ON HAUPTVERMUTUNG AND TRIANGULATION OF *n*-MANIFOLDS

Dedicated to Professor Hidetaka Terasaka on his sixtieth birthday.

By

TATSUO HOMMA

1. Introduction

In this paper we shall show that Hauptvermutung for combinatorial nmanifolds and the triangulation theorem for topological n-manifolds can be reduced to Lemma 1 which is a piecewise linear approximation theorem of homeomorphisms of an n-space R^n into R^n . Moreover we shall prove that any topological n-manifold has one and only one combinatorial stucture under the assumption of Lemma 1. Throughout this paper an n-manifold means a compact metric space any point of which has a neighborhood homeomorphic to an n-space R^n . Then any n-manifold is a closed (i. e. compact without boundary) topological n-manifold. A polyhedral n-manifold M is an n-manifold which has a triangulation μ . A combinatorial n-manifold is a polyhedral n-manifold M such that the star $ST(v)^*$ of any vertex v of M is a *combinatorial* n-cell (i. e. a polyhedral n-cell piecewise linearly homeomorphic to an nsimlex). Throughout this paper we shall assume the following lemma:

Lemma 1 Let \triangle and $\tilde{\triangle}$ be n-simplexes such that $\tilde{\triangle}$ is linearly imbedded in Int (\triangle) and let K be a polyhedron which is piecewise linearly imbedded in \triangle . Then if ϵ is any positive number and f is a homeomorphism of \triangle into \mathbb{R}^n such that f K is piecewise linear, there is a homeomorphism $g | \triangle \rightarrow \mathbb{R}$ such that

$$g \mid K \cup \partial \triangle = f \mid K \cup \partial \triangle$$
$$g \mid \tilde{\triangle} \text{ is piecewise linear}$$
$$d (f, g)^{**} < \varepsilon$$

* A star ST(v) is the sum of all simlexes of M having v as a vertex.

** $d(f,g) = Sup \{ d(f(x),g(x)) | x \in \Delta \}.$

and

TATSUO HOMMA

2. Hauptvermutung of n-manifolds

In this section we shall show that Lemma 1 implies the following theorem:

Theorem 1 Let f be a homeomorphism of a combinatorial n-manifold M_1 onto a combinatorial n-manifold M_2 . Then for any positive number ε there is a piecewise linear homeomorphism g of M_1 onto M_2 satisfying

$$d(j,g) < \varepsilon$$
.

Proof of Theorem 1 Since M_2 is a combinatorial n-manifold. We can take a finite number of combinatorial n-cells $\{C_1, C_2, \dots, C_k\}$ which are piecewise linearly imbedded in M_2 and satisfies

$$\bigcup_{i=1}^{k} Int(C_i) = M_2$$

Since M_1 is a combinatorial *n*-manifold and f is a homeomorphism of M_1 onto M_2 . We can find a positive number ε' and two sets of combinatorial *n*-cells $\{B_1, B_2, \dots, B_h\}$ $\{\tilde{B_1}, \tilde{B_2}, \dots, \tilde{B_h}\}$, piecewise linearly imbedded in M_1 , such that

$$\widetilde{B}_i \subset Int(B_i), \bigcup_{i=1}^{h} \widetilde{B}_i = M_1$$

and for any B_i there is a C_j satisfying

$$U_{i'}(f(B_i)) \subset Int(C_j), \qquad \cdots (1)$$

where $U_{\epsilon'}(f(B_i))$ is the ε' -neighborhood of $f(B_i)$. We put $\delta = \frac{\varepsilon'}{h}$... (2)

We shall inductively construct a sequence of homeomorphisms of M_1 onto M_2 $f_0=f, f_1, f_2, \dots, f_h$ such that

$$d(f_{i-1},f_i) < \delta \qquad \cdots (3)$$

and $f_i \quad \tilde{B}_1 \cup \tilde{B}_2 \cup \cdots \cup \tilde{B}_h$ is piecewise linear. $\cdots (4)$

we assume that f_0, f_1, \dots, f_{i-1} have been constructed and we put

$$K = (\tilde{B}_1 \cup \tilde{B}_2 \cup \dots \cup \tilde{B}_{i-1}) \cap B_i = K_i \qquad \dots (5)$$

From (3) we have $d(f_{i-1}, f) < i\delta$ and then from (1), (2) we have

$$f_{i-1}(B_i) \subset U_{ii}(f(B_i)) \subset U_{i'}(B_i) \subset Int(C_j).$$

By Lemma 1 there is a homeomorphism f'_i of B_i into C_j such that

$$f_{i}' \mid K_{i} \cup \partial B_{i} = f_{i-1} \mid K_{i} \cup \partial B_{i} \qquad \cdots (6)$$

$$d(f_{i}', f_{i-1} \mid B) < \delta$$

and $f_i' \mid \tilde{B}_i$ is piecewise linear.

