SOME NOTES ON THE QUEUES WITH MULTIPLE INPUTS

TsurucHivo HoMMA and TAKEHIsA Fujisawa

Introduction

Some studies of queues with different types of customers having indepen-
dent Poisson inputs have been published. Previous works on the subject have
been confined to a special case when the type of service distribution is ex-
ponential. In the case each server has its own special service distribution, the
analysis has been developedf But if each type of customers has its own
speciality, the analysis of many server queuing system seems to be difficult.
Recently the case of a single server queuing system has studied analytically by
Ancker and Gafarian®), In this paper we shall examine the problem of a single-
server queuing system with multiple Poisson inputs and general service distribu-
tions by applying the technique devised by Keilson and Kooharian.B Next we
shall investigate the equilibrium behaviors of a two-server queuing system for two
different types of customers having independent Poisson arrivals with rates 4y, 4;
and exponential service times with rates g, /.

1. Statement of the first Problem

The first and secand types of customers arrive at a service mechanism in
independent Poisson streams with mean rates 4; and 4, respectively. The service-
time distributions of both types are general with probability densities D, (x) and
D, (x) respectively and the customers are serviced under the first-come, first-served
queue discipline. Let 7;(x) A be the first-order probability that a customer of
type 1 completes the service in the interval (x, x+A), if the customer has already
been in the ser’ice for a time %, and similarly »:(x) A for a customer of type 2.

The relation between 74 (x) and the probability density D;(x) is given by

Dy (%)= n: (x) exp [-— fmm (y)dy ] :

We now define the following probabilities:

P (x,t)dx (n20,i=1,2) -is the probability that at time ¢ there are n
customes in the queue, excluding service, and a customecr of type ¢ is being
served with elapsed service time lying between x and x+dx.

P, (t) is the probabilty that at time £ there is neither a customer of type 1
nor one of type 2 in the system. '

w (2) is the waiting time of a customer arriving at time £,
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2. Formulation of Equations and Their Solutions

In order to derive the difference-differential equations for the process, we
follow Keilson and kooharian! and relate as usual the probabilities at time
t+A to those at time #. These arguments lead to the equation '

P™(x4+ A 4+ A)=P™ (x,1) (1= 2A) (1= 51 (A +P,%D (2, £) AN (n=21)_
which, as A—0 becomes
2y BTG IBTD, g )P =P ) (n2),

ot ox

Similarly, we have

2.2 I o, oF 2‘;;("’ D bme (1) P (3, )= AP, (2,0)  (mz21).

For n=0 we similarly find

()Pl(o) (x, t) + 0P1‘°’(x

2.9) > 2y (2 (0} P (3, =0

and

(2.4) OP,O(x, ) + P, (x, t)

ot g T {4+ 72 ()} PO, =0,

Finally for P, (t) we have

(2.5) d’;‘;“’+zPo.t>= [ P, ) gy (x) dr | P, b9 (0 a.

These equations are to be solved under the following boundary conditions :

o

2.6) Py, )=« f Py (5, £) my (%) dX +a f Pyvtd(x, 8) s (%) d¥,
[ 0

2.7) P, t)=af PV (x,8) ny (x) dx+a f Py (x, 8) mz (x) dx+ 4, Py (8)
0 U.

2.8)  Pym0, =8 f Py (x, 1) 1, (%) dx+ j P+ (5, 8) 7y (%) d,

(2.9) P,® 0, t)=/9‘[ P,V (x,8) 9y (x)dx+ ﬁf Py O(x ) 7, (x) dx+ A Py (2)
0 4
and the intial condition Py0)=1 (i.e. the system starts with no customers),

4 and ="

where | A=A+, a= b 2.

