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1. Introduction

In this paper we shall show that Hauptvermutung for combinatorial $n-$

manifolds and the triangulation theorem for topological n-manifolds can be

reduced to Lemma 1 which is a piecewise linear approximation theorem of

homeomorphisms of an $n$ -space $R^{n}$ into $R^{n}$ . Moreover we shall prove that any

topological $n$ -manifold has one and only one combinatorial stucture under the

assumption of Lemma 1. Throughout this paper an n-manifold means a

compact metric space any point of which has a neighborhood homeomorphic to

an $n$ -space $R^{n}$ . Then any $n$ -manifold is a closed ( $i$ . $e$ . compact without

boundary) topological $n$ -manifold. A polyhedral n-manifold $M$ is an $n$ -mani-

fold which has a triangulation $\mu$ . A combinatorial n-manifold is a polyhedral

$n$ -manifold $M$ such that the star $ST(v)^{*}$ of any vertex $v$ of $M$ is a combinatorial

n-cell ( $i$ . $e$ . a polyhedral $n$ -cell piecewise linearly homeomorphic to an $n-$

simlex). Throughout this paper we shall assume the following lemma:

Lemma 1 Let $\triangle$ and $\triangle\sim be$
$n$ -simplexes such that $\triangle\sim$ is linearly imbedded

in Int $(\triangle)$ and let $K$ be a polyhedron which is piecewise linearly imbedded $ m\triangle$ .

Then if $\epsilon$ is any positive number and $f$ is a homeomorphism of $\triangle$ into $R^{n}$ such

that $fK$ is piecewise linear, there is a homeomorphism $g|\triangle\rightarrow R$ such that

$ g|K\cup\partial\triangle=f|K\cup\partial\triangle$

$ g|\triangle\sim$ is piecewise linear

and $ d(f,g)^{}<\epsilon$

$*$ A star $ST(v)$ is the sum of all simlexes of $M$ having $v$ as a vertex.

$**d(f, g)=Sup\{d(f(x),g(x))|x\epsilon\Lambda\}$ .
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2. Hauptvermutung of $n$ -manifolds

In this section $\backslash \backslash \cdot e$ shall show that Lemma 1 implies the following

theorem:

Theorem 1 Let $f$ be a homeomorphism of a combinatorial n-manifold $M_{1}$

onto a combinatorial n-mani old $M_{2}$ . Then for any positive numer $\epsilon$ there is a

piecewise linear homeomorphism $g$ of $M_{1}$ onto $ M_{\circ}\sim$ satisfying

$ d(],g)<\epsilon$ .

Proof of Theorem 1 Since $M_{2}$ is a combinatorial $n$ -manifold. We can

take a finite number of combinatorial $n$ -cells $(c_{1}, c_{\underline{\circ}}, \cdots, c_{k})\backslash (hich$ are piecewise

linearly imbedded in $M_{2}$ and satisfies

$\bigcup_{i=1}^{k}Int(C_{i})=M_{2}$

Since $M_{1}$ is a combinatorial $n$ -manifold and $f$ is a homeomorphism of $M_{1}$ onto

$M_{\sim}o$ . We can find a positive number $:\wedge$

’ and $t\backslash vo$ sets of combinatorial $n$ -cells
$\langle B_{1}, B_{2}, \cdots, B_{h}\}\{\tilde{B}_{1},\tilde{B}\underline{\supset}, \cdots,\tilde{B}_{h}\rangle$ , piecewise linearly imbedded in $M_{1}$ , such that

$\tilde{B}_{l}\subset Int(B_{l}I\bigcup_{\ell=1}^{h}\tilde{B}_{i}=M_{1}$

and for any $B_{\ell}$ there is a $C_{f}$ satisfying
$U_{\vee}\cdot,$ $(f(B_{i}))\subset Int(C_{j})$ , $\cdot$ .. (1)

$\backslash vhereU_{\epsilon},$ $(f(B_{\ell}))$ is the -,-neighborhood of $f(B_{i})$ .
NV $e$ put $\delta_{\overline{h}}^{-\prime}=-\vee-$ ... (2)

We shall inductively construct a sequence of homeomorphisms of $M_{1}$ onto $M_{2}$

$f_{0}=f,f_{1},f_{0}\sim’\cdots,f_{1}$ such that

$ d(f_{\ell-1},f_{i})<\delta$ ... (3)

and $f_{\ell}\tilde{B}_{1}\cup\tilde{B}_{\underline{9}}\cup\cdots\cup\tilde{B},$, is $piece\backslash ise$ linear. $\cdot$ .. (4)

