ON HAUPTVERMUTUNG AND TRIANGULATION OF \boldsymbol{n}-MANIFOLDS

Dedicated to Professor Hidetaka Terasaka on his sixtieth birthday.

By

Tatsuo Homma

1. Introduction

In this paper we shall show that Hauptvermutung for combinatorial n manifolds and the triangulation theorem for topological \mathbf{n}-manifolds can be reduced to Lemma 1 which is a piecewise linear approximation theorem of homeomorphisms of an n-space R^{n} into R^{n}. Moreover we shall prove that any topological n-manifold has one and only one combinatorial stucture under the assumption of Lemma 1. Throughout this paper an n-manifold means a compact metric space any point of which has a neighborhood homeomorphic to an n-space R^{n}. Then any n-manifold is a closed (i. e. compact without boundary) topological n-manifold. A polyhedral n-manifold M is an n-manifold which has a triangulation μ. A combinatorial n-manifold is a polyhedral n-manifold M such that the star $S T(v)^{*}$ of any vertex v of M is a combinatorial n-cell (i. e. a polyhedral n-cell piecewise linearly homeomorphic to an n simlex). Throughout this paper we shall assume the following lemma:

Lemma 1 Let \triangle and $\tilde{\triangle}$ be n-simplexes such that $\tilde{\triangle}$ is linearly imbedded in Int (\triangle) and let K be a polyhedron which is piecewise linearly imbedded in \triangle. Then if ε is any positive number and f is a homeomorphism of \triangle into R^{n} such that $f K$ is piecewise linear, there is a homeomorphism $g \mid \triangle \rightarrow R$ such that

$$
\begin{aligned}
& g|K \cup \partial \triangle=f| K \cup \partial \triangle \\
& g \mid \bar{\triangle} \text { is piecewise linear }
\end{aligned}
$$

and $\quad d(f, g)^{* *}<\varepsilon$

[^0]
2. Hauptvermutung of n-manifolds

In this section we shall show that Lemma 1 implies the following theorem :

Theorem 1 Let f be a homeomorphism of a combinatorial n-manifold M_{1} onto a combinatorial n-manifold M_{2}. Then for any positive numer ε there is a piecewise linear homeomorphism g of M_{1} onto M_{2} satisfying

$$
d\left(j^{\prime}, g\right)<\varepsilon .
$$

Proof of Theorem 1 Since M_{2} is a combinatorial n-manifold. We can take a finite number of combinatorial n-cells $\left\{\boldsymbol{C}_{1}, \boldsymbol{C}_{2}, \cdots, \boldsymbol{C}_{\boldsymbol{k}}\right\}$ which are piecewise linearly imbedded in M_{2} and satisfies

$$
\bigcup_{i=1}^{k} \operatorname{Int}\left(C_{i}\right)=M_{2}
$$

Since M_{1} is a combinatorial n-manifold and f is a homeomorphism of M_{1} onto M_{2}. We can find a positive number ε^{\prime} and two sets of combinatorial n-cells $\left\{B_{1}, B_{2}, \cdots, B_{h}\right\}\left\{\tilde{B_{1}}, \tilde{B_{2}}, \cdots, \tilde{B}_{h}\right\}$, piecewise linearly imbedded in M_{1}, such that

$$
\tilde{B}_{i} \subset \operatorname{Int}\left(B_{i}\right), \bigcup_{i=1}^{n} \tilde{B}_{i}=M_{1}
$$

and for any B_{i} there is a C_{j} satisfying

$$
\begin{equation*}
U_{s^{\prime}}\left(f\left(B_{i}\right)\right) \subset \operatorname{Int}\left(C_{j}\right) \tag{1}
\end{equation*}
$$

where $U_{\iota^{\prime}}\left(f\left(B_{i}\right)\right)$ is the ε^{\prime}-neighborhood of $f\left(B_{i}\right)$.