We define the following generating functions:

(2. 10) Gi(z,x,t)=

N

2 P, i=1,2.
0

T Lot
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w

Multiplying equations (2.1)—(2.4) with appropriate powers of 2z, adding and
using (2.10) we have

@11  2Gi& %t 06 (&% 1)

+ {4 (L=2)+ 71 (2) G (2 %, ) =0,

ot ox
g1z 2GEn0y 0GENDL (1124 (1)Gsa % =0

and the boundary conditions become

(2.13) Gy (z,0,8)= %{Gl (2, %, £) ny (x) dx+ %J;Gz (2, %, 1) 73 (%) dx

- ‘ZLJUGI (0, £,1) 7y (%) dx — ‘zijucz (0, £, £) 72 (%) dx+ 4 Po0),

2.14)  G:(z,0, t>=‘zi j Ge 2, 2,8) mz (5) d+ 2 f Gi (2 %, {) 71 (%) dx

— gJ‘:G: (0, %, 8) 2 (x) dx— gJ(:G; (0, %, 1) 71 (%) dx + 43 Py (1)

Equation (2.5) becomes

(2.15) _dggit)—+ iPs(t)= [ Gilo, 5, D dx+ [[Gs(0, 2, 8) 72 ) .

Setting
~Fn (y)dy
Gi(2g,x,t)=H;(z,x,t)e ° : i=1,2,

in (2.11) and (2.12), we find that '

(2.16) Whlanl), 204 1— 2 He 5, 0-0
and

(2. 17) ;;}12 (Z, x, t) +l‘)Hg (2.. x, t>-{-A ‘1"‘2) }12 (\z’ x’ t)——o

ot x

The solution of (2.16) and (2.17) is given by

(2.18) H(z,x,8)=H; (2, t—x) e~* 1=, i=1,2.

Substituting (2.13) and (2.14) id (2.15) and using (2. 18}, we have

@.19 9B ;(‘)~+z (1-2) Po(t)+ 2 Hil2, 1)

= fHI (2, t—x) D (x) e~ "=0rdx+ J‘H;(z, t—x) Di(x) e~*1=+dx
0 0

and
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(2. 20) “‘5‘;(” +A(1—2) Po(t)+l%H; (2, 1)

= fH; (2,8 —x) D, (x) e~ 1=22gx 4 fH; (2, t—x) D, (x) e~21-22 dx,
0 0

Applying the similar argument in Keilson and Kooharian @ to (2.19) and
(2.20) we have

2.21) d‘;;( +A(1-2) Py (0)+ £ H} (2,1

¢ ¢
= JH 1(2,—%) D, () e~*"-7dx + f H; (2, t— x) Dy(x)e=*\=7dx
0 0

and

(2.22) df;g“) +A(1—2) Py (A+ % H:(z,#

t t
= IH; (2, 1—x) D, () e~19=02dx + f H: (2, t—%) D, (x) e=19=0dx,
0 0

Let the Laplace transform of the function F(f) be denoted by f(s), i.e. let

ov

fls)= f e~ F (8) dt.

0
Applying the Laplace transform to the equations (2.22), and employing
the initial condition mentioned above we get

2.23)  (s+A(1=2)}puls)=| di(s+2(1-2)} = Z Jhi (2, 5)+ dols+ A 1—2)) hile, )+

and
2.24) {s+4(1—2)} po(s) l:dz (s+2 (1—2)} ﬂ]hg(z, V+dy (s+A(1—2)} &, (2, s)+

or equivalently,

o o . _ al{s+4(1=2)} po(s)—1]
@28 &S = s (T=2) 7 pdy 5+ A= =2

and

o . . _ BL{s+4A(1—2)} po(s)—1]
2.26) M) = S Il TP+ A=A =7 "

Thus (2.25) and (2.26) were completely determined except for p,(s), which
we will determine by the usual argument.

Now it is easy to show that the equation

(2.27) z2—ad{s+A1—2)} —pBda{s+2(1—2)} =0
. has one and only one root inside the unit circle iz.1=1 for R(s)>0, 41/pi+ A2/ p2< 1,
where
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,,,=1/_[:Di (%) dx

is the mean rate of service of type 7. The proof is similar to that of Takécs &
and will not be given. Let 2, be that root.

