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1. Introduction

In this paper we shall show that Hauptvermutung for combinatorial n—
manifolds and the triangulation theorem for topological n—manifolds can be
reduced to which is a piecewise linear approximation theorem of
homeomorphisms of an #—space R™ into R™. Moreover we shall prove that any
topological #—manifold has one and only one combinatorial stucture under the
assumption of Lemma 1. Throughout this paper an #n—manifold means a
compact metric space any point of which has a neighborhood homeomorphic to
an n—space R" Then any s#—manifold is a closed (i. e. compact without
boundary) topological #—manifold. A polyhedral n—manifold M is an n—mani-
fold which has a triangulation u. A combinatorial n—manifold is a polyhedral
n—manifold M such that the star ST (v)* of any vertex v of M is a combinatorial
n—cell (i. e. a polyhedral n—cell piecewise linearly homeomorphic to an n-—
simlex). Throughout this paper we shall assume the following lemma:

Lemma 1 Let A and A be n—simplexes such that A is linearly imbedded
in Int (/) and let K be a polyhedron which is piecewise linearly imbedded in /\.
Then if ¢ is any positive number and f is a homeomorphism of /\ inlo R™ such
that f K is piecewise linear, there is a homeomorphism g!/\—R such that

g1 KUdA=f|{KUdA
g\ A is piecewise linear

and d(f,g)**<e

A star ST (v) is the sum of all simlexes of M having v as a vertex.

** d(f, 8)=Sup {d(f(x),g(x)) xeAr}.
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2. Hauptvermutung of »—manifolds

In this section we shall show that implies the following

theorem :

Theorem 1 Let f be a homeomorphism of a combinatorial n—manifold M,
onto a combinatorial n—manifold M,. Then for any positive numer < there is a
piecewise linear homeomorphism g of M, onto M, satisfying

d(/,g)<e.

Proof of Theorem 1 Since M, is a combinatorial #—manifold. We can
take a finite number of combinatorial #—cells {C,, Cs, :-+, Cx} which are piecewise

linearly imbedded in M; and satisfies

U Int(C)=M,

{

Since M, is a combinatorial #—manifold and f is a homeomorphism of M; onto
M,. We can find a positive number ¢ and two sets of combinatorial n—cells

{By, B, -+, By} {By, Bs, -+ , E;L}, piecewise linearly imbedded in M), such that
éi cInt (BL'), tfgléi:Ml

and for any B; there is a C; satisfying
U. (f(Bi))cInt (C)), | (1)
where U. (f(B)) is the :’—neighborhood of f(B).

o
We put 5=Ah~ = (2)

We shall inductively construct a sequence of homeomorphisms of M; onto M;

Jo=f. 1,12 s Jn such that

d(fi-1, /<8 - (3)
and fi BiUB.U---UB, is piecewise linear. e (4)

we assume that fo,f), -+, fi-1 have been constructed and we put
K=(B, UB,U -+ UBi)NBi=K; e (5)
From (3) we have d(fi_,,f)<i8 and then from (1),(2) we have
Jis1 (B Uy, (f(By))c U. (Bi)c Int (Cy).




ON HAUPTVERMUTUNG AND TRIANGULATION OF n—MANIFOLDS 53

By there is a homeomorphism f; of B; into C; such that
f/ KiUoBi=fi-, | K;:U9B; (6
d(f!,fr BI<S '
and fi ! B; is piecewise linear.
According to (6) we can extend fi’ to a homeomorphism of M; onto M, by the
formula
fil Bi=f/|B:
fil Mi=Bi=fi.,| M,— B..
Then it is clear that f; is the required homeomorphism and consequently we get

f». It is easy to see that f, is the required piecewise linear homeomorphism g

of M, onto M,.

3. Triangulation of n—manifolds

At first under the assumption of we shall prove the following

lemma :