$$
\text { We put } \quad \delta=\frac{\varepsilon^{\prime}}{h}
$$

We shall inductively construct a sequence of homeomorphisms of \boldsymbol{M}_{1} onto \boldsymbol{M}_{2} $f_{0}=f, f_{1}, f_{2}, \cdots, f_{n}$ such that

$$
\begin{equation*}
d\left(f_{i-1}, f_{i}\right)<\delta \tag{3}
\end{equation*}
$$

and $f_{i} \quad \tilde{B}_{1} \cup \tilde{B}_{2} \cup \cdots \cup \tilde{B}_{h} \quad$ is piecewise linear.
we assume that $f_{0}, f_{1}, \cdots, f_{i-1}$ have been constructed and we put

$$
\begin{equation*}
K=\left(\tilde{B}_{1} \cup \tilde{B}_{2} \cup \cdots \cdots \cup \tilde{B}_{i-1}\right) \cap B_{i}=K_{i} \tag{5}
\end{equation*}
$$

From (3) we have $d\left(f_{i-1}, f\right)<i \delta$ and then from (1), (2) we have

$$
f_{i-1}\left(B_{i}\right) \subset U_{i j}\left(f\left(B_{i}\right)\right) \subset U_{i^{\prime}}\left(B_{i}\right) \subset \operatorname{Int}\left(C_{j}\right) .
$$

By Lemma 1 there is a homeomorphism f_{i}^{\prime} of B_{i} into C_{j} such that

$$
\begin{align*}
& f_{i}^{\prime}: K_{i} \cup \partial B_{i}=f_{i-1} \mid K_{i} \cup \partial B_{i} \tag{6}\\
& d\left(f_{i}^{\prime}, f_{i-1} B\right)<\delta
\end{align*}
$$

and $f_{i}^{\prime} \mid \tilde{B}_{i}$ is piecewise linear.
According to (6) we can extend f_{i}^{\prime} to a homeomorphism of M_{1} onto M_{2} by the formula

$$
\begin{aligned}
& f_{i}\left|B_{i}=f_{i}^{\prime}\right| B_{i} \\
& f_{i}\left|{\overline{M_{1}-B_{i}}}_{i}=f_{i-1}\right| \bar{M}_{1}-B_{i}
\end{aligned}
$$

Then it is clear that f_{i} is the required homeomorphism and consequently we get f_{h}. It is easy to see that f_{h} is the required piecewise linear homeomorphism g of M_{1} onto M_{2}.

3. Triangulation of \mathbf{n}-manifolds

At first under the assumption of Lemma 1 we shall prove the following lemma:

Lemma 2 Let f_{1} and f_{2} be homeomorphisms of combinatorial n-cells C_{1} and C_{2} into an n-manifold M and let $\tilde{C}_{1}, \tilde{C}_{2}$ and K be two combinatorial $n-$ cells and a polyhedron such that \tilde{C}_{1} and \tilde{C}_{2} are piecewise linearly imbedded in Int $\left(C_{1}\right)$ and Int $\left(C_{2}\right)$ respectively, K is piecewise linearly imbedded in $C_{1}, f_{1}(K) \subset$ $f_{2}\left(C_{2}\right)$ and $f_{2}^{-1} f_{1} \mid K$ is piecewise linear. Then for any positive number a there is $a \cdot$ homeomorphism \tilde{f}_{1} of C_{1} into M such that

$$
\begin{aligned}
& d\left(f_{1}, \tilde{f}_{1}\right)<\varepsilon \\
& \tilde{f}_{1}\left|K=f_{1}\right| K
\end{aligned}
$$

and $f_{2}^{-1} \tilde{f}_{1} \tilde{f}_{1}^{-1}\left(\tilde{f}_{1}\left(\tilde{C}_{1}\right) \cap f_{2}\left(\tilde{C}_{2}\right)\right)$ is piecewise linear.
Proof of Lemma 2 Let $B_{1}, B_{2}, \cdots, B_{k}$ be combinatorial n-cells piecewise linearly imbedded in $\operatorname{Int}\left(C_{1}\right)$ such that

$$
\operatorname{Int}\left(B_{1}\right) \cup \operatorname{Int}\left(B_{2}\right) \cdots \cup \operatorname{Int}\left(B_{k}\right) \supset f_{1}^{-1}\left(f_{1}\left(\tilde{C}_{1}\right) \cap f_{2}\left(\tilde{C}_{2}\right)\right)
$$

and

$$
f_{1}\left(B_{i}\right) \subset f_{2}\left(\operatorname{Int}\left(C_{2}\right)\right) \quad i=1,2, \cdots, k
$$