$\backslash ve$ assume that $f_{0},f_{1},$ $\cdots$ , $f_{\ell- 1}$ have been constructed and we put

$K=(\tilde{B}_{1}\cup\tilde{B}_{2}\cup\cdots\cdots\cup\tilde{B}_{i-1})\cap B_{i}=K_{i}$ (5)

From (3) we have $ d(f_{\mathfrak{i}-1},f)<i\delta$ and then from (1), (2) we have

$f_{i-1}(B_{l})\subset U_{i\dot{0}}(f(B_{\ell}))\subset U_{\vee}.,$ $(B_{i})\subset Int(C_{f})$ .
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By Lemma 1 there is a homeomorphism $f_{i}^{\prime}$ of $B_{\ell}$ into $C_{f}$ such that

$f_{i}^{\prime}K_{i}\cup\partial B_{\ell}=f_{i-1}|K_{i}\cup\partial B_{i}$ (6)

$ d(f^{\prime},f_{\ell-t1}B)<\delta$

and $f_{\ell}^{;\{}|\tilde{B}_{l}$ is piecewise linear.

According to (6) we can extend $f_{i}^{\prime}$ to a homeomorphism of $M_{1}$ onto $M_{2}$ by the

formula
$f_{i}|B_{\ell}=f_{i}^{\prime}|B_{l}$

$f_{i}|\overline{M_{1}-B}_{i}=f_{i-1}|\overline{M_{1}-B}_{i}$ .
Then it is clear that $f_{\ell}$ is the required homeomorphism and consequently we get

$f_{h}$ . It is easy to see that $f_{h}$ is the required piecewise linear homeomorphism $g$

of $M_{1}$ onto $M_{2}$ .

3. Triangulation of n-manifolds

At first under the assumption of Lemma 1 we shall prove the $followin_{L}\circ\sim$

lemma :

Lemma 2 Let $f_{1}$ and $f_{2}$ be homeomorphisms of combinatorial n-cells $C_{1}$

and $C_{2}$ into an n-manifold $M$ and let $C_{1},\tilde{C}_{2}$ and $K$ be two combinatorial $n-$

cells and a polyhedron such that $C_{1}$ and $\tilde{C}_{2}$ are $p\ell ecewise$ linearly imbedded in

Int $(C_{1})$ and Int $(C_{2})$ respectively, $K$ is piecewise $linearl_{J}$ ’ imbedded in $C_{1},$ $ f_{1}(K)\subset$

$f_{\underline{\circ}}(C_{2})$ and $f^{-1}f_{1}|K$ is piecezvise linear. Then for any positive number $\vee=$ there is

a homeomorphism $\overline{f}_{1}$ of $C_{1}$ into $M$ such that

$ d(f_{1},\overline{f}_{1})<\vee\wedge$

$\tilde{f}_{1}|K=f_{1}|K$

and $f_{2}^{-1}\overline{f}_{1}f_{1}-1(\tilde{f}_{1}(\overline{C}_{1})\cap f\underline{\cdot}(\overline{C}_{2}))$ is piecewise linear.

Proof of Lemma 2 Let $B_{1},$ $B_{2},$ $\cdots$ , $B_{(}$. be combinatorial $n$ -cells $piece\backslash r^{r}$ise

linearly imbedded in Int $(C_{1})$ such that

Int $(B_{1})\cup 1nt(B_{2})\cdots\cup$ Int $(B_{k})\supset f_{1}^{-1}(f_{1}(\tilde{C}_{1})\cap f_{2}(\tilde{c}_{\underline{n}}))$

and $f_{1}(B_{i})\subset f_{\sim}o(Int(C_{2}))$ $i=1,2,$ $\cdots,$
$k$ .

Put $\epsilon^{\prime}=d(f_{1}(B_{1}\cup B_{2}\cup\cdots\cup B_{k}), M-f\underline{\backslash }(C_{2}))$ and $\underline{=}\prime\prime=d(f_{1}$ ( $\overline{C}_{1}$ -Int $(B_{1})\cup\cdots\cup Int(B_{k})$ ).