According to (6) we can extend f_i' to a homeomorphism of M_1 onto M_2 by the formula

$$f_i \mid B_i = f_i' \mid B_i$$

$$f_i \mid \overline{M_1 - B_i} = f_{i-1} \mid \overline{M_1 - B_i}.$$

Then it is clear that f_i is the required homeomorphism and consequently we get f_h . It is easy to see that f_h is the required piecewise linear homeomorphism g of M_1 onto M_2 .

3. Triangulation of n-manifolds

At first under the assumption of Lemma 1 we shall prove the following lemma :

Lemma 2 Let f_1 and f_2 be homeomorphisms of combinatorial $n-cells C_1$ and C_2 into an n-manifold M and let \tilde{C}_1 , \tilde{C}_2 and K be two combinatorial n-cells and a polyhedron such that \tilde{C}_1 and \tilde{C}_2 are piecewise linearly imbedded in Int (C_1) and Int (C_2) respectively, K is piecewise linearly imbedded in C_1 , $f_1(K) \subset f_2(C_2)$ and $f_2^{-1}f_1 | K$ is piecewise linear. Then for any positive number ε there is a homeomorphism \tilde{f}_1 of C_1 into M such that

$d(f_1, \tilde{f_1}) < \varepsilon$ $\tilde{f_1} \mid K = f_1 \mid K$

and $f_2^{-1}\tilde{f}_1$ $\tilde{f}_1^{-1}(\tilde{f}_1(\tilde{C}_1)\cap f_2(\tilde{C}_2))$ is piecewise linear.

Proof of Lemma 2 Let B_1, B_2, \dots, B_k be combinatorial n-cells piecewise linearly imbedded in Int (C₁) such that

Int $(B_1) \cup Int (B_2) \cdots \cup Int (B_k) \supset f_1^{-1} (f_1 (\tilde{C}_1) \cap f_2 (\tilde{C}_2))$

and $f_1(B_i) \subset f_2(Int(C_2))$ $i=1, 2, \cdots, k$.

سار مهرد از د د د د د د

Put $\varepsilon' = d \left(f_1 \left(B_1 \cup B_2 \cup \cdots \cup B_k \right), M - f_2 \left(C_2 \right) \right)$ and $\varepsilon'' = d \left(f_1 \left(\tilde{C}_1 - Int \left(B_1 \right) \cup \cdots \cup Int \left(B_k \right) \right),$

 $f_2(\tilde{C}_2)$, where $d(X, Y) = Inf\{d(x, y) \mid x \in X, y \in Y\}$.

We take a positive number δ satisfying

 $k\delta < \varepsilon, \varepsilon', \varepsilon''.$

We shall inductively construct a sequence of homeomorphisms of C_1 into M, $\varphi_0 = f_1, \varphi_1, \cdots, \varphi_k$, such that

$$d(\varphi_{i-1}, \varphi_i) < \delta \qquad \cdots (7)$$

$$\varphi_i \mid K = f_1 \mid K$$

and $f_2^{-1} \varphi_i | B_1 \cup B_2 \cup \cdots \cup B_i$ is piecewise linear.

11

We assume that $\varphi_0, \varphi_1, \cdots \varphi_{i-1}$ have been constructed. Since $\varphi_{i-1}(B_i) \subset$ $U_{(l-1)\delta}(f_1(B_l)) \subset U\varepsilon'(f_1(B_l)) \subset f_2(Int(C_2)).$ We have a combinatorial $n-cell D_l$, piecewise linearly imbedded in $Int(C_1)$, such that

 $\varphi_{i-1}(D_i) \subset f_2(Int(C_2))$ and $Int(D_i) \supset B_i$

By Lemma 1 we can take a homeomorphisms $\tilde{\varphi}_i$ of D_i into f_2 (Int C_2) such that

$$d\left(arphi_{i-1}, ilde{arphi}_{i}
ight) <\delta$$

 $\tilde{\varphi}_i \mid ((B_1 \cup \cdots \cup B_{i-1} \cup K) \cap D_i) \cup \partial D_i = \varphi_{i-1} \mid ((B_1 \cup \cdots \cup B_{i-1} \cup K) \cap D_i) \cup \partial D_i$

and $f_2^{-1} \tilde{\varphi}_i | B_i$ is piecewise linear.

We extend $\tilde{\varphi}_i$ to a homeomorphism φ_i of C_1 into M by the formula

$$\varphi_{i} \mid D_{i} = \tilde{\varphi}_{i} \mid D_{i}$$
$$\varphi_{i} \mid \overline{C_{1} - D_{i}} = \varphi_{i-1} \mid \overline{C_{1} - D_{i}}$$