Accordingly, under the familiar stability condition 4;/p+4:/pe<1  po(s)
can be explicitly given as

1

(2.28) Do )= M= adi s+ A=z = B ST A=2011 "

3. Distribution of the Length of the Waiting Line

Now if @ (z,?) represent the generating function of the distribution of the

queue length at time ¢, it is given by

(3.1) O (g, f)=Po(A+ £ 2 (PL(t)+ Pt

[
where Py (f)= | Py"D(x,#)dx is the probability that at time ¢ there are #»
p y
)

customers in the system and a customer of type # is being served. In terms of
H;(z,1)(t=1, 2),(3.1) reduces to

[4
3.2) @(z,)=P(t)+2 I e=10-2( I} (2, 1— %) e~ S0 1 H (2,8 — x) e~ S 1201} dx.
o

Using the relation
exp(— [ni(9) ayi=1- [ Di(y) dy
0 0

we find the Laplace transform of @ (z,1) as follows:
o (2, 8)= fe‘“'(i) (2, t)dt
0

_ (1=2)s+2—22)po(s)+2{1—[adi(s+ 21— R2)+ fdos+21—22)]"'}
(s+2—2z){1—2z[ad\(s+A— A2)+ Bdy(s + A— A2)] ) '

The generating function.of the steady-state distribution, which exists for
bk
o M
is obtained from (3.3) by the property of Laplace transform, viz.
lim sf(s) = lim F(¢).
8—>»0 t—>o0

(3.3)

From (3.3) we have
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. - (1—2) Po
,1_‘,‘2 ? 1) 1-2{ad\(A—42)+ Bdy(A—iz)} ' °

where P, is the steady-state null probability

Po=lim Py(t)=1-41_ %
T M 2

4. Distribution of Waiting Times

The Laplace transform of the waiting-time distribution is readily derived
by a usual method. If the system is empty at #, then w (£)=0. Otherwise w () is
the sum of the service times of those customers already waiting and the
remaining service time of the current customer.

We introduce the following functions

F(x,t)=P {w (t) < x}
and

]

v (4, 8)= f e~=dF (x,1).

(1]

Since the service times are distributed independently, we have

n=0

¥ (u, )= P, (1) + de Py ™(#, {)[ad\()+ Bdy(u)]" I e="D, (x+ ) dv

0 1-—- .[Dl dy '
+Idx - Pa™( (x, 2) [(!dl (%) +ﬁd( J‘e—mvl)g (x+ l)) dv
1—fD (3) dy 0

t oo
— PO (t) + J.dxH; (a/dl(u) + ‘Bde(u), t_ x) e—)[l-mll(‘u)-ﬁllz Golx Ie—llﬂDl (x + v)dl)

0 0

+ fdxH; (ad;(u) + ‘de(u)’ t—x) e l=ad o =ady ) e ‘[;_.nng (x + v)dv.
0

0
Let I (u, s)=J‘e"‘ ¥ (u,t)dt. Using the property of the Laplace trans-
0

form we find that

B upo (8)—
T W 8)= T T — s ()= e )]

and hence that
(2
w (“, t) = e-—ut—l[l-adl(u)—ﬁdg(u)]{ 1— uje—hr+1r[l—adl(lt)—,?dg(u)lpo (T)d‘l'} .
0
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We note that these results may be derived by substituting D(x)=aD, (x)+
BD:(x) into the results derived by Keilson and Kooharian ' and Heathcote 2

5. Statement of the second Problem

Two types of customers, namely type 1 and type 2 customers, arrive
randomly and independently at a service station with two channels.

Arrival times are distributed within classes according to exponential
functions with arrival rates A;,4.. The service-time distributions are also ex-
ponential with service rates s, ¢, and queue discipline is first-come, first-served.

We now define the following steady-state probabilities:

P (m=0) is the probability that there are # customers in the queue and
two of type 1 customers are being served.

M (n=0) is the probability that there are # customers in the queue and
two of distinct types are being seveed.

b5 (m=0) is the probability that there are n customers in the queue and
two of type 2 customers are being served.