.
$-$
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$f_{2}(\tilde{C}_{2}))$, where $d(X, Y)=Inf\{d(x,y)|x\epsilon X,y\epsilon Y\}$ .
We take a positive number $\delta$ satisfying

$k\delta<\vee-\wedge,$ $\text{\’{e}}^{\prime},$

$\text{\’{e}}^{\prime\prime}$ .
We shall inductively construct a sequence of homeomorphisms of $C_{1}$ into $M$,
$\varphi_{0}=f_{1},$

$\varphi_{1},$
$\cdots$ , $\varphi_{k}$, such that

$ d(\varphi_{\ell-1}, \varphi\ell)<\delta$ (7)

$\varphi_{i}|K=f_{1}|K$

and $f_{2}^{-1}\varphi|B_{1}\cup B_{2}\cup\cdots\cup B_{\ell}$ is piecewise linear.

We assume that $\varphi_{0},$ $\varphi_{1},$ $\cdots\varphi_{i-1}$ have $been$ constructed. Since $\varphi_{\llcorner 1}(B:)\subset$

$U_{(i1)\delta}-$ ($f_{1}$ (B))\subset U\’e’ $(f_{1}(B_{i}))\subset f_{2}(Int(C_{2}))$ . We have a combinatorial $n$ -cell $D_{\ell}$,

piecewise linearly imbedded in Int $(C_{1})$ , such that

$\varphi_{t-1}(D)\subset f_{2}$ (Int $(C_{2})$ ) and Int $(D.)\supset B_{\ell}$

By Lemma 1 wc can take a homeomorphisms $\overline{\varphi}_{i}$ of $D_{i}$ into $f_{2}$ (Int $C_{2}$ ) such that
$ d(\varphi_{i-1},\tilde{\varphi})<\delta$

. $\tilde{\varphi}\ell|((B_{1}\cup\cdots\cup B_{\ell-1}\cup K)\cap D_{\ell})\cup\partial D_{\ell}=\varphi_{i-1}((B_{1}\cup\cdots\cup B_{\ell-1}\cup K)\cap D_{\ell})\cup\partial D_{i}$

and $ f_{2}^{-1}\overline{\varphi}_{i}|B\ell$ is piecewise linear.

We extend $\tilde{\varphi}\ell$ to a homeomorphism $\varphi_{i}$ of $C_{1}$ into $M$ by the formula

$\varphi_{\ell}|D_{\ell}=\tilde{\varphi}|^{D_{\ell}}$

$(o_{i}|\overline{C_{1}-D}_{\ell}=\varphi_{l-1}|\overline{C_{1}-D}$

Consequently we get the sequence $\varphi_{0},$ $\varphi_{1},$
$\cdots$ , $\varphi_{k}$ of homeomorphisms and we put

$\varphi_{k}=\tilde{f}_{1}$ .
It is clear that

$dtf_{1},\tilde{f}_{1})<k\delta<\vee e$

$\tilde{f}_{1}|K=f_{1}|K$

and $f_{2}^{-1}\tilde{f}_{1}|B_{1}\cup B_{2}\cup\cdots\cup B_{k}$ is piecewise linear.

Furth $e$rmore since $d(\overline{f}_{1},f_{1})<k\delta<\epsilon^{\prime\prime}$

and $\epsilon^{\prime\prime}=d(f_{1}(\overline{C}_{1}-In\ell(B_{1})\cup\cdots\cup In\ell(B_{k})),f_{2}(\tilde{C}_{2}))$ .
We have $\overline{f}_{1}(\tilde{C}_{1}-B_{1}\cup\cdots\cup B_{k}))\cap f_{3}(\tilde{C}_{2})$

$\subset U_{\iota’}(\gamma_{1}(\tilde{C}_{1}-B_{1}\cup\cdots\cup B_{k}))\cap f_{2}(\tilde{C}_{2})=\phi$ .
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Then we have $\tilde{f}_{1}(\tilde{C}_{1}I\cap f_{2}(\tilde{C}_{2})\subset\tilde{f}_{1}(B_{1}\cup\cdots\cup B_{k})$ .
Hence $f_{2}^{-1}\tilde{f_{1}}^{I}\tilde{f}_{1}^{-1}(\tilde{f}_{1}(\tilde{C}_{1})\cap f_{2}(\tilde{C}_{2}))$ is piecewise linear and we have proved Lemma 2.

From Lemma 2 we shall prove the main theorem of this section as

follows:

Theorem 2 Any n-mantfold $M$ is combinatorial.