Consequently we get the sequence $\varphi_0, \varphi_1, \dots, \varphi_k$ of homeomorphisms and we put

$$\varphi_k = \tilde{f}_1.$$

It is clear that

$$d(f_1, \tilde{f}_1) < k\delta < \varepsilon$$
$$\tilde{f}_1 \mid K = f_1 \mid K$$

and

and

 $f_2^{-1}\tilde{f}_1 | B_1 \cup B_2 \cup \cdots \cup B_k$ is piecewise linear. $d(\tilde{f}_1, f_1) < k\delta < \varepsilon''$ Furthermore since $\varepsilon'' = d(f_1(\tilde{C}_1 - Int(B_1) \cup \cdots \cup Int(B_k)), f_2(\tilde{C}_2)).$ $\tilde{f}_1(\tilde{C}_1 - B_1 \cup \cdots \cup B_k)) \cap f_2(\tilde{C}_2)$ We have $\subset U_{\iota''}(f_1(\tilde{C}_1-B_1\cup\cdots\cup B_k))\cap f_2(\tilde{C}_2)=\phi.$

Hence $f_2^{-1}\tilde{f}_1|\tilde{f}_1^{-1}(\tilde{f}_1(\tilde{C}_1)\cap f_2(\tilde{C}_2))$ is piecewise linear and we have proved Lemma 2.

From Lemma 2 we shall prove the main theorem of this section as follows:

Theorem 2 Any n-manifold M is combinatorial.

Proof of Theorem 2 We shall use a double induction. Let f_1, f_2, \dots, f_k be homeomorphisms of combinatorial n-cells C_1, C_2, \dots, C_k , into M respectively such that

$$f_1(Int(C_1)) \cup \cdots \cup f_k(Int(C_k)) = M.$$

Then we can take combinatorial n-cells $\tilde{C}_1, \dots, \tilde{C}_k$, which are piecewise linearly imbedded in Int $(C_1), \dots, Int (C_k)$ respectively such that

$$f_1(Int(\tilde{C}_1))\cup\cdots\cup f_k(Int(\tilde{C}_k))=M.$$

It is sufficient to prove that for any ε there is a sequence $\varphi_1, \dots, \varphi_k$ of homeomorphisms of $\tilde{C}_1, \dots, \tilde{C}_k$ into M respectively such that

$$d(\varphi_i, f_i) < \varepsilon$$

and $\varphi_j^{-1} \varphi_i | \varphi_i^{-1} (\varphi_i (\tilde{C}_i) \cap \varphi_j (\tilde{C}_j))$ is piecewise linear for $i \neq j$. Put $\varphi_1 = f_1$ and assume that $\varphi_1, \varphi_2, \dots, \varphi_{i-1}$ have been constructed. Using Lemma 2 we get a homeomorphism ψ_1 of C_i into M such that

$$d(\psi_1, f_i) < \frac{\varepsilon}{i}$$

and $\varphi_1^{-1}\psi_1 | \psi_1^{-1}(\psi_1(\tilde{C}_i) \cap \varphi_1(\tilde{C}_1))$ is piecewise linear. Put $K_1 = \varphi_1^{-1}(\psi_1(\tilde{C}_i) \cup \varphi_1(\tilde{C}_1))$. Similarly as ψ_1 we get a homeomorphism ψ_2 of C_i into M such that

$$d(\psi_2,\psi_1) < rac{arepsilon}{i}$$

 $\psi_2 \quad K_1 = \psi_1 \quad K_1$

and $\varphi_2^{-1} \psi_2 | \psi_2^{-1} (\psi_2 (\tilde{C}_i) \cap \varphi_2 (\tilde{C}_2)))$ is piecewise linear.

Put $K_2 = K_1 \cup \psi_2^{-1}(\psi_2(\tilde{C}_i) \cap \varphi_2(\tilde{C}_2))$. Similarly as ψ_1, ψ_2 we get a homeomorphism ψ_3 of C_i into M such that

$$d(\psi_3,\psi_2) < rac{arepsilon}{i}$$

 $\psi_3 \mid K_2 = \psi_2 \mid K_2$

TATSUO HOMMA

and $\varphi_2^{-1} \varphi_3 | \varphi_3^{-1} (\varphi_3 (\tilde{C}_i) \cap \varphi_3 (\tilde{C}_3))$ is piecewise linear.

By induction we consequently get a homeomorphism ϕ_{i-1} of C into M denoted by c_i such that

$$d(\varphi_i, f_i) = d(\varphi_{i-1}, f_i) \leq d(\varphi_{i-1} \varphi_{i-2}) + \dots + d(\varphi_1, f_i) < \varepsilon$$

and $\varphi_j^{-1} \varphi_i | \varphi_i^{-1} (\varphi_i (\tilde{C}_i) \cap \varphi_j (\tilde{C}_j))$ is piecewise linear for i > j. Then it is clear that φ_i is the required homeomorphism of C_i into M. Hence we have proved Theorem 2.

It is clear that Theorem 1 and Theorem 2 imply the following;

Corollary 1 Any n-manifold has one and only one combinatorial structure. Furthermore Theorem 2 obviously implies the following:

Corollary 2 Any *n*-manifold has a triangulation.

المحجورة فالحور والمحارر والمحرورة الحور والمحور والمحرورة الحرورة الحرورة الموروة الحرروة الحرورة الحرورة

Reference

T. Homma On imbedding of polyhedra into manifold. Yokohama Math. Jour. Vol. 10, No. 1 (1962).

(Received September 10, 1963)