D10 is the probability that one of type 1 customers is being served in one
of two channels.

po1 is the probability that one of type 2 customers is being served in one
of two channels.

po is the probability that there is neither a type 1 customer nor a type 2
customer in the system.

6. Distribution of the Length of the Waiting Line

The steady-state equations for this process are

(6.1)  fu1 pro+pra por= (41 +42) po,

(6.2) (Ay+2e+ 1) Pro=2pt1 P20+ 22 P11+ 41 Do,

(6.3) (Ar+ A2+ pa) o1 = pt1 P11+ 2412 Poa+ 42 po,

6.4) (A4 A+2m) PP =20, apP + pz apP+ 41 po,

(6.5) (Au+ g+ 1+ p12) B = 2011 SR + p1 PP+ pt2 BPY + 2112 Py’ + A2 Pro-+ 41 poss
(6.6) (Ay+ A2+ 2p0) P = p11 PP + 210285 + A2 Poss

6

(

) (R Ao 2pt0) P = 27 AP0+ 1y a4 (g Ag) PG, n=1),
6.8) (A4 Ag+ st 4 1) =2 BPSTV 4 1170 4 1PV + 2p00ep(3 Y A (A ATV,
(n=1),

(6.9) (A+22+2700) BB = pty BPTHO 42708 PGV + (A +42) PG, (n=1).

We introduce the following generating functions:

6.10) Fu(e)= £ 2" Fu@)= I p0 2", Fule) =3 pip 2",

n= n
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We multiply equations (6.4)—(6.9) by appropriate powers of z and add:
(6.11) {228 = (2+2p) 24211 @) Fao (2)+ 112 aF 14 (2)
=2 pro(1—2)+a (¢t pro—241 Lo)= A (2),
(6.12) 211 BFaq (2)+ {428 — (A4 g+ pro) 2+ (g @+ 12 B)} Fry (2) 42712 aF e (2)
=(Z1 por+42 P10 (1—2)+a (12 o1 — A2 Po) + B (tiPro— 41 po)= B(2),
(6.13) {422 —(A4+2p2) 2+ 2715 B} F oz (2)+ p1y BF 1y (2)
=23 poi (1—2)+ B (22 por — 22 po)=C (2)

where A=A+ 4g, a='§‘r and /3=.%2,

From (6.11), (6.12) and (6.13) we hawe
. 14)  (A2—2p) Fpo (2)+ (A2 — gy — 1) F1, (2)+ (A2 — p13) Fog (2) = — 4 (P1o+ Pon)
From (6.11), (6.12) and (6.13) we obtain
Fy (2)=H, (2)/ A\(2), Fu (2)=H; (2)/ Al2), Foz(2)=Hy(2)//\(2)

where
A2 —(2+2p) 24 2 e 0
(6.15) Al2)= 2mp AZ2— (At py+ po) 2+ g+ B 2p0
0 mpB A2% —(A42p10) 2+ 258

=2 (2—1){428 —(A+ p1+ o) 2+ pr1 @+ o} {A22% — A (A+ 20+ 241) 24 24 (p1y @0+ o B)+ 4p1apta}
and H;(2) is the determinant obtained from A (2) by replacing the i-th column

by a column vector
A (2)
Cila) /-

Now it is easy to show that the equation
A28 = (A4 gy o) 2+ 1y a1y f=0
has two real roots 2z, 2; such that 0<z;<1,2z,>1. Furthermore it is seen that the
equation 42 22— 2 (A4 2 +2u5) 2424 (1 a+ p28)+ 44 11a=0 has no root whose absolute
value is less than unity under the condition 4;/p+2:/p12<2.
Hence it turns out that A(z)=0 has one and only one real root in 0<[z(<1
under the condition 2,/ +442/1:<2.
Let the value of the root be § then using the relation
(6.16) A2 — (A4 a4 po) 4 11y a+ 1o f=0
we get
H, (£)=0, i=1,2,3.
When any one of these equations holds, another two equations follow from
it. This shows a relation among po, p1o and py;.
Using a relation H, (§)—H,(£)=0, we have
(6.17) {(1=8) Ao+ B H{(p11 — p2)S + pra+ pafYPro+ {(L— &) A+ apea} ({111 — p10) §
— 1 & — 23} o = 24, 8 (111 — 12) Epo.
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Taking account of the total probability, it holds that