Put $\varepsilon^{\prime}=d\left(f_{1}\left(B_{1} \cup B_{2} \cup \cdots \cup B_{k}\right), M-f_{2}\left(C_{2}\right)\right)$ and $\varepsilon^{\prime \prime}=d\left(f_{1}\left(\tilde{C}_{1}-\operatorname{Int}\left(B_{1}\right) \cup \cdots \cup \operatorname{Int}\left(B_{k}\right)\right)\right.$,
$f_{2}\left(\tilde{C}_{2}\right)$, where $d(X, Y)=\operatorname{Inf}\{d(x, y) \mid x \in X, y \in Y\}$.
We take a positive number δ satisfying

$$
k \delta<\varepsilon, \varepsilon^{\prime}, \varepsilon^{\prime \prime}
$$

We shall inductively construct a sequence of homeomorphisms of C_{1} into M, $\varphi_{0}=f_{1}, \varphi_{1}, \cdots, \varphi_{k}$, such that

$$
\begin{gather*}
d\left(\varphi_{i-1}, \varphi_{i}\right)<\delta \tag{7}\\
\varphi_{i}\left|K=f_{1}\right| K
\end{gather*}
$$

and $f_{2}^{-1} \varphi_{i} \mid B_{1} \cup B_{2} \cup \cdots \cup B_{i}$ is piecewise linear.
We assume that $\varphi_{0}, \varphi_{1}, \cdots \varphi_{i-1}$ have been constructed. Since $\varphi_{i-1}\left(B_{i}\right) \subset$ $U_{(i-1) \delta}\left(f_{1}\left(B_{i}\right)\right) \subset U \varepsilon^{\prime}\left(f_{1}\left(B_{i}\right)\right) \subset f_{2}\left(\operatorname{Int}\left(C_{3}\right)\right)$. We have a combinatorial n-cell D_{i}, piecewise linearly imbedded in $\operatorname{Int}\left(C_{1}\right)$, such that

$$
\varphi_{t-1}\left(D_{i}\right) \subset f_{2}\left(\operatorname{Int}\left(C_{2}\right)\right) \text { and } \operatorname{Int}\left(D_{i}\right) \supset B_{i}
$$

By Lemma 1 we can take a homeomorphisms $\tilde{\varphi}_{i}$ of D_{i} into $f_{2}\left(\right.$ Int $\left.C_{2}\right)$ such that

$$
\begin{gathered}
d\left(\varphi_{i-1}, \tilde{\varphi}_{i}\right)<\delta \\
. \tilde{\varphi}_{i} \mid\left(\left(B_{1} \cup \cdots \cup B_{i-1} \cup K\right) \cap D_{i}\right) \cup \partial D_{i}=\varphi_{i-1}:\left(\left(B_{1} \cup \cdots \cup B_{i-1} \cup K\right) \cap D_{i}\right) \cup \partial D_{i}
\end{gathered}
$$

and $f_{2}^{-1} \tilde{\varphi}_{i} \mid B_{i}$ is piecewise linear.
We extend $\tilde{\varphi}_{i}$ to a homeomorphism φ_{i} of C_{1} into M by the formula

$$
\begin{aligned}
& \varphi_{i}\left|D_{i}=\tilde{\varphi}_{i}\right| D_{i} \\
& \varphi_{i}\left|\overline{C_{1}-D_{i}}=\varphi_{i-1}\right| \overline{C_{1}-D_{i}}
\end{aligned}
$$

