property$ . By Lemma 1, the class of sets which have all the Baire $\alpha$-property

forms the ($\chi$-field, consequently, the smallest $\alpha- field$ containing the field of all

both open and closed sets is contained in the class of scts which have all the

Baire a-property.

4. The $\alpha$-representativity. A Boolean algebra is said to be $\alpha$-representative

provided it is isomorphic to an $\alpha$-regular subalgebra of a factor algebra $F/I$

where $F$ is an a-field of sets and $I$ is an $t$-ideal of $F$. If a-compictc Boolean

algebra $B$ is $\alpha$-representative, then its isomorphic imagc is cu-subalgcbra $F^{\prime}/I$ of

$F/I$ where $F^{\prime}$ is an a-subfield of $F$.
Thus an $\alpha$-complete Boolean algebra is called $\alpha$-reprcsentative if and only

if it is isomorphic to a factor algebra $F/I$ where $F$ is an $\alpha- field$ of sets, and $I$ is

a-field of $F$.
A Boolean algebra $B^{\infty}$ is said to be an minimal extension of $B$ provided

that it has following two properties:
(i) $B^{\infty}$ is complete,
(ii) $B^{\infty}$ contains a dense subalgebra isomorphic to $B$

The existence of such $B^{\infty}$ is guaranteed [see [1] 35. 1].

All minimal extensions of $B$ are isomorphic to each othcr $\lfloor\sec[1]\backslash ’\iota 3.4\rfloor$ .
For a Boolean algebra $B$, let $i$ bc the Stone $isonlorp1_{1}ism$ of $B$ onto $F_{0}(B)$

$alld$ lct $J_{\iota t}(B)$ be the $\alpha$-ideal of all sets $AcF_{\iota}(B)$ which are $of^{\backslash }$ the cv-category

in $S(B)$ .
Theorem 1. A minimal extcnsion of an a-representativc Boolcan algebra

$B$ satisfying thc $\gamma\gamma$-chain condition is also $n-\iota\cdot cprescll\mathfrak{t}ative$ .
Proof. The symbol 1 $A$] dcnotes $t1_{1}e$ element of thc 1 $\iota ct\cup ra1_{b^{\prime}}cb1_{\dot{t}}t$ of’

$F_{tt}(B1/A_{a}(B)$ . I’hc formula
$ i^{*}(a)=[i(a)\rfloor$ $(a(B)$

dcfincs an isomorphism from $B$ into F. $(B)/\lrcorner,1(B)$ . I $t$ is clcar $thaL$ thc $\iota*$ is an

homomorphism from $B$ into $F_{\iota\iota}(B)/\lrcorner_{\iota}(B)$ . lf $;:j_{\backslash }\cdot(a)=0$ , thcn $\lfloor i!a_{\dot{1}}\rfloor=0$ . Hcncc, $i(a/$

is contained in $J_{tt}(B)$ . Sincc $B$ is $tY$-represcntativc, it $1^{\backslash }ollo\backslash \iota\cdot s$ that $i(a)\rightarrow c/J$ Lsce
[1] 29.3 $ r_{4}\rfloor$ . This means that $i^{*}$ is the $i_{Somo_{1)}}\iota\cdot hism$ .

Now we shall show that the isomorphic image $i^{*}(B)$ of $B$ is a dense subalgebra

of $F_{\iota}(B)/\Delta(c(B)$ . Let us rccall that $B$ satisfies tlie ( $1^{\prime}- ch_{c}\iota i_{1l}$ condition, consequentIy,
every $no\backslash chere$ densc set in $S(B)$ is ( $f$-nowherc densc $\lfloor s^{\prime}ec\lfloor 1\rfloor$ \S 22. examplc ( $(J^{\backslash })$ ].
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By lemma 2, every set in F. $(B)$ has the Baire $\alpha$-property. Thus, every set $A$

in $F_{\alpha}(B)$ can be represented as follws:
$A=(G-A_{1})\cup A_{2}$

where $G$ is an open set and $A_{1},$ $A_{2}$ are of the $\alpha$-category. If $[A]\neq 0$, then $G$

is not empty, $i.e$. there exists an element $a\neq 0(a\epsilon B)$ such that $i(a)\subset G$. Conse-
quently $;*(a)=[i(a)]\neq 0$ . We have $[A]\supset[i(a)]$ . In fact,

$i(a)-A=i(a)\cap A^{\prime}=i(a)\cap(G^{\prime}\cup A_{1})\cap A_{2}^{\prime}$

$=i(a)\cap A_{1}\cap A_{2}^{\prime}\subset A_{1}$ .
Since $i(a)-A$ is contained in $F_{a}(B)$ , it is a set of the $\alpha$-category. This means
that $i(a)-A\epsilon\Delta_{l}(B)i.e$ . $[A]\supset[i(a)]$ . .

Finally, we shall show that $F_{a}(B)/\Delta_{\alpha}(B)$ is a complete Boolean algebra. $B$

satisfies the $\alpha$-chain condition, therefore the subalgebra $i^{*}(B)$ of F. $(B)/\Delta_{\alpha}(B)$

satisfies the a-chain condition. Since the subalgebra $i^{*}(B)$ is dense, $F_{\alpha}(B)/\Delta_{\alpha}(B)$

satisfies the $\alpha$-chain condition. Consequently, a-complete Boolean algebra
$F_{\alpha}(B)/\Delta_{\alpha}(B)$ is complete Boolean algebra. $[\sec[1]20.2]$ .

This proves that F. ( $B_{\grave{J}}’\Delta_{a}(B)$ is a minimal extension of $B$. Hence $B^{\infty}$ is
$\alpha$-representative.