Lemma 2 Let f, and f; be homeomorphisms of combinatorial n—cells C,
and C, into an n—manifold M and let C,, C. and K be two combinatorial n—
cells and a polyhedron such that C, and C. are piecewise linearly imbedded in
Int (C) and Int (C>) respectively, K is piecewise linearly imbedded in C,, f, (K)C
£2(C.) and f5' f,| K s piecewise linear. Then for any positive number = there is
a -homeomorphism f, of C, into M such that
d (f, )<z
fiIK=filK
and f7'f; fiH(AC)INS:(Co)) #s piecewise linear.
Proof of Let By, B, ---, B. be combinatorial n—cells piecewise
linearly imbedded in Int(C;) such that
Int (B)UInt (By)---U Int(B)2f i (fi (C)N f2(Ca))
and Hi(B)cf:Int(C:)) =12 -,k
Put ¢=d(fi(BiUB:U--UB,M—f;(Cs)) and :'=d(fi(C,—Int(B)U---UlInt(B)).
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S2(C2)), where d (X, Y)=Inf{d(x,v)| %X, y¢Y}.
We take a positive number & satisfying
kS < ¢ ¢, ¢
We shall inductively construct a sequence of hdmeomorphisms of C, into M,
9o=11, ¢1,*** , or, such that
d (pi_1, 1)< 8 «(7)
i ? K=f1 K
and f;'¢s{ByUB;U---UB; is piecewise linear.
We assume that ¢, ¢, ---¢0:-; have been constructed. Since @iy (Bi)C
Udi—nys (i (By) ) U (f1(Bi) ) f2(Int (C;)). We have a combinatorial n—cell D,
piecewise linearly imbedded in Int(C,), such that
i1 (D) Cfe (Int (Cy)) and Int (D,)D B;
By Lemma 1 we can take a homeomorphisms @; of D; into f;(Int C;) such that
dlpi1, $1) <
Gl ((BiUUBtUK)NDy)UoD;=¢iy ((ByU---UBi UK)N Dy)U2D;
and f;'@;| B; is piecewise linear.
We extend ¢; to a homeomorphism ¢; of C, into M by the formula
01| Dy=g¢| D;
01| Cy—Dy= @iy | Cy— Dy

Consequently we get the sequence ¢, ¢y, **+, ¢x of homeomorphisms and we put

oe=/1.
It is clear that
d(fi,))<k8<s
filK=fi K
and S fil BiUB;U - U By is piecewise linear.
Furthermore since d(fi, f))<kE<e"
and  =d(fi(Co—Int (BYU - UInt (By) ), f2 (Ca) )

We have Fi(Ci—BU--UB))Nf:(C2)
cU.. (fi(Ci—B,U-+UBy) N f2(Ca)=9.
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Then we have £, (Ci)Nf2(Co)CAi (BiU -+ U By).
Hence 71 /1 i (/1 (€N Sz (Co)) is piecewise linear and we have proved
From we shall prove the main theorem of this section as

follows :

Theorem 2 Any n—manifold M is combinatorial.

Proof of We shall use a double induction. Let fi,/2, -+ ,fc be
homeomorphisms of combinatorial n—cells C;, Cs, -, Ci, into M respectively
such that

Si(Int (C)))U---U fe (Int (C) )=M.
Then we can take combinatorial #—cells Cy, -+, Cx, which are piecewise linearly
imbedded in Int(C,), ---, Int (Cy) respectively such that

SiInt(Cy))U U fulInt (Ce))=M.
It is sufficicnt to prove that for any < there is a sequenee ¢y, -,¢, of
homeomorphisms of C,, -+, Cx into M respectively such that

d (o6, f)<e
and o7 @0 07 (i (C)Nes(Cs)) is piecewise linear for ixj. Put ¢;=f1 and
assume that ¢;, ¢, -+, 0oy have been constructed. Using we get a

homeomorphism ¢; of C; into M such that

and o'y | gt (01 (C)Nei (Cy)) is piecewise linear. Put Ky=¢7 (0 (CoU e (C)).

Similarly as ¢; we get a homeomorphism ¢, of C; into M such that

dlgn ) < -
o2 Ki=¢1 K,
and  o5' ¢ | 97t (02 (C)Na(Cy)) is piecewise linear.
Put K=K U¢:' (¢2(C)Nez(Co)). Similarly as ¢y, ¢2 we get a homeomorphism

¢3 of C; into M such that

M%M<§
@3 Ko=¢qy K
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and ' 07t (¢ (C)Nes(Cs)) s piecewise linear.
By induction we consequently get a homeomorphism ¢;_; of C into M denoted
by ¢: such that
d(¢ifi)=d (i, [i) S d (O1rpio)+ - +d (P, [) <z

and  ¢;' ol o7 (0 (Co)N 051C;)) is piecewise linear for >j. Then it is clear that
¢¢ is the required homeomorphism of C; into M. Hence we have proved
Theorem 2.

It is clear that [Theorem 1 and [Theorem 2 imply the following;

Corollary 1 Any n—manifold has one and only one combinatorial structure.

Furthermore obviously implies the following :

Corollary 2 Amny n—manifold has a triangulation.
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