Consequently we get the sequence $\varphi_{0}, \varphi_{1}, \cdots, \varphi_{k}$ of homeomorphisms and we put

$$
\varphi_{k}=\tilde{f}_{1}
$$

It is clear that

$$
\begin{aligned}
& d\left(f_{1}, \tilde{f}_{1}\right)<k \delta<\varepsilon \\
& \tilde{f}_{1}: K=f_{1} \mid K
\end{aligned}
$$

and $\quad f_{2}^{-1} \tilde{f}_{1} \mid B_{1} \cup B_{2} \cup \cdots \cup B_{k}$ is piecewise linear.
Furthermore since $\quad d\left(\tilde{f}_{1}, f_{1}\right)<k \delta<\varepsilon^{\prime \prime}$
and

$$
\begin{array}{ll}
\text { and } & \varepsilon^{\prime \prime}=d\left(f_{1}\left(\tilde{C}_{1}-\operatorname{Int}\left(B_{1}\right) \cup \cdots \cup \operatorname{Int}\left(B_{k}\right)\right), f_{2}\left(\tilde{C}_{2}\right)\right) . \\
\text { We have } & \left.\tilde{f}_{1}\left(\tilde{C}_{1}-B_{1} \cup \cdots \cup B_{k}\right)\right) \cap f_{2}\left(\tilde{C}_{2}\right) \\
& \subset U_{t^{\prime \prime}}\left(f_{1}\left(\tilde{C}_{1}-B_{1} \cup \cdots \cup B_{k}\right)\right) \cap f_{2}\left(\tilde{C}_{2}\right)=\phi
\end{array}
$$

Then we have $\quad \tilde{f}_{1}\left(\tilde{C}_{1}\right) \cap f_{2}\left(\tilde{C}_{2}\right) \subset \tilde{f}_{1}\left(B_{1} \cup \cdots \cup B_{k}\right)$.
Hence $f_{2}^{-1} \tilde{f}_{1} \mid \tilde{f}_{1}^{-1}\left(\tilde{f}_{1}\left(\tilde{C}_{1}\right) \cap f_{2}\left(\tilde{C}_{2}\right)\right)$ is piecewise linear and we have proved Lemma 2.
From Lemma 2 we shall prove the main theorem of this section as follows:

Theorem 2 Any n-manifold M is combinatorial.
Proof of Theorem 2 We shall use a double induction. Let $f_{1}, f_{2}, \cdots, f_{k}$ be homeomorphisms of combinatorial n-cells $\boldsymbol{C}_{1}, \boldsymbol{C}_{2}, \cdots, \boldsymbol{C}_{k}$, into M respectively such that

$$
f_{1}\left(\operatorname{Int}\left(C_{1}\right)\right) \cup \cdots \cup f_{k}\left(\operatorname{Int}\left(C_{k}\right)\right)=M .
$$

Then we can take combinatorial n-cells $\tilde{C}_{1}, \cdots, \tilde{C}_{k}$, which are piecewise linearly imbedded in $\operatorname{Int}\left(\boldsymbol{C}_{1}\right), \cdots, \operatorname{Int}\left(\boldsymbol{C}_{\boldsymbol{k}}\right)$ respectively such that

$$
f_{1}\left(\ln t\left(\tilde{C}_{1}\right)\right) \cup \cdots \cup f_{k}\left(\operatorname{Int}\left(\tilde{C}_{k}\right)\right)=M
$$