(6.18) Do+ Dro+ por+ Fio (1)+ Fiy (1)+ Foe (1)=1.
From the equations (6.11), (6.13) and (6.14) it is evident that quantities Fy (1),
Fi; (1) and Fye (1) satisfy the following relations:

(6.19) —2t8F2 (1) 4+ p12 @ Fyy (1) =a (¢t pro—41 Do)y

(6. 20) w1 B Fyy (1)=2paFoe (1)=f (112 por — 42 Do),

(6.21) (A—2p4y) Foo (1) 4+ (2— 01— o) F1y (1) 4+ (A—210) Fo (1)= — 2 (P10 Por).
Solving these equations for Fy (1), Fy; (1) and Fo (1), we have

(6.22) Foo()=Hy/A, Fiy()=Hy/ A\, Foa (1)=Hs/ A,
where

—2mpB 120 0
A= 0 1B —2pa

| A—2py A= —pto A—29
and H; is the determinant obtained from A by replacing the #-th column by a

column vector
(44 (/!1 Dio— 2 Po)
( B (113 Por— 42 Do) )
— A (Pro+ Do)
Hence unknowns po, P10 and poy can be evaluated from (6.1), (6.17) and (6.18).

However, this method is complicate, so we use the following results
Do+ Fui (1)42F% (1)=py,

(6.23) Por+ Fi1 (1) +2Fq: (1) = p,
A — 4
~ where pl—m and pg—ﬂé .

The above results was shown in the case of the many server queuing
system by T. Kawamural, but in the case of two servers it is easily proved as
follows:

From (6.19), (6.20) and (6.1, we have

(6.24) st B(Prot+Fui (V42Fz0 (1)) — sz e (por+ Fuy (1) +2F02 (1) )=0.
Also, from (6.18), (6.21) and (6.1), we have

(6.25) p1 (Pro+ Fuy (1)42F2 (1)) + 12 (por + Fu (1)+2F (1))=4+ 4.
From (6.24) and (6.25) equation (6.23) can be derived.
From (6.18) and (6.23), we have

(6.26) protPpa=2 (1= po)— p1—pa.
Thus, by (6.1) and (6.26), we find that

(6.27) Pro= (A+2¢t0) po— 111 (2— p1— pa)

H1— M
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(6.28) Por= (A42¢0) po— pta (2—,01—,02)
te—n

for pu+# .
Note that for equal service rate j, ==y
. (A+200) po— 1t (2—py— p2)=0
and therefore

12

po= 2 _l=p
122 1+p
*2n

where. p—z'%. In this case the above system reduces to that of the two-server
case with Poisson arrival (arrival rate 4=41,+4,) and identical exponential service.
From (6.17), (6.27) and (6.28), we have

(6.29)

o= [ ({1 = prolapi — Brag) — Aprix + 10aB)*) 6 + (i + peoB){ — @y + 2yt o3 — By + Ay ey + Appes)
2ru— ree)loyn — Bri) — Apespro — Ay 6l — Aogs— (@pey + Brea)A2 Y6 + (o + peoB) [ — 2002+ 41105

_2‘@/!§+(222+21) /11+(211+22) ,lz_l_zz} ](z—ﬂl—pZ)a (ﬂ]%/.m)’

Now ‘we shall derive the expected number of customers in the queuc.
From (6.11), (6.13) and (6.14), we have

(6.30) —2/1BF %(1)+ ppaF3(1) = —(A—2p11) Fao(1)— 44 P10,
(6. '31) 11BF (1) = 200 F 1o(1) = — (A— 241 Fool1)— Z2poy,
(6.32) (4=274) Foy(1)+ (2= s — p12) F1(1) 4 (A—21t2) Foo(1)