Theorem 2. Let $B$ be an $\alpha$-representative Boolean algebra which
satisfies the a-chain condition. Let $F_{\alpha}$ be the a-field of all subsets of $S(B)$

having Baire $\alpha$-property and the let $J_{a}$ be the $\alpha$-ideal of all sets $A\epsilon F_{\alpha}$ of the
$\ell$u-category in $S(B)$. Then $ F_{a}/\Delta$ . is a minimal extension of the Boolean algebra
$B$.

Proof. This proof is formally quite similar to the proof of theorem 1.

5. The weakly $\alpha$-distributivity. A Boolean algebra $B$ is called weakly
a-distributive if satisfies the identity

$\bigcap_{teT}\bigcup_{e\epsilon_{1}\backslash \cdot a_{ts}=\bigcup_{\varphi eF(8)}r\bigcap_{teT}a_{t\varphi(t)}}$

where $F(S)$ is the set of finite subsets of $S,$
$a_{\ell\varphi(t)}=\bigcup_{t\epsilon\varphi(t)}a_{ts},$ $|T|\leqq\alpha,$ $|S|\leqq\alpha$

subject to hypothesis that the join $\bigcup_{scS}a_{ts}$ as well as the meet $\bigcap_{tcT}\bigcup_{\iota.\cdot sa_{/}}$. and
$\bigcap_{tc2’}a_{t\varphi(t)}$ exist in $B$.

Theorem 3. (T. Traczyk) A minimal extention of weakly a-distributive
Boolean algebra $B$ satisfying the a-chain condition is also weakly $\alpha- distributive$ .

Proof. Since every weakly $a$-distrbutive Boolean algebra is $\iota- representative$,
by Thcorem 2, $ F_{a}/\Delta$ . is a minimal extension of $B$. We shall show that $F_{a}/\Delta_{a}$

is weakly $\alpha$-distributive.
Let $\{a_{t\$} : trT, s(S, |T|\leqq\alpha, |S|\leqq\alpha\}$ be a subset of $F_{n}/\Delta_{a}$ . By the completeness

of $F_{\alpha}/J_{\alpha},$ $\bigcup_{s\mathfrak{c}S}a_{t\iota}$ for every $tcT,$ $\bigcap_{t\iota J}\cdot\bigcup_{u\mathfrak{c}S}a_{ts}$ and $\bigcap_{t1’}e^{\prime}a_{t\varphi(p)}$ for every $\varphi\epsilon F(S)^{\prime z}$
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exist.
For every $a_{ts}$ , there is an element $A_{t}.\epsilon F_{a}$ such that $a_{t\iota}=[A_{tl}]$ . Moreover,

every set $A\epsilon F_{a}$ is of the form
$A=(G-A_{1})\cup A_{2}$

where $G$ is open and $A_{1},$ $A_{2}\sigma\Delta_{a}$. Consequently $[A]=[G]$ , that is, every element
$a$ of $F_{a}/\Delta_{a}$ is of the form $[G]$ where $G$ is open. Hence, for every $a_{t}.$ , there
exists an open set $G_{t}$. in $S(B)$ such that $a_{t\iota}=[G_{t\iota}]$ . It follows easily that

$a_{\iota_{\varphi(t)}}=\cup fl\varphi(t)a_{t\iota}=\bigcup_{\iota\epsilon\varphi(t)}[G_{\iota}.]$

$=[\bigcup_{sr\varphi(t)}G_{ts}]=[G_{t\varphi(t)}]$ .
Suppose now that $\bigcap_{teT}\bigcup_{t\epsilon}sa_{ts}\neq 0$ . Then, by the n-completeness of F., $\backslash \backslash e$

obtain
$\bigcap_{teT}\bigcup_{eS},a_{t\iota}=\bigcap_{trT}\bigcup_{trS}[G_{tn}]$

$=\bigcap_{trT}[\bigcup_{*rS}G_{t\iota}]=[\bigcap_{trT}\bigcup_{r\cdot S},G_{tn}]\neq 0$

That is,
$\bigcap_{teT}\bigcup_{\iota\epsilon}sG_{t\iota}$

is not contained in $\Delta_{n}$ . Besides it is of the form
$\bigcap_{tcT}\bigcup_{tr}sG_{ts}=(G-A_{1})\cup A_{2}$

where $G$ is open and $A_{1},$ $A_{2}$ belong to $\Delta_{a}$ . Thus $G$ is not empty. Since the
Boolean algebra $B$ is weakly $\alpha$-distributive, the sets $A_{1},$ $A_{2}$ are nowhere dense
sets [see [1] 30. 1 $(w)$].

Consequently, $\bigcap_{t_{C}T}\bigcup_{\$ r\cdot S}G_{t\epsilon}$ contains a non-empty both open and closed
subset C. $S(B)$ being the compact space, the closed subset $C$ is compact. Since
$c\subset\cup,,sG_{t\iota}$ for every $\ell \mathfrak{c}T$, that is, $\{G_{t\iota} : s\epsilon S\}$ is a open covering of $C$, there is a
finite subcovering of $C$. Consequently, there exists a $\varphi F(S)$‘ such that $ c\subset$

$\bigcap_{trT}G_{t_{t^{r(\prime})}}$ .
$C$ being a non-empty open set, $C$ is not contained in $\Delta_{n}$ . Hence, we have

that
$\bigcap_{t_{f}T}a_{t\varphi(t)}=\bigcap_{trT}[G_{t\varphi(t)}]$

$=[\bigcap_{trT}G_{t\varphi(t)}]\supset[C]\neq 0$

Thus, $F_{a}/\Delta_{n}$ is weakly a-distributive Boolean algebra [see [1] 30. 1 $(\backslash v_{1})\rceil$ .
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