It is sufficient to prove that for any s there is a sequence $\varphi_{1}, \cdots, \varphi_{k}$ of homeomorphisms of $\tilde{C}_{1}, \cdots, \tilde{C}_{k}$ into M respectively such that

$$
d\left(\varphi_{i}, f_{i}\right)<\varepsilon
$$

and $\quad \varphi_{j}^{-1} \varphi_{i} \varphi_{i}^{-1}\left(\varphi_{i}\left(\tilde{C}_{i}\right) \cap \varphi_{j}\left(\tilde{C}_{j}\right)\right)$ is piecewise linear for $i \neq j$. Put $\varphi_{1}=f_{1}$ and assume that $\varphi_{1}, \varphi_{2}, \cdots, \varphi_{i-1}$ have been constructed. Using Lemma 2 we get a homeomorphism ψ_{1} of $\boldsymbol{C}_{\boldsymbol{t}}$ into M such that

$$
d\left(\psi_{1}, f_{i}\right)<{ }_{i}^{\varepsilon}
$$

and $\varphi_{1}^{-1} \psi_{1} \mid \psi_{1}^{-1}\left(\psi_{1}\left(\tilde{C}_{i}\right) \cap \varphi_{1}\left(\tilde{C}_{1}\right)\right)$ is piecewise linear. Put $K_{1}=\dot{\phi}_{1}^{-1}\left(\psi_{1}\left(\tilde{C}_{t}\right) \cup \varphi_{1}\left(\tilde{C}_{1}\right)\right)$. Similarly as ψ_{1} we get a homeomorphism $\dot{\psi}_{2}$ of C_{i} into M such that

$$
\begin{aligned}
& d\left(\psi_{2}, \psi_{1}\right)<\frac{\varepsilon}{i} \\
& \dot{\psi}_{2} K_{1}=\psi_{1} K_{1}
\end{aligned}
$$

and $\varphi_{2}^{-1} \varphi_{2} \mid \psi_{2}^{-1}\left(\dot{\psi}_{2}\left(\tilde{C}_{i}\right) \cap \varphi_{2}\left(\tilde{C}_{2}\right)\right)$ is piecewise linear.
Put $K_{2}=K_{1} \cup \psi_{2}^{-1}\left(\psi_{2}\left(\tilde{C}_{i}\right) \cap \varphi_{2}\left(\tilde{C}_{2}\right)\right)$. Similarly as ψ_{1}, ψ_{2} we get a homeomorphism $\dot{\varphi}_{3}$ of C_{t} into M such that

$$
\begin{aligned}
& d\left(\psi_{3}, \dot{\psi}_{2}\right)<\frac{\varepsilon}{i} \\
& \psi_{3} K_{2}=\psi_{2} K_{2}
\end{aligned}
$$

and $\zeta_{2}^{-1} \varphi_{3}^{\prime} \psi_{3}^{-1}\left(\dot{\varphi}_{3}\left(\tilde{C}_{i}\right) \cap \varphi_{3}\left(\tilde{C}_{3}\right)\right)$ is piecewise linear.
By induction we consequently get a homeomorphism $\dot{\varphi}_{i-1}$ of C into M denoted by c_{i} such that

$$
d\left(\varphi_{i}, f_{i}\right)=d\left(\psi_{i-1}, f_{i}\right) \leqq d\left(\dot{\varphi}_{i-1} \psi_{i-2}\right)+\cdots+d\left(\psi_{1}, f_{i}\right)<\xi
$$

and $\varphi_{j}^{-1} \varphi_{i} \mid \varphi_{i}^{-1}\left(\varphi_{i}\left(\tilde{C}_{i}\right) \cap \varphi_{j}\left(\tilde{C}_{j}\right)\right)$ is piecewise linear for $i>j$. Then it is clear that φ_{i} is the required homeomorphism of C_{i} into M. Hence we have proved Theorem 2.

It is clear that Theorem 1 and Theorem 2 imply the following;
Corollary 1 Any n-manifold has one and only one combinatorial structure.
Furthermore Theorem 2 obviously implies the following:
Corollary 2 Any n-manifold has a triangulation.

Reference

T. Homma On imbedding of polyhedra into manifold. Yokohama Math. Jour. Vol. 10, No. 1 (1962).

[^0]: * A star $S T(v)$ is the sum of all simlexes of M having v as a vertex.
 ** $\quad d(f, g)=\operatorname{Sup}\{d(f(x), g(x)) \mid x \in \Delta\}$.