= — A {Fa(1)+ F1y(1)+ Fos(1)}
= —A(1=po—pio— o).
After some algebra the mean queue length is given by
Lo=Fy(1)+ F(1)+F (1)
6.33)  =—— (2_1_!)1_02) ({r12= 1) (A= 241) Fao (1+ (1 = il A= 20t2) Fo( 1)
+(pt2 At gy Ag)— (A2 g2 21+ g1 As) o).
The result (6.33) holds, of course, for j=p,(=s). The result (6.33) is
identical, as it should be if ;== with the mean queue length
208 p= A
1-p% ° —211

Lrl =

in the classical queuing process M/M/2.
7. Distribution of Waiting Times

We now define the following density functions:
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fu({)(#=0) is the probability density function of the waiting time
conditioned on there being 7 customers in the queuec and two ol type 1
customers being served.

g.()(m =0) is the probability density function of the waiting time
conditioned on there being # customers in the queuc and two of distinct types
being served.

h.(t) (n=0) is the probability density function of the waiting time
conditioned on there being 7z customers in the qucue and two of type 2
customers being served.

The following relations among these probalility density functions can easily
be seen to hold:

¢ ¢
(7. 1) fn (t)= IZ/:,e"EI’l”af...l (t—X) dx + me e""”.”ﬁg‘n_x (t"‘x) dx, (”Z 1),

¢
(7.2) gaull)= j {1~ g (t— %)+ e~y Bl (t—x)+ e~ YTy (E—x)

L]

+ je=C Fu% g, | (F—x)}dx, (n=1)
and

t t
(7- 3) hn(t)'—’ fz"lze_gllﬂzﬁhll—] (t—' x) dx + J‘Z"lﬁe—z‘ugz(an_l ([‘_x\ dx, (MZ 1).
0 0
Let the Laplace transform of f(f) be denoted by f'(s), i.e. let

7= e rwar.

0

Then we have the following relations:

: AT 204 . '
7.4 f(§)= X g _Lhr gt (8), =1),
(7.4) Fv)= 5 ts S+ € 1(8) (n=1)
7 5 Yl J . J2Y: . Lt .
\.7' )) gn (s) I(ll+/‘2+s gn—‘l(s)_l_ ‘“1+‘“2+s hn-l(s)+ ‘”1 _+_ .ll~_- "l‘s fn-- !(s)
123 . >
L85 gl (n=1)
and
(7.6) ny(s)= 2 )+ 2 g i) (n=1).
n 2‘”2"‘"5 n=1 2[’2“"5 > N )
From (7.5) we obtain
* ' 12

Z(8)= ————— (ag; () + 3l As)) + :

——— N - s f’% ' - s )‘
,11+‘U2+s " "‘ ‘112+S (”f" 1( )+' g" 1( )



12 TSURUCHIYO HOMMA and TAKEHISA FUJISAWA

The use of (7.4) and (7.6) in the above expression leads to

* 2 +4s * /] 2 48 o
7.7 ) FTY N ks He Lt *(s).
.7 £:ls) mtpet+s  2u )+ it pet+s  2u T
From (7.4),(7.6) and (7.7) we obtain

oy [ 2am | 2Bps ap+ B } . { 4aBpu
(7.8) Tanls) { 20+ s+ 2p9+s + M+t fals)+ (2py +8)2u2+s)

+ 2a%s; 28324
(1t o+ 8M2m+8) (it o+ 8)2pe+s

Here it can be shown that the equation

2a 2Bus | apy+ Bus 4afupo
X?— { th t o } X {
2.’11+S'+ 2#2+$+#1+#2+8 + (201 + 8) (2124 5)
" 2022 + 28%13 } _
(trtr+8) 2t +5)  (ratpa+5)2r+ 8)

)}f;-,<s)=0.