Proof of Theorem 2 We shall use a double induction. Let $f_{1},f,,$ $\cdots,f_{k}$ be

homeomorphisms of combinatorial $n$ -cells $C_{1},$ $C_{2},$ $\cdots$ , $C_{k}$, into $M$ respectively

such that

$f_{1}$ (Int $(C_{1})$ ) $\cup\cdots\cup f_{k}$ (Int $(C_{k})$ ) $=M$.
Then we can take combinatorial $n$ -cells $\tilde{C}_{1},$

$\cdots$ , $\tilde{C}_{k}$, which arc piecewise linearly

imbedded in Int $(C_{1}),$ $\cdots$ , Int $(C_{k})$ respectively such that

$f_{1}$ (Int $(\tilde{C}_{1})$ ) $\cup\cdots\cup f_{k}$ (Int $(\tilde{C}_{k})$ ) $=M$.
It is sufficicnt to prove that for any $\epsilon$ there is a sequenee $0_{1}^{r},$ $\cdots,$ $c_{k}^{\prime}$ of

homeomorphisms of $\tilde{C}_{1},$
$\cdots$ , $\tilde{C}_{k}$ into $M$ respectively such that

$ d(\varphi_{\ell},f_{\ell})<\epsilon$

and $\varphi_{j}^{-1}\varphi_{i}\varphi_{\ell}^{-1}(\varphi\ell(\tilde{C}_{i})\cap\varphi_{f}(\tilde{C}_{f}))$ is piecewise linear for $i\neq j$. Put $\varphi_{1}=f_{1}$ and

assume that $\varphi_{1},$ $\varphi_{2},$
$\cdots$ , $\varphi_{\ell\leftarrow 1}$ have been constructed. Using Lemma 2 we get a

homeomorphism $\psi_{1}$ of $C_{\ell}$ into $M$ such that

$ d(\psi_{1},f_{\ell})<\dot{l}\epsilon$

and ($0_{1}^{-1}\psi_{1}|\psi_{1}^{-1}(\psi_{1}(\tilde{C}_{i})\cap\varphi_{1}(\tilde{C}_{1}))$ is piecewise linear. Put $K_{1}=\varphi_{1}^{\prime-1}$ ((-lr $(\tilde{C})\cup\varphi_{1}(\overline{C}_{1})$ ).

Similarly as $\psi_{1}$ we get a homeomorphism $\varphi_{2}^{r}$ of $C_{i}$ into $M$ such that

$d(\psi_{2}, \psi_{1})<\frac{\epsilon}{\dot{t}}$

$\varphi_{2}^{\prime}K_{1}=\psi_{1}K_{1}$

and $\varphi_{2}^{-1}\psi_{2}|\psi_{2}^{-1}(\psi_{2}(\tilde{C}_{i})\cap\varphi_{2}(\tilde{C}_{2}))$ is piecewise linear.

Put $K_{2}=K_{1}\cup\psi_{2}^{-1}(\psi_{2}(\tilde{C})\cap\varphi_{2}(\tilde{C}_{2}I)$ . Similarly as $0_{1}^{\prime},$ $\psi_{2}$ we get a homeomorphism

C3 of $C_{\ell}$ into $M$ such that

$d(\psi_{3}, \psi_{2})<\frac{\epsilon}{i}$

$\varphi_{3}^{\prime}K_{2}=\psi_{2}K_{2}$
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and $t^{\neg^{-1}}$ ) $\varphi_{\overline{s}^{1}}^{\prime}(\varphi_{3}^{\prime}|(\tilde{C}_{i})\cap\varphi_{3}(\tilde{C}_{8}))$ is piecewise linear.

By induction we consequently get a homeomorphism $C^{\prime}Jt-1$ of $C$ into $M$ denoted

by $\llcorner\iota$ such that

$d(\varphi_{i},f_{\iota})=d(\psi_{l-1},f_{t})\leqq d(c\acute{\ell}-\iota\psi_{-2})+\cdots+d(\psi_{1},f_{i})<\rightarrow--$

and $c_{J}^{\prime^{-1}}’\varphi\ell|\varphi_{i}^{-1}(\varphi_{i}(\tilde{C}_{i})\cap\varphi_{f}(\tilde{C}_{j}))$ is piecewise linear for $i>j$ . Then it is clear that

$\varphi_{\ell}$ is the required homeomorphism of $C_{i}$ into $M$ . Hence we have proved

$r_{\Gamma 1_{1}eorem}2$ .
It is clear that Theorem 1 and Theorem 2 imply the following;

Corollary 1 Any n-mantfold has one and only one combinatorial structure.

Furthermore Theorem 2 obviously implies the following :

Corollary 2 Any n-manifold has a triangulation.
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