has the roots

ap+ By and 2ap, + 28,

Mmtpet+s 2im+s 21+ §
From (7.8) the expression for f(s) is obtained in the form
el am~+Brs \* 2apy | 2Bpe \"
(7.9) Sals) Al( M+ pe+s )+Bl (2[11+S+ 2/.e2+s)'
Employing the obvious relations we obtain
“(s)= 21 _
fO (S) 2[!1+S

and

f1(s)= 2ma | 2m + 2mB ,  ttps .
U 2m+s 2m+s T 2m+s it pats

Using these relations we have
» 28ps () B

.10 2 2t24S 1+ pe4-s
(7.10 A= 214" 2ap 285 o+ B
2m+s’ Zm+s T ptpats
and
2apy | (mtp)B_am+Bpy
(7.11) B2, 2mtsT mtmts mtmts
1= 2m+s  2ap, 281 _am+Bps

2u,+5 2uz+s ta+pa+ S
Similarly, using above relations, we have

* (s)= A X+ B \" 2apy , 2By \"
(7.12) &5 (s) A’( )U1+)U2+s>+B2 (2‘01+S+2#2+3)
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and
* — a’{ll-i—l?tlz )n 2/(/!] 21;/12 n
(713 7 (s) A3< At pets +B (2/z,+s+ 2/(2+S>
where
2ogry | 2Br5 (gt Pre) (it rn)
(7. 14) A, 2tsT 2umts it pats

YT TR T TR
(.“1+/’2+s)<2 +s+ 2[(12+S ﬂj+/12+s)
2apmpy | 2Bpp
(7. 15) B,~- 2pts  2ppts
= Doyt 2B oy + Breg
(/11+.L‘2+$)(2‘,_,1+3 2m4s" mtnts )

In addition, A; and B, are given by substituting j3,«, 2 and sy for «, 3/ and
/2 in A, and B, respectively.

Using these relations, the Laplace transform for the waiting-time density
function is )

(7.16) = {P“" W ()01 £ )+ B, ()}

4 Bt ayty -+ By ot Sers
- A,F (a/n+//z) A F < i ,/2) AF. (_/1 Bt
tmtrets t Al fit+ets T Aaloz [t pets )

2ay 28312 } { 2ay4 205114 } o { 2 230 )
+BIF2°{ 2 1+s+ 21155 + B:Fy 2;11+s+ 2,4+ + Bslo 2,'l1+3+ 205+ s)

On differentiating (7.16) and taking s=0, the mean waiting-time, W, is
given by

17 w=(_% + B8\ 1 B (12— g11) 1
(7.17 (_7;'17+ 2#2) vt { Zm O (ﬁm+aﬂz)}F2°( )

1 a {ph — prp) N
+{ 2rt2 +2-”1(ﬁ!‘1+“/-12)} Fea (1)+2(/3/z1+a;12) Fu )

= B{}.F ('rm+ﬁ/tz' + L, (ki }
2Butam)" Ly \ pa+rm ) mEpm N\ )

1 oty 4 B 1 (a4 B
el ) ()
a{/ll ” e +lll+llz Nt ]

For pty=;=p the mean waiting time is given by

208 1
Wit

which tallies with the result of the classical queuing process M/M/2.
However the mean waiting time in thc qucuing system for two different
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types of customers having independent Poisson arrivals with rates 4; and 24; can
easily be evaluated by using the following formula

1
W—' m L’l‘

The otitline of the proof of this formula is as follows (see[7]).
We define the following notations (in the steady state):

(i) G (x) is the distribution of the waiting time,
(ii) X;(j=1) is the interarrival time,

(iii) @ is the queue size observed at the epoch just before the service of
a customer begins,

(iv) Fnl0)=P (2 Xi<2).
Then we have
P(an)=fp(xl+xz+ ------ + X, <) dG ().
-0
From the above expression we obtain

L,= sz,,,, ) dG (%).

In .our queuing system with two distinct types of customers, if the mput is
Poissonian with arrival rate A=4,+24; then

[

m

) {zx for x>0,
1 0 for x=0.,
Thus we have

L= A f 2dG (%)= AW,